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EXECUTIVE SUMMARY 
 

This report summarizes the research and development R&D activities of the Plant 
Health Management (PHM) project during fiscal year 2020 (FY-20). This project 
focuses on the development of methods that integrate component health data and 
propagate such information at the system level to evaluate system sources of risk (where 
herein the term risk is broadly construed to include both plant safety and economics). 
Project development lives in cooperation with the Risk Informed Asset Management 
(RIAM) project. In fact, the RIAM project, uses the reliability models and data 
generated by the PHM project to optimize plant operations (e.g., maintenance and 
replacement schedule, optimal maintenance posture, etc.). This year’s activities for the 
PHM project focused mainly on the development of two classes of models. The first 
class includes a series of component reliability models which include aging, testing and 
maintenance. The second class includes a series of system reliability models which 
focus on the secondary side (i.e., power conversion portion) of exiting U.S. reactors. 
These models are based on fault tree logic structures such that they can be used within 
the framework of the existing plant Probabilistic Risk Assessment (PRA) methods and 
software. Our team also started to focus on the management of health data which was 
tackled in two directions. The first one focuses on the integration of monitored plant 
data and simulation models to assess component health. This approach moves from a 
classical data based to a model+data based approach with the goal of providing a more 
comprehensive and predictive framework for use of component health information. The 
second direction focuses on linking equipment reliability data (e.g., maintenance/failure 
reports, component monitoring data, etc.) directly to system reliability models using a 
margin based framework rather than one that is probability based. The main advantage 
of a margin based approach is that it can provide to responsible plant engineers and their 
management (decision-makers) with a more tangible and comprehensive set of 
information on system/component health and to predict how  performance is likely to 
change in the future. Such predictive capability will allow for safer and more cost-
effective plant performance in both the short-term (which is the focus of PHM) and 
long-term (the focus of RIAM). 
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Integration of Data Analytics  
with Plant System Health Program 

 
 

1. INTRODUCTION 
This report summarizes the R&D activities of the Plant Health Management (PHM) project during 

fiscal year 2020 (FY-20). This project focuses on the development of methods that integrate component 
health data and propagate this information at the system level to evaluate system sources of risk. Note that 
for the PHM project, term risk is broadly construed. In addition to plant safety (such as determined in a 
plant Probabilistic Risk Assessment [PRA]), risk also includes items that can impact plant operational and 
economic performance. From the viewpoint of the Light Water Reactor Sustainability (LWRS) program, 
both aspects (safety and economics) are necessary conditions that the fleet of operating Nuclear Power 
Plants (NPPs) need to meet. 

Sources of component health data can be testing data, maintenance/failure reports, or monitoring 
streaming data (such as physical process parameters like system pressure, flow, etc.). Typically, this kind 
of information is stored in the plant Equipment Reliability (ER) database and/or in the Remote Monitoring 
and Diagnostic (M&D) Center. 

This project development lives in symbiosis with the Risk Informed Asset Management (RIAM) 
project. The RIAM project, in fact, uses the reliability models and data generated by the PHM project to 
optimize plant operations (e.g., maintenance/replacement schedule, optimal maintenance posture, etc.). The 
RIAM project explicitly addresses plant decision making by framing each of these decisions in an 
optimization form with constraints set by the user. The primary difference between the PHM and RIAM 
efforts is timeframe. The focus on PHM is on short to medium term (i.e., up to 2 operating cycles) whereas 
the focus of RIAM is longer term (i.e., to the projected end of plant life – typically to the end of first (60 
years) or second license renewal (80 years) in the United States).  

This year’s activities for the PHM project focused mainly on the development of two classes of models. 
The first one includes a series of component reliability models which include aging, testing and 
maintenance. The second class includes a series of system reliability models which focus on the secondary 
side (i.e., power conversion portion) of exiting U.S. reactors. These models are based on Fault Tree (FT) 
logic structures such that they can be  applied using existing PRA methods and software. While existing 
plant PRAs typically focus mainly on plant safety systems, this second class of models consider the 
generation side of the plant. Typically, these models are known as Generation Risk Assessment (GRA) 
models (see Section 5). GRA models explicitly measure economic risk (e.g., loss of power generation) 
rather than a safety measure of risk (as it is done in a plant PRA). 

We also started to focus on the management of health data associated with plant structures, systems, 
and components (SSCs) and we tackled this issue in two directions. The first focuses on the integration of 
monitoring data with simulation models to assess component health (see Section 10). This approach is 
moving from a classical data-based approach to one which uses a model+data based approach with the goal 
of improving higher component health information. There exists a substantial literature focuses on using 
machine learning methods to predict component health solely based on past data [11]. This is a valid course 
of action for those applications where failure mechanism dynamics are not yet well understood. However, 
in several applications, computational models have been developed to understand and predict component 
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behavior and dynamics [24-30]. In this respect, these computational models can provide a valuable source 
of knowledge that can be employed to determine component health when coupled with monitoring data. 

The second direction focuses on linking ER data (e.g., maintenance/failure reports, component 
monitoring data, etc.) directly to system reliability models using two kind of languages: a probability-based 
and a margin-based language (see Section 5). The main advantage of a margin-based language is that it can 
provide more tangible information on system/component health and how it propagates to the system level 
and over time to responsible plant system engineers and management decision-makers. In this research we 
show how these two languages compare when provided the same source of data. 

In this report we also provide an exhaustive overview of modeling techniques. These techniques show 
how to link models together and how to integrate reliability with economic modeling. We show how these 
techniques have been developed within the RAVEN statistical framework and its associated plug-ins. 
Lastly, we summarize how the development of these models have been structured with the vision of 
releasing them to the industry and open-source tools. 

 

1.1 Synergies Between RIAM and PHM Projects 
The PHM and RIAM research are interrelated with the primary difference between the two being 

timeframe. The focus on PHM is on short to medium term (i.e., up to 2 operating cycles) whereas the focus 
of RIAM is longer term (i.e., to the projected end of plant life – typically to the end of first (60 years) or 
second license renewal (80 years) in the United States).  

The PHM project is focusing on the development of models (e.g., component and system reliability 
models) and methods to integrate data (e.g., data generated by plant ER databases) into these models. The 
RIAM project is focusing on the development of methods designed to optimize plant resources (e.g., SSC, 
personnel, ER activities). The methods being developed and demonstrated for RIAM can be classified into 
two classes: sampling methods and optimization methods. Sampling methods are designed mainly to 
propagate data and model uncertainties (e.g., investment evaluation). Optimization methods are designed 
to determine the best solution to a problem that satisfies a limited set of criteria (also known as constraints).  

Depending on the problem to be solved and the type of data available, the algorithm to be used might 
change. As an example, the data structure might be either discrete or continuous in nature. In addition, the 
problem under consideration might require a specific data set or, alternatively, a specific model which 
changes the problem structure depending on the considered boundary conditions. 

Figure 1 provides a graphical look at the available algorithms developed within the RIAM project for 
plant resource management depending on the data structure and the method that the problem requires. Note 
that some of these methods have been developed during FY-19 (and they will be briefly presented) while 
several others have been developed during FY-20 (and they will be extensively described). 
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Figure 1. Classification of the optimization algorithms developed under the RIAM project based on 

employed data structured and the method being used. 

 

2. COST AND RISK CATEGORIZATION RD&D PATH 
The goal of the cost and risk categorization research path under the Risk Informed Systems Analysis 

(RISA) pathway for the LWRS program is to leverage advanced computational capabilities to support 
enhanced system performance and health management. The first objective of this effort is to integrate 
various elements of system health monitoring, management, and reporting in a manner that is significantly 
less labor intensive and is at least as technically effective as current programs. The second objective is to 
manage equipment and system performance and its impacts on financial risk and to support reduced costs 
associated with monitoring and regulatory compliance.  

While the first objective is addressed by the PHM project, the second objective is addressed by the 
RIAM project. These two projects are coordinated to materialize the goal of the cost and risk categorization 
research path into a software platform that is referred to hereafter as the Risk Informed Plant System Health 
(RI-PSH) platform as shown in Figure 2. 

 

 
Figure 2. High level description of the RI-PSH platform. 
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The RI-PSH platform can be summarized as a Model Base System Engineeringa (MBSE) [21] platform 
for system operations: from system health data, it provides decision-making knowledge on the best 
maintenance posture and optimal component maintenance/replacement schedule. By maintenance posture 
we are referring to the maintenance strategy for each component that reduces (and in an ideal case, 
minimizes) O&M costs while maintaining adequate system performance, reliability, and availability. The 
term MBSE summarizes the main feature of the RI-PSH platform: rather than focusing on specific O&M 
applications, we are providing a set of models and methods to the analyst, along with a computational 
analysis framework. Depending on the issue to be analyzed, the analyst can then assemble models together 
(e.g., a combination of reliability and cost models), and, apply a series of computational methods (e.g., 
optimization, uncertainty quantification, data analysis) to achieve desired outcomes. 

From a development perspective, the PHM project is focusing mainly on the development of models 
and health data integration while the RIAM project is focusing on the optimization methods development. 
This development is coordinated with other projects with another LWRS pathway (e.g., the Plant 
Modernization pathway) and other U.S. Department of Energy–Nuclear Energy University Program (DOE–
NEUP) projects. Figure 3 shows a complete picture of the external collaborators that contribute effectively 
to the PHM-RIAM projects. These collaborators include both academic and industry partners. 

 

 
Figure 3. Interactions among the PHM project and other DOE projects in the development of the 

RI-PSH platform. 

 
a MBSE is an emerging approach in the discipline of System Engineering (SE) which can be described as “the formalized 

application of modeling principles, methods, languages and tools to the entire lifecycle of large complex, interdisciplinary, 
sociotechnical systems” [151]. Compared to classical SE approaches which are based on the system-as-machine paradigm, MBSE 
is based on system-as-organism paradigm. In other words, MBSE evolves SE approaches to explicitly consider large highly 
complex, adaptive and human-interactive systems. 
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We have structured the RI-PSH platform on different repositories where each repository contains a 
specific class of models or methods. Figure 4 shows the hierarchical structure of the repositories currently 
being developed and maintained. The ones shown in yellow represent the ones fully developed under the 
RIAM-PHM projects while the ones shown in red are co-developed with other programs. A more detailed 
description of these repositories is presented as follows: 

• RAVEN [22]: It is a flexible and multi-purpose modeling and simulation platform that supports 
Uncertainty Quantification (UQ), regression analysis, PRA, data analysis, and model 
optimization software. Depending on the tasks to be accomplished and on the probabilistic 
characterization of the problem, RAVEN perturbs the response of the system by altering its 
parameters through Monte-Carlo, latin hypercube, and other reliability surface search [8] 
sampling methods. The data generated by the sampling process are analyzed using classical 
and more advanced data mining approaches. RAVEN also manages the parallel dispatching 
(i.e., both on desktop/workstation and large high-performance computing machines) of the 
software representing the physical model. RAVEN heavily relies on artificial intelligence 
algorithms to construct surrogate models of complex physical systems to perform UQ, 
reliability analysis (e.g., limit state surface), and parametric studies. 

• LOGOS: This software contains a set of discrete optimization models that can be employed 
for capital budgeting optimization problems. LOGOS integrates economic and reliability risk 
in a single analysis framework. More specifically, provided SSC health information (e.g., 
failure rate or failure probability), O&M costs, replacement costs, cost associated with 
component failure, and plant budget constraints, LOGOS provides the optimal set of projects 
(e.g., SSC replacement or refurbishment) that maximizes profit and satisfies the provided 
requirements. The input data listed above can be either deterministic or stochastic in nature, 
i.e., they can be point values or probability distribution functions. In the latter case, several 
scenarios are generated by sampling of the provided distributions. The developed models are 
based on different versions of the knapsack optimization problem. Two main classes of 
optimization models have been initially developed: deterministic and stochastic. Stochastic 
optimization models evolve deterministic models by explicitly considering data uncertainties 
(associated to constraints or item cost and reward). These models can be employed as stand-
alone models or interfaced with the INL developed RAVEN code to propagate data 
uncertainties and analyze the generated data (i.e., sensitivity analysis). 

• SR2ML: The Safety, Risk, Reliability Model Library (SR2ML) is a software package that 
contains a set of reliability models designed to be interfaced with the INL developed RAVEN 
code. These models can be employed to perform both static and dynamic system risk analysis 
and determine risk importance of specific elements of the considered system. Two classes of 
reliability models have been developed; the first class includes all classical reliability models 
(FTs, ETs, Markov models and reliability block diagrams) which have been extended to deal 
not only with Boolean logic values but also time dependent values. The second class includes 
several component ageing models. Models included in these two classes are designed to be 
included in a RAVEN ensemble model to perform time dependent system reliability analysis 
(e.g., dynamic analysis). Similarly, these models can be interfaced with system analysis codes 
within RAVEN to determine failure time of systems and evaluate accident progression (static 
analysis). 

• TEAL: This package enables the capability to compute the Net Present Value (NPV), Internal 
Rate of Return (IRR), and Profitability Index (PI) with RAVEN. Furthermore, it is possible to 
do an NPV, IRR, or PI search. TEAL will compute a multiplicative value (e.g., the production 
cost) so that the NPV, IRR, or PI has a desired value. The plugin allows for a generic definition 
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of cash flows with drivers provided by RAVEN. Furthermore, TEAL includes flexible options 
to deal with taxes, inflation, and discounting, and offers capabilities to compute a combined 
cash flow for components with different component lives. 

• VERT: The Versatile Economic Risk Tool (VERT) is a model library to perform GRA. VERT 
quickly and effectively evaluates the economic risk that systems and sub-systems contribute to 
NPP power production. This is performed by employing classical PRA tools, such as FTs, with 
component reliability/availability models to evaluate risk associated with production loss. 

• SRAW: The System Risk Analysis Workflows (SRAW) plugin for the RAVEN code is a 
plugin that enables RAVEN to perform stochastic analysis of NPP asset management. The 
primary function of SRAW is to generate the complex RAVEN workflows as necessary to 
optimize asset management under various scenarios. 

 

 
Figure 4. Structure of the RI-PSH computational platform. 

While some repositories are already available using an open-source license (e.g., RAVEN and TEAL), 
the vision is to release all of the plugins with an open-source license sometimes in FY-21. This will greatly 
improve collaboration and development with external collaborators; this approach will support rapid 
deployment across the industry as well as provide a platform that permits expansion and improvements 
based on stakeholder experiences with use. 

 

3. MAINTENANCE APPROACHES 
The primary objective of a plant maintenance program is to effectively and efficiently maintain plant 

SSCs so that plant safety and production are maximized in a manner that is cost effective. Operating NPPs 
have successfully achieved high levels of safety (as indicated by numerous measures such as data and 
statistics maintained by regulatory authorities (e.g., United States Nuclear Regulatory Commission – US 
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NRC) and industry oversight organizations (e.g., Institute of Nuclear Power Operations – INPO) and 
production (as indicated by average plant capacity factors ~90% for more than the past 10 years).  

However, achieving these levels of performance has come at a high cost in terms of maintenance 
expenditures. These high expenditures, combined with the implementation of required safety upgrades as 
a result of the Fukushima Daiichi accident in Japan, have challenged the economic viability of operating 
NPPs, with a number having been prematurely shutdown and decommissioned in the past several years due 
to an inability to compete economically. The objective of this research activity is to develop an integrated 
asset management approach to support plant decision-makers to optimize plant maintenance, testing, and 
surveillance activities to reduce costs and improve plant economics while simultaneously maintaining plant 
safety and production at the highest levels achievable. 

 

3.1 Maintenance Activities 
Consider maintenance alternatives at the component level. Then maintenance can be classified into one 

of four categories which are described below. The categories are intended to ensure planned maintenance 
is optimally cost-effective given the functional significance of a particular SSCs and available technological 
capabilities.    

3.1.1 Corrective Maintenance (run to failure) 
Corrective Maintenance (CM) activities applies to plant SSCs that do not meet the definition of 

“Critical Components” as specified in the “Critical Component Reduction” section of NEI EB-16-25 [2], 
as indicated in the “Equipment Reliability Process Description” section of INPO AP-913 [3]. These SSCs 
are typically designated as “run to maintenance” (RTM) in plant equipment databases. Note that the term 
“RTM” was previously referred to as “run to failure” (RTF). Both terms are considered synonymous in this 
discussion. For these SSCs, handling can depend on the approach a utility takes to address RTM SSCs, as 
observed in Figure 1. 

As described in Section 3.1.5 of AP-913 Rev 6 [3], if RTM SSCs are included within the plant’s 
population of non-critical SSCs, then some maintenance of that equipment may be included within the 
formal PM program with some failure mechanisms addressed by Preventive Maintenance (PM) strategies. 
However, if RTM SSCs are excluded from the set of SSCs classified as noncritical (i.e., RTM SSCs 
constitute a separate category), then these SSCs should not have any PM activities performed. Note that in 
this case there may still be simple cost-effective tasks used to extend the life of the SSC, however, they are 
either not included in a formal PM plant program, or the SSC can be run until CM is required. 

From the perspective of asset management, the fundamental issue related to RTM SSCs is in the cost 
benefit tradeoffs related to the decision to allow a particular SSC to only be repaired when it fails. Since 
there are minimal impacts to safety or production upon failure of RTM SSCs, the economic impact related 
to these SSCs is minimal. As a result, these SSCs will not be addressed in long-term plant asset management 
plans. 

 

 
Figure 5. CM scheme [1]. 
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3.1.2 Preventive Maintenance (Optimal Maintenance Interval) 
In this category of maintenance alternatives, as well as the subsequent categories described in this 

report, the choices of which maintenance alternatives will be adopted are influenced by a combination of 
factors as seen in Figure 6. These include (1) whether a particular SSC is classified as a critical or a non-
critical SSC, (2) the characteristics of the particular SSCs (e.g., what possible maintenance activities can be 
performed on the SSC to  address the different identified failure mechanisms within the context of plant 
capabilities to implement the activity); and (3) economic considerations. It is generally recognized that 
more comprehensive maintenance activities will be specified for SSCs designated as critical than for those 
that are designated as noncritical. Finally, these decisions are also impacted by constraints that may be 
imposed (e.g., whether the activity requires a plant outage or whether it can be performed during power 
operation). 

The PM activities in this category generally can be viewed from the perspective of periodic maintenance 
activities which historically have been performed at defined intervals of time. Examples include activities 
such as replacing consumable materials (e.g., performing an oil change) at a specified period of time or 
based on accumulated run time for the SSC and performing calibrations of various instrumentation that 
measures and controls plant process parameters. Many required activities that are specified in plant 
Technical Specifications that are related to operational testing of plant SSCs critical to plant safety are of 
this class. 

These activities constitute those that are the most intrusive which are performed on a recurring basis 
for plant SSCs. They also typically possess greater costs than those in the Condition-Based Maintenance 
(CBM) and Predictive Maintenance (PdM) categories described below. Because these activities are 
intrusive, they also have the potential to leave the SSC in a worse condition (e.g., due to human error, 
introduction of defective replacement parts, etc.) than prior to the conduct of the maintenance. As a result, 
this class of maintenance alternative is less desirable than use of CBM or PdM when these approaches are 
available. Elimination of this type of activity (i.e., High-Cost Noncritical PMs) was a significant objective 
of the transition to Value-Based Maintenance (VBM) described in NEI EB-17-03a [4].     

For the use of time-based PM, the fundamental issue related to this class of activities (assuming that 
neither CBM nor PdM are possible as cost-effective alternatives) is the determination of an optimal 
frequency of performance that balances SSC performance objectives and costs. In EB-17-03a, this was 
specifically identified by specifying the need to “integrate cost-benefit analysis into station work order and 
PM change processes (and) ensure that the PM change processes provide guidance to support development 
of maintenance strategies that maintain the required ER for least cost”. For the long-term management of 
plant assets, there are numerous occurrences of this type of maintenance activity to ensure the long-term 
safe and economic operation of the plant. Often this type of activity is related to evaluating the condition 
of plant structural members and ensuring that they remain in good condition to ensure the long-term safety 
and economic performance of the station. An example related to safety is ensuring acceptable structural 
integrity and condition of the spent fuel pool while an example related to production and economics is to 
ensure the proper functioning of condenser tubes trough the remaining life of the plant.      
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Figure 6. PM scheme [1]. 

 

3.1.3 Condition Based Maintenance (Observed Conditions) 
The primary determinants related to the CBM category are: (1) the extent to which one or more 

technologies are available to assess the operational condition and performance of a particular SSC in 
relation to its expected failure mechanisms and (2) the extent to which application of these technologies 
can be cost-justified.  

This category includes various types of monitoring and evaluation techniques as observed in Figure 7. 
As an example, for rotating equipment CBM often includes: (1) performance testing; (2) vibration analysis; 
(3) ferrographic oil analysis; and (4) infrared (IR) thermographic analysis. In this category, the CBM data 
provide a useful “snapshot” of the condition of the monitored SSC at the time the data were obtained. In 
this category, evaluation of the data generally consists of a comparison of the various data values to 
predefined “Alert” or “Action” thresholds, trending of data over time, and an evaluation against previously 
identified degradation indicators via the application of pattern recognition algorithms. In this category, the 
activities are diagnostic in nature (i.e., they generally are limited to being able to detect degradations in 
SSC condition or performance, albeit often at an early stage of degradation). However, this maintenance 
category is limited to the extent to which the applied monitoring can predict the course of future degradation 
over time. 

 

 
Figure 7. CBM scheme [1]. 

 

3.1.4 Predictive Maintenance (Prognostic - RUL estimate) 
Similar to the previous category, the primary determinants related to the PdM category are (1) the extent 

to which one or more technologies are available to assess the operational condition and performance of a 
particular SSC in relation to its expected failure mechanisms and (2) the extent to which application of 
these technologies can be cost justified as seen in Figure 8. This category often uses many of the same 
technologies applied in the CBM category.  
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The primary distinction between the PdM and CBM categories is the extent to which the technologies 
can provide a reliable estimate on the course of progression of any identified performance deficiencies with 
the ultimate objective of providing an estimate of the time required before an action must be taken to prevent 
the monitored SSC to reach a state where its performance becomes unacceptable (or where it fails 
completely). This domain of monitoring typically is described as “prognostics” with the estimated time 
needed for the performance of required maintenance intervention designated the Remaining Useful Life 
(RUL) of the monitored SSC.  

This mode of monitoring is the most challenging because, to be successful, it typically requires (1) a 
detailed understanding of the mechanisms by which performance degradations can progress; (2) validated 
models for progression to failure; and (3) substantial amounts of monitoring data (often with streamed data 
at relatively high sample rates to be able to identify small additional changes in SSC performance). For 
these reasons, use of prognostics often are more expensive than the other categories of maintenance 
activities described previously, and therefore, typically are reserved for use on functionally critical SSCs 
or those that would have a high cost associated with failure. However, use of prognostics typically will 
provide the greatest amount of knowledge related to SSC condition and performance, provide detection of 
degradation at a very early stage, and thus, be capable of providing substantial lead time to plan and execute 
maintenance. It should be noted that as the cost of data acquisition and required computational power 
decrease, the application of this class of maintenance has become (and is anticipated to continue to be) 
useable over a broader range of plant SSCs.     

 

 
Figure 8. PdM scheme [1]. 

3.2 Classification of Maintenance Approaches 
The approaches listed above can be classified in a 2-dimensional space as seen in Figure 9 based on the 

following characteristics: 

• Underlying analysis method (data or model based) 

• Type of deployment (on-line or off-line). 
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Figure 9. Classification scheme for the considered maintenance approaches. 

In this classification, the analysis methods can be either qualitative or quantitative. In general, the off-
line methods generally apply qualitative approaches to classify plant SSCs, especially for decisions related 
to the classification of SSCs designated as RTM. For both of these cases (e.g., CM for RTM SSCs and time-
based PMs), any tasks and associated frequencies typically are specified via a combination of engineering 
judgement and plant / industry experience. Often, these activities are formulated into a standard PM 
program (i.e., PM templates).  

Note that a significant variation of this approach is used for activities specified in plant TSs for which 
a plant may choose to apply a risk-informed approach to control the frequencies at which the activities are 
performed, such as with the use of a RI Surveillance Frequency Control Program (SFCP) [5]. A variety of 
methods have been applied within the industry to classify the level of functional importance of plant SSCs. 
A discussion of the history of the use of several of these approaches at commercial nuclear power plants 
for the purposes of improvement in plant ER programs is described in the report Plant Integral Risk-
informed System Health Program (RI-PSH) [6].  

Use of on-line methods generally requires quantitative evaluations that monitor, trend, and assess 
critical parameters of SSC condition and performance. As discussed previously, for the CBM approach, the 
analytical methods are generally straightforward, i.e. comparison of observed data to predefined “Alert” or 
“Action” thresholds, trending of data over time, and an evaluation using pattern recognition algorithms. 
Also, as previously indicated, the use of prognostics typically requires substantially more sophisticated 
analytical methods that address the relationship of the collected data to the monitored SSC degradation 
mechanisms, validated models that predict the SSC progression to failure, and larger amounts of monitoring 
data.       

 

3.3 Matching SSCs to Appropriate Maintenance Approach 
Given a specific plant system, which maintenance strategy should be assigned to each component 

contained in it? As indicated in Figure 10, the specification of maintenance activities can be viewed as a 
continuum where the least functionally important / costly SSCs are on the left while the most functionally 
important / expensive SSCs are on the right. Such a viewpoint is consistent with the process that is in use 
across the industry as discussed previously.  
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Figure 10. Component maintenance strategy and component risk significance. 

Matching SSCs to the most cost-effective maintenance approach consists of a two-step process that 
identifies the equipment functional importance and then specifies the applicable maintenance tasks and 
frequencies based on a combination of this functional importance, SSC performance objectives, and costs. 
As described previously, the first element (e.g., specification of SSC functional importance) typically uses 
qualitative methods. However, quantitative methods can be employed to supplement these evaluations as 
appropriate. Example quantitative metrics that can be used to assess risks that are relevant to particular 
SSCs include the following:     

• Fussell-Vesely (FV) importance, based on cut sets that relate to plant safety 

• Prevention Worth (PW), based on path sets that relate to economic and generation risk 

The use of the FV measure is a standard metric used by industry in SSC classification related to meeting 
maintenance rule requirements [7]. However, the use of PW has not been applied widely in the commercial 
nuclear industry. One reason for this has been that quantitative risk models that evaluate loss of production, 
such as GRA models, have not been developed as they have been considered to insufficiently provide value 
to justify the resource expenditures required to develop, evaluate, and maintain them. 

 

4. MAINTENANCE MODELING 
The objective of this section is to introduce current methods to probabilistically model component 

ageing and ER activities such as SSC maintenance, testing, and replacement/refurbishment. 

 

4.1 Observations on Current Methods 
The majority of maintenance modeling/optimization articles available in the literature present models 

and methods that rely on a large amount of available reliability information (i.e., data) in order to include 
several ER aspects (e.g., ageing, testing, maintenance) into the analysis. However, with few exceptions, the 
current fleet of operating NPPs possess data that are sparse with respect to utilizing many of these models. 
Additionally, when plants have attempted to collect such data in the past, this has proven to be a time-
consuming, labor-intensive, and costly effort.  

Some authors recognize such limitations and they attempt to solve it by including data uncertainties to 
compensate for the lack of the data itself as if data uncertainties were directly available. However, given 
the practical need of being able to support decision-making in a cost-effective manner, the question of what 
the point is in building complex (i.e., high fidelity) models/methods when the data required are too costly 
to obtain and that, even if they were available, they are affected by large uncertainties that would limit the 
potential capabilities and utility of such models/methods is a reasonable one to ask. As a result of this 
“vicious circle,” the use of such models has not been widely adopted.   

Another issue that is relevant to use of the models described in the literature include to what extent and, 
more particularly, how does an estimated (either single value or probability distribution) SSC probability 
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of failure within some time interval provide meaningful information to relevant decision makers? These 
questions are applicable at several levels. First, they are relevant for plant system engineers who are tasked 
with monitoring and managing the performance of their assigned SSCs. Second, they are also relevant to 
plant management who are responsible for evaluating, approving, and allocating plant maintenance and 
capital improvement budgets.     

Given the overall objectives and constraints on operating NPPs and the known limitations in both 
traditional reliability modeling and available data, the fundamental question is how can one best utilize 
improvements in the state of knowledge and computational capabilities to develop a more cost-effective 
and integrated approach to system health and maintenance management? One solution to this problem 
would be to develop data-centric models/methods (i.e., models that are designed and built based on directly 
available data) that is designed to provide information that is useful to the various stakeholders (e.g., plant 
system engineers and management decision makers). It should be noted that until recently such a data 
centric approach was beyond the technical capability of existing computational systems. However, the 
increased capabilities and reduced costs of computational systems (both hardware and software – including 
use of advanced techniques such as artificial intelligence, data analytics, and machine learning) combined 
with advances in integrated data acquisition systems / platforms make such approaches much more feasible 
and cost effectiveb.  

This section describes an alternate approach for ER. However, before describing the approach, we first 
discuss the relevant issues: 

• Which types of data are available from the various sources at the plant? 

• What specific information is needed to support the various responsible stakeholders (i.e., plant 
system engineers and management decision makers)? 

• Given these “boundary conditions” what methods and tools are available to most effectively 
and efficiently develop information to meet these needs? 

 

4.2 ER Data Types 
In the assessment of equipment and system performance, a large amount of data exists that have been 

generated over the course of a plant’s operating lifetime. Because the fleet of operating NPPs in the U.S. 
was designed in the 1960s and primarily built during the 1970s, the vast majority of data on plant equipment 
performance was generated from analog instrumentation and either recorded on paper media (e.g., plant 
surveillance test results) or hard copy strip charts. Although some of the instrumentation associated with 
plant systems has been replaced with digital instrumentation and controls—in particular for the feedwater 
and main turbine control systems—and many plants have added data highways for remote monitoring and 
assessment of SSC performance and condition, often in a centrally located maintenance and diagnostics 
center, this situation still exists for a large portion of plant SSCs. 

The type and amount of data available to assess SSC condition and performance (i.e., for the purposes 
of evaluating and managing system health) are numerous. Specific data sources also vary significantly 
across plants throughout the industry. However, there are several sources of data that are relatively standard. 
These data sources can be classified as one of two types: dynamic and static. Dynamic data sources 
represent those that capture “real time” data that are updated frequently; such data, when they exist, often 
are streamed to a centralized location for evaluation and analysis using various automated techniques, such 
as pattern recognition, statistical trending, etc., to identify changes in SSC performance at an incipient stage. 

 
b As an example, from a software point of view, several data analysis (such as: numpy-scipy, pandas, seaborn) and machine learning 

libraries (such as: scikit-learn, TensorFlow, Keras, Theano, PyTorch) has been developed and released open-source. 
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These data can also then be used (often when combined with additional data of either type) to provide 
predictions of the evolution of SSC performance with the intended outcomes being to identify the specific 
cause of the degradation and if and when SSC failure would be anticipated to occur so that appropriate 
maintenance actions can be proactively scheduled. 

The second type of data source consists of static data. These data typically are contained in plant 
databases (e.g., the most significant of which is the integrated plant work management system). These large 
data sources support a multitude of plant functions including work planning and management, corrective 
action programs, and regulatory compliance. For the purposes of system health and asset management 
programs, the most significant are the following:     

• Maintenance reports (including SSC maintenance work orders documenting both corrective 
and preventive maintenance actions, maintenance rule SSC availability and reliability 
monitoring results, etc.) 

• Surveillance reports (including SSC performance information and As Found / As Left data for 
instrument calibrations) 

• Reactor Operator and Shift Supervisor operating logs 

• Condition monitoring data (including data sent to a centralized maintenance and diagnostics 
center) 

• Other monitoring and testing data (including quantitative and qualitative SSC condition data 
obtained from manual data gathering such as off-line vibration monitoring, thermographic 
imaging, lubricating oil analysis, etc.) 

• Other reports (including engineering analyses, plant corrective action program reports, etc.) 

Note that the format and accessibility of these data sources (and others) are different for different plants 
and over differing time frames. As one example, instrument calibration records (with As Found / As Left 
data) that are necessary for some engineering evaluations (such as surveillance frequency extensions 
performed under a plant SFCP) may be available only on hard copy (paper) version of the completed 
surveillance tests. In other instances, some data may only be available in electronic format after the date of 
installation of the applicable database in which is the data are contained.  

 

4.3 ER Data Issues 
Although a large amount of data generally is available to support plant ER and asset management 

programs and decisions, the data are often contained in different data sources (some of which may not be 
in electronic format) and may have other limitations that may limit their usefulness. Some of the issues that 
complicate the ability to use these data effectively are the following:    

• Data scarcity: Specific data that are best suited to address specific issues may not be available 
for use for a variety of reasons. Often this is the case due to not having specific process 
conditions monitored to provide direct indication of the desired information.   

• Data sparsity: A significant portion of plant SSCs that are deployed in operating NPPs are for 
use to respond to accident conditions. As a result, these SSCs are normally in a standby 
condition with data only obtained periodically when the SSCs are tested to ensure proper 
operation and meeting requirements incorporated in the plant TSs.   

• Incomplete data: Data may be difficult or expensive to retrieve, particularly for data that were 
collected early in the plant operating history. 
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• Contradictory data: In addition to potential gaps in data, some data may provide information 
that appears to be contradictory and for which the original analyses that addressed such 
discrepancies is not available.  

• Heterogenous formats and contents: This issue may be the most significant impediment to the 
cost effectiveness of plant ER and asset management evaluations and decision making. In 
addition to requiring significant resources to identify and obtain necessary data to support 
effective and efficient decision making, data are often contained in different formats and stored 
on different media. Since digital media were not available early in the life of many operating 
NPPs, early records often have been maintained in hard copy (paper) versions or stored on 
microfiche. Additionally, as digital media became available and matured, data stored in digital 
format often migrated across several platforms as technology and related applications changed 
over the years.        

• Data fuzziness and uncertainties: In some instances, uncertainties in collected data are not 
recorded or addressed. In general, this usually is not a significant limitation; however, it may 
become an issue in addressing some regulatory applications (e.g., in applications that are risk-
informed). 

The extent to which these (and potentially other) data issues may be significant depending upon both 
the application (i.e., the specific decision being addressed) and the specific structures, amount, and content 
of the various plant data sources. The importance of these issues may be increased substantially if they are 
intended to apply artificial intelligence and machine learning approaches to support the analysis of available 
data and provide input into the plant decision-making process.   

  

4.4 System Engineer Tasks, Decision-Making and Required 
Knowledge 

The main tasks of a plant system engineer can be summarized as follows: 

• Monitor and gather information on the status and performance of assigned plant SSCs 

• Plan, execute, and manage SSC ER activities for assigned plant SSCs 

• Develop ageing management plans for assigned plant SSCs 

• Develop and manage budgets for assigned plant SSCs 

The models/methods under development for the RIAM-PHM projects are intended to directly support 
cost effective performance of these tasks. Whiel determining an approach to achieve this objective, two 
questions, based on the accumulated experience of NPP operation are asked: 

1. Does a probability of-failure-based language provide a useful to support these decisions?  

Typically, the answer to this question can be considered to be no. Although portions of a 
reliability engineering based approach have been implemented to meet industry guidance 
related to the maintenance rule [7], most of these formal methods have been found to be costly, 
time consuming, and labor intensive to apply. As one example, in the late 1980’s / early 1990’s 
formal Reliability Centered Maintenance (RCM) approaches were adapted from use in 
commercial aviation and applied to NPP maintenance programs. However, application to 
industry pilot plants found the approach to be very labor intensive and costly. This led to 
development and implementation of streamlined RCM (so called SRCM) approaches and 
software, culminating in development of the EPRI PM Basis Database software package with 
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standard maintenance programs (so called PM templates) to facilitate more cost effective 
specification and management of plant PM programs [8, 9]. Another example is the conduct of 
system/train level evaluations of reliability. Such evaluations are performed to meet industry 
guidance to comply with the maintenance rule and for evaluation of plant PRA models. 
However, such evaluations have been limited to use in these applications as they also have been 
found to be labor intensive and costly to perform. Industry efforts to apply these techniques to 
evaluate the potential for plant trips (e.g., development of plant GRA models were abandoned 
as being too costly and not providing sufficient value for the given expenditures that would be 
needed to build, validate, and maintain them. 

2. Given industry experience, what would be a suitable framework that would be useful for a plant 
system engineer?  

In the operation of commercial NPPs, the concept of margin management has served as a 
useful tool to maintain safe operation. Similar to other engineering applications where it is 
considered necessary to ensure that adequate levels of safety are provided, the concept of safety 
margins has been employed within the NPP regulatory framework since the beginning of the 
industry. Because this approach is well understood and permeates the decision processes used 
within the industry, a useful approach to manage plant ER and system health that is based on 
evaluation of “margin to failure” would be effective and efficient. Such an approach is 
proposed for use by plant system engineers and is described below for each of the maintenance 
classes.       

 
5. MARGIN TO FAILURE BASED APPROACH 

This section presents an alternate “language” to perform reliability modeling as an alternate path to 
failure-based reliability modeling. This new language is based on a concept that is more familiar to plant 
system engineers and management decision makers, i.e., the concept of margin to failure. 

 

5.1 A System Engineer Definition of Risk 
In its classical definition, risk is defined by three elements: what can go wrong, what are its 

consequences and how likely is it to occur? Likelihood of occurrence of events is typically described in 
probabilistic terms. While this choice makes sense in a regulatory based framework to estimate risk 
associated to NPPs in terms of Core Damage Frequency (CDF) and Large Early Release Frequency (LERF) 
as evaluated in a plant PRA, this approach, which as implemented thorough the industry relies on static 
modes as thus does not provide an actual snapshot of the health of plant. 

Several observations are provided to support this claim: 

• Plant PRA models are based on Boolean logic structures (e.g., Event Trees [ETs] and FTs) 
which describe the deterministic functional relationship between systems, components and 
human interventions 

• Each basic event in a PRA represent a specific elemental occurrence of an event (e.g., failure 
of a component, failure to perform an action by the plant operators, recovery of a safety system) 

• A basic event is defined using a Boolean logic, i.e., the event can either occur or not occur 

• A probability value is associated to each basic event, which represents the probability that the 
basic event can occur 
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• Testing, maintenance and surveillance operations are not completely integrated into a PRA 
structure 

• This probability value is updated typically every two years based on past operational 
experience through use of a Bayesian statistical process 

• A probability value associated to an event is thus an integral representation of the past 
operational experience for such an event and it neglects the present health status of components 
(from diagnostic and CBM data) and health projection (when available from prognostic data) 
on anticipated changes in SSC condition and performance in the near futurec 

Given these conditions, the decision-making process related to health and asset management is not well 
suited to being evaluated and managed using classical PRA tools. What can we change then? A possible 
alternate path can start by redefining the word “risk” to a broader meaning that better reflects the needs of 
a system health and asset management decision making process. Figure 11 below shows this alternate path 
where, rather than asking how likely an event can occur (in probabilistic terms), we ask how far this event 
is from occurring. 

 

 
Figure 11. Regulatory and system engineer definition of risk. 

This new interpretation of risk transforms the concept from one that focuses on probability of 
occurrence to one that focuses on assessing how far away (or close to) an SSC is to an unacceptable level 
of performance or failure. This transformation has the advantage that it provides a direct link between the 
SSC health evaluation process and standard plant processes used to manage plant performance (e.g., the 
plant maintenance and budgeting processes). The transformation also places the question into a form that 
is more familiar and readily understandable to plant system engineers and decision makers.  

At this point it is needed is to identify how to measure SSC margins as a distance of occurrence between 
the SSCs existing condition and the point where its performance or condition becomes unacceptable and 
action is required. Note that the concept of “distance” does not necessarily need to be measured in terms of 
time as we will clearly show in the next sections. Now, rather than using a “failure” language, we will 
measure this distance in terms of margins: margin to failure. Given the data available from plant ER and 
monitoring/diagnostic-prognostic centers, a margin to failure can be described in either probabilistic or 
single-value forms. 

 

5.2 Margin to Failure 
As a first-tier definition a margin can be viewed as follows: 

Definition: Margin to failure (MTF) - The “distance” between present/actual status and a failed status for 
a specific plant SSC (see Figure 12). 

 
 

c In this respect, when a failure mode of a component is subject to monitoring (e.g., through diagnostic/prognostic process) and 
maintenance operations, the aleatory concept of failure rate might be inadequate to model such failure mode. 

what can go wrong
what are its consequences
how likely it is

what can go wrong
what are its consequences
how distant it is

Regulatory definition System engineer definition
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Figure 12. Graphical representation of margin to failure. 

The application of this framework to plant ER and system health as proposed here is centered on the 
integration and evaluation of data that are available to assess SSC condition and performance. Thus, this 
framework requires the definition of the following concepts: 

• Space: The “space” definition should be based solely on the type/dimensionality of the data 
that can be directly measured/obtained by the system engineer 

• Distance metric: Once the space is defined it is necessary to provide a measure of the “distance” 
between two points located in this space. 

The goal now is to define appropriate “Space” and “Distance” metrics for the four classes of 
maintenance approaches identified previously: CM, PM, CBM, and PdM (see Sections 5.2.1 through 5.2.4). 
In each case the objective is to develop measures that provide useful indicators of SSC condition and 
performance which can be used by plant system engineers to cost-effectively assess and manage their 
assigned SSCs. 

The writeup provide in the following sections for each maintenance class identifies available data that 
are relevant to the class and the space in which the relevant data are applicable. Then for each maintenance 
class the relevant measure of MTF is identified.  In each case the approach is illustrated via a graphical 
depiction.    

 

5.2.1 Corrective Maintenance 
This class represents the simplest maintenance class for which the SSCs assigned to the class have been 

identified as not critical to plant production or safety. Since the SSCs in this class are allowed to run to 
maintenance, at which time they are repaired or replaced as necessary, the only information available is the 
time at which a degraded condition was detected or a failure occurred that resulted in generation of the CM 
work order to restore the functionality / condition of the SSC.  

For the purposes of estimating the MTF for a particular SSC, this can be obtained from the difference 
in time between when an SSC was placed in service and the Mean Time To Failure (MTTF) for a population 
of similar SSCs operated under similar conditions as observed in Figure 13. Because the SSCs in this 
maintenance class are not functionally critical to plant operation or safety, precise estimates of these times 
(and of the estimated MTF) are not critical for normal operational purposes. However, for purposes of long-
term asset management, such estimates would be useful to identify appropriate maintenance intervals (such 
as in the case of replacement to address issues of obsolescence) for particular classes of SSCs (e.g., 
replacement of various process sensors and electronic signal converters) as investments to support cost-
effective operation during periods of license extension: 

Data: Observed failure times for similar components situated within similar boundary conditions 

Space: Time 

MTF: Distance between actual operation time since SSC installation and the set of observed failure times 

Data 
space

BOL now

Margin to failure

Failure
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Figure 13. MTF in a CM context. 

5.2.2 Preventive Maintenance 
As described previously, this maintenance class predominantly consists of those time directed PM 

activities that are intended to address identified degradation mechanisms before they can result in failure of 
the SSC. Since these activities are scheduled at specific instances of time, for the purposes of estimating 
MTF we indicate ∆𝑇!" as the time between two consecutive PM activities (i.e., the PM frequency) that 
address the same or similar failure mechanisms.  

Similar to the previous case, the relevant data are the times when a degraded condition was detected or 
a failure occurred that resulted in generation of the CM WO to restore the functionality/condition of the 
SSC; however, because these SSCs have PM activities that are intended to preclude failure, such 
occurrences should be infrequent. Because such failures for these SSCs should be infrequent, an additional 
source of data comes from the conditions observed when PM activities are performed. 

From these data, three outcomes of significance are observed: (i) significant deterioration in SSC 
performance or condition, which is indicative of the need to perform more frequent or different PM; 
(ii) minor but noticeable observed deterioration in SSC performance or condition, which is indicative that 
the prescribed PM tasks and frequencies are appropriate to cost-effectively manage SSC health; and 
(iii) minimal to no observed deterioration in SSC performance or condition, which is indicative that the 
specified PM activities do not need to be performed as frequently as currently specified, as shown in Figure 
14: 

Data:  Failure times observed within a PM interval (i.e., between 𝑃𝑀# and 𝑃𝑀#$%) 

Space:  Time 

MTF:  If failure before 𝑃𝑀#$% has been observed, then MTF is the distance between present time and the 
recorded failures. If no failures have been recorded, then one can set 𝑀𝑇𝐹 = ∆𝑇!"	. (Note that for 
data characterized by (iii) above, this will result in a conservative assessment as the presence of 
little to no degradation is evidence that the MTF is likely substantially larger than ΔTPM.) By 
combining these two cases one obtains 𝑀𝑇𝐹 = min	[𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑤, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒	𝑑𝑖𝑠𝑡 <
𝑃𝑀#$%), ∆𝑇!"]]   

 
 

timeBOL now

Margin to failure

Observed 
failures
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Figure 14. MTF in a PM context. 

 

5.2.3 Condition-Based Maintenance: Diagnostic 
For this (and the following) maintenance class, data are available that evaluate the condition and 

performance of the monitored SSCs. Often these data are available in real time leading to the capability of 
performing real time assessments of SSC condition and performance. As described previously, in this 
category the data evaluation approaches are diagnostic in nature but are limited in the extent to which the 
applied monitoring can predict the course of future degradation over time.  

Although there is a much better understanding of the condition and performance of monitored SSCs in 
this maintenance class, there remains substantial uncertainty in the progression of the active failure 
mechanisms that are occurring. Therefore, once degraded performance is detected on a particular SSC, it is 
prudent to perform appropriate actions as soon as practicable to reduce the likelihood that the degradation 
mechanisms progress faster than anticipated leading to SSC failure since SSCs within this class are critical 
(from either an economic or safety perspective). Note that in this class, the identified actions will likely be 
conservative given the importance of the SSCs and the uncertainties in the progression of the relevant 
degradation mechanisms as observed in Figure 15: 

Data: Actual SSC condition and past condition data for similar SSCs  

Space: SSC condition 

MTF: Distance between actual SSC condition and observed SSC past conditions that lead to failure 

 

    

 
Figure 15. MTF in a CBM context: evolution as a function of time (top) and a graphical plot of 

MTF (bottom). 
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5.2.4 Predictive Maintenance: Diagnostic + Prognostic 
Similar to the preceding class, data for SSCs in this maintenance class are available to evaluate their 

condition and performance, again often in real time. However, as described previously, in this category the 
approaches are prognostic in nature and can provide an accurate prediction of the course of future 
degradation over time.  

Therefore, once degraded performance is detected on a particular SSC, appropriate action is to apply 
the relevant models using the given data to obtain predictions of the MTF for the SSCs and integrate these 
evaluations (including any identified contingency actions such as the conduct of additional or more 
sophisticated / targeted monitoring).  

Note that in this class, due to the higher levels of confidence (e.g., smaller levels of uncertainties) in 
predicting future SSC degradation, the identified actions may not need to be as aggressive or conservative 
as those implemented for SSCs in the previous maintenance category as seen in Figure 16: 

Data: Actual SSC condition and past condition data for similar SSCs and predictive model of future 
degradation (which provides the estimated RUL for the monitored SSC)  

Space: Time 

MTF: Distance between actual time and estimated RUL 

 

 
Figure 16. MTF in a PdM context. 

 

 

 

5.3 Normalized Margin to Failure 
The definitions of MTF indicated in Section 5.2 are defined over the different spaces that are reflective 

of the different maintenance classes. 

The goal now is to answer this question: is there a way to transform the definitions of MTF indicated 
in Sections 5.2.1 through 5.2.4 in such a way that they can be compared? A possible approach is to 
normalize the MTF definitions in Sections 5.2.1 through 5.2.4 (i.e., use as a measure a normalized margin 
to failure [NMTF] where each measure is normalized over its specific attributes as indicated below).   

• CM: 

𝑁𝑀𝑇𝐹	 = 	
𝑀𝑇𝐹

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑓𝑎𝑖𝑙𝑢𝑟𝑒	𝑡𝑖𝑚𝑒𝑠
 (1) 

Margin to failure

timeBOL now

SSC 
condition

Calculated 
RUL

SSC limiting 
condition

Observed 
failures
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• PM: 

𝑁𝑀𝑇𝐹	 = 	
𝑀𝑇𝐹
∆𝑇!"

 (2) 

• CBM: 

𝑁𝑀𝑇𝐹	 = 	
𝑀𝑇𝐹

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑆𝑆𝐶	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	𝑡ℎ𝑎𝑡	𝑙𝑒𝑎𝑑	𝑡𝑜	𝑓𝑎𝑖𝑙𝑢𝑟𝑒
 (3) 

• PdM: 

𝑁𝑀𝑇𝐹	 = 	
𝑀𝑇𝐹
𝑅𝑈𝐿

 (4) 

This normalization results in a standardized evaluation set such that 0 ≤ 𝑁𝑀𝑇𝐹 ≤ 1 . In this 
framework, the NMTF provides relative assessment criteria that can be compared across the different 
maintenance classes and for which consistent evaluation and decision criteria can be developed.   

 

5.4 Reliability Models for NMTF 
Currently, applications of a number of reliability models are under development and evaluation (e.g., 

GRA models) as a part of the LWRS program. These models are being constructed using standard reliability 
approaches that have been used in commercial nuclear power applications (i.e., ET/FT models) for many 
years and, as such, are based on the assumptions that each basic event is defined over a probability of failure 
value. 

The goal now is to deploy these reliability models by feeding NMTF values at the component level and 
propagate these results through the models in order to determine NMTF at a level where the degraded 
performance or failures would result in actual consequences to plant safety or economics (i.e., the system 
or train level). 

Even though the definition of NMTF is between 0 and 1, note that it is not appropriate to simply 
exchange probability values with NMTF values; in other words, it does not make sense to add or multiply 
NMTF values like it has done with probability values. 

 

5.4.1 Mathematical Basis for NMTF Based Modelling 
Currently plant reliability models (including PRA and GRA models) are based on Boolean logic 

structures (e.g., ET and FT ) and are solved probabilistically using classical probabilistic calculations 
applied to the sets as observed in Figure 17. 

As shown in Figure 17, provided a set 𝐴 in a sample space 𝑆, we can associate a probability value 𝑃(𝐴) 
to such a set such that 0 ≤ 𝑃(𝐴) ≤ 1, where 𝑃(∅) = 0 (here ∅ indicates the empty set) and 𝑃(𝑆) = 1. 
From a set theoretic perspective, it is of interest to measure (in a probabilistic sense) the probability 
associated with the occurrence of both (intersection of 𝐴 and 𝐵) or either (union of 𝐴 and 𝐵) events. While 
the union of events maps the region in 𝑆 covered by both 𝐴 and 𝐵, their intersection maps the overlap region 
between 𝐴 and 𝐵. 
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Figure 17. Classical set representation of event occurrences. 

Given this, it is possible to calculate the probability of the union and intersection of two events 𝐴 and 
𝐵 as follows: 

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵) = 𝑃(𝐵|𝐴) ∙ 𝑃(𝐴) 

(5) 

where the notation 𝑃(𝐴|𝐵) indicates the conditional probability of the occurrence of A given that B has 
occurred. 

Provided the assumptions that 𝐴 and 𝐵 are independent, then these equations reduce to the following: 

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴) ∙ 𝑃(𝐵) 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵) 

(6) 

A similar discussion can be carried out in terms of NMTF. Consider two components (𝐴 and 𝐵). The 
NMTF for both components can be visualized in a 2-dimensional space as shown in Figure 18. 

Starting with brand-new components (i.e., 𝑁𝑀𝑇𝐹' = 𝑁𝑀𝑇𝐹( = 1), aging degradation that affect both 
can be represented by the blue line of Figure 18 which moves from the point of the coordinates (1,1), 
components 𝐴 and 𝐵 at the beginning of life (BOL) to the point of the coordinates (0,0), both components 
failed. Each point in the blue line represents the 𝑁𝑀𝑇𝐹 for both components 𝐴 and 𝐵 at a particular time 
instant. 

Similar to the set-based visualization of Figure 17, we can identify the following regions in Figure 18:  

• Occurrence of both events: when 𝑁𝑀𝑇𝐹' = 0 and 𝑁𝑀𝑇𝐹( = 0 

• Occurrence of either events: when 𝑁𝑀𝑇𝐹' = 0 or 𝑁𝑀𝑇𝐹( = 0 

 



 

35 
 
 
 

 

  
Figure 18. Graphical representation of event occurrences based on NMTF. 

At this point we can calculate the NMTF for the events listed above. This is accomplished by following 
the definition of MTF: by measuring the distance between the actual condition of components 𝐴 and 𝐵 and 
the NMTF conditions identified by the event under consideration (e.g., the occurrence of both or either 
events): 

• NMTF(occurrence of both events): 𝑑𝑖𝑠𝑡[(𝑁𝑀𝑇𝐹')*+ , 𝑁𝑀𝑇𝐹()*+), (0,0)] 

• NMTF(occurrence of either events):	𝑚𝑖𝑛(𝑁𝑀𝑇𝐹')*+ , 𝑁𝑀𝑇𝐹()*+) 

The function 𝑑𝑖𝑠𝑡[𝑋, 𝑌] is designed to calculate the distance between two points 𝑋 and 𝑌. Like for any 
other n-dimensional continuous space, several distance metrics can be chosen as indicated in Table 1. 

 

Table 1. Summary of possible distance metrics. 

Name Formula 

Manhattan 
𝑑𝑖𝑠𝑡[𝑋, 𝑌] =Z|𝑋# − 𝑌#|

,

#-%

 

Euclidean 
𝑑𝑖𝑠𝑡[𝑋, 𝑌] = [Z(𝑋# − 𝑌#).

,

#-%

 

Chebyshev 𝑑𝑖𝑠𝑡[𝑋, 𝑌] = max
#
|𝑋# − 𝑌#| 
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5.4.2 Examples of NMTF Temporal Evolution  
Provided ER data that monitor the health and condition of a plant SSC, the NMTF of the component 

evolves in time. Note that the occurrence of degradation can involve multiple competing failure modes for 
a single component. Figure 19 shows a hypothetical temporal evolution for two components or, 
alternatively, two failure modes for a single component. Note that the illustrations used here are simplified 
to a two-dimensional representation to illustrate the concept. In actual application to plant SSCs, the 
evaluations would occur over a (potentially much) larger dimensionality.  

 

  
Figure 19. Temporal evolution of NMTF for two components. 

Maintenance activities are designed to improve component health and, thus, renew its NMTF (by 
resetting NMTF to the point (1,1) in this example). Table 2 provides an example of activities that can be 
performed on an electric motor to check, test, and improve its reliability. 

 

Table 2. Some electric motor surveillance, testing and maintenance activities. 

Surveillance Testing Maintenance 

Vibration monitoring rpm vs. torque curve update Seal replacement 

Temperature monitoring Motor winding insulation 
resistance test 

Change oil in seal and 
motor housing 

Check oil levels in seal 
and motor housing 

Motor winding continuity 
test 

Bearings replacement 

 
These activities can be incorporated in a NMTF reliability analysis by incorporating testing and 

surveillance data to determine the status of component (or individual failure modes) NMTF. Maintenance 
activities (e.g., PM) are designed to improve the component (or failure mode) NMTF and, hence, its 
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reliability. Figure 20 shows the impact of maintenance activities on the NTMF temporal evolution of Figure 
19. 

 

  
Figure 20. Impact of maintenance activities on the NMTF progression. 

 

5.4.3 NMTF Based Simple Reliability Calculations 
Note that the plant / system / train reliability models simply depict the logical connections between 

components and how the failure of a component affects system operation. Although the output of the model 
is probabilistic, the underlying structure is deterministic. 

The question now is: is it possible maintain the same structure of the underlying reliability models but 
redefine / reinterpret the basic events in terms of NMTF? In other words, how can we calculate system / 
train / plant level NMTF values given specific component level NMTFs and the developed reliability 
models? 

 

5.4.3.1 Series and Parallel Configurations 
Let’s consider a simple case consisting of two SSCs (SSC1 and SSC2) for two possible configurations: 

series and parallel. In the reliability model, two basic events are associated with each SSC, i.e., BE1 for 
SSC1 and BE2 for SSC2. Figure 21 depicts a parallel configuration of SSCs while Figure 22 depicts a series 
configuration. In these figures, TE represents the top event, i.e., the event being modeled which in these 
cases is the capability of the overall system to function. Similarly, BE represents a basic event, which in 
these two simple examples indicate whether or not SSC1 and SSC2 operate successfully.  
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Figure 21. Parallel configuration and relative Boolean logic representation. 

   
Figure 22. Series configuration and relative Boolean logic representation. 

Instead of probability values for BE1 and BE2, NMTF1 and NMTF2 are provided. What is the NMTF 
for the system level top events TE1 and TE2 for this example? Given that NMTF provides information on 
how far a component is from failure, the NMTF for TE1 and TE2 can be calculated as follows for the two 
examples: 

• Parallel configuration: System fails when both SSCs have failed, thus NMTF for TE1 is equal 
to the distance from the point (𝑁𝑀𝑇𝐹(/%)*+ , 𝑁𝑀𝑇𝐹(/.)*+ ) to the point (0,0):  

𝑁𝑀𝑇𝐹(𝑇𝐸1) 	= 	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑁𝑀𝑇𝐹(/%)*+ , 𝑁𝑀𝑇𝐹(/.)*+ ] (7) 

• Series configuration: System fails when at least one SSC has failed, thus NMTF for TE2 is 
driven by the component in the worse condition 

𝑁𝑀𝑇𝐹(𝑇𝐸2) 	= 		𝑚𝑖𝑛(𝑁𝑀𝑇𝐹(/0)*+ , 𝑁𝑀𝑇𝐹(/1)*+ ) (8) 

Therefore, it is seen that for this very simplified example, replacing failure probabilities of SSCs in a 
standard ET/FT model with NMTF results in the evaluation being simplified from the performance of 
Boolean operations on probability values to a much simpler process of evaluation of minimum and 
maximum values. This has the potential value of transforming the underlying reliability models from 
providing static results (e.g., the failure probabilities are generally evaluated as constants) to one where 
they can respond in a dynamic manner to the actual performance and condition of the underlying SSCs 
included within the models. Note that although these examples are extremely simple, as in the case of 
standard PRA models, they consist of the basic “building blocks” from which much more complete and 
comprehensive modes can be constructed. Additionally, the approach can make substantial use of existing 
plant modes (such as a PRA or GRA model). Such a framework has the potential to standardize and simplify 
plant decision making.    

SSC2

SSC1

BE1 BE2

TE1

SSC4SSC3

BE3 BE4

TE2
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5.4.3.2 KooN Configuration 
In this system configuration N components out of K are required to guarantee system function (see 

Figure 23). Such a configuration is commonly referred to as a K out of N (or KooN) configuration. Let’s 
assume the first K components (𝐵𝐸%, … , 𝐵𝐸2) have the highest values of NMTF. By following the reasoning 
shown in the previous sections we can write: 

𝑁𝑀𝑇𝐹(𝑇𝐸1) = 	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	a𝑚𝑖𝑛	(𝑁𝑀𝑇𝐹(/!
)*+ , … , 𝑁𝑀𝑇𝐹(/"

)*+ ), 𝑁𝑀𝑇𝐹(/"#!
)*+ , … , 𝑁𝑀𝑇𝐹(/$

)*+ b (9) 

 

            
Figure 23. KooN configuration and relative Boolean logic representation. 

 

5.4.4 NMTF Based System Reliability Calculations 
In the previous sections we have indicated how it is possible to propagate NMTF based data through 

Boolean logic gates. Note that there is a radical difference from the propagation of probability-based data 
though the same gates. 

An objective of this project is to model system reliability using tools/methods that are familiar to 
nuclear plant practitioners (e.g., use of techniques such as FTs). This section covers methods to propagate 
NMTF values from the basic events up to the FT top event. 

Classically, reliability calculations are performed by completing these four steps: 

1. Construct the FT 

2. Generate the cut-sets and the MCSs from the FT 

3. Assign a probability to each basic event 

4. Calculate the probability of the union of the MCSs (see also Section 7) 

Step 4 is typically time consuming since the probability of the union of the MCSs involve the calculation 
of the probability of intersection between 1, 2, 3,… MCSs as indicated in Equation (5). In Section 5.4.1, 
we have shown how reliability calculations based on NMTF are not based on classical set theory by, instead, 
on metric space (i.e., distance based) operations. Hence, exact solutions can be obtained extremely fast. 

More precisely, reliability calculations using NMTF data can be performed by completing these four 
steps: 

SSC2

SSC1

SSCN

…

BE1

TE

BEN…

KooN
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1. Construct the FT; at this point, a FT contains only deterministic information about the 
architecture of the system under consideration, i.e., it simply models how the basic events are 
related to each other from a functional perspective 

2. Generate the cut-sets and the MCSsd from the FT; as also indicated in Step 1, an MCS still 
represents the minimal combinations of basic events which lead to the TE 

3. Assign a NMTF value to each basic event 

4. Calculate the NMTF of the union of the MCSs (see also Section 5.4.5) by employing Equations 
(7) through (9).  

 

5.4.5 Example of System Reliability Calculation 
As an example, consider the system set forth in Figure 24 which is composed of two pumps and a 

motor-operated control valve. Note that this is intended to be a simplified example and does not include all 
of the failure mechanisms or planned maintenance activities that would be applicable to the SSCs in this 
system.  

 

 
Figure 24. Simplified reliability model. 

For each component, a set of failure modes have been identified and monitored as shown in Table 3. 

For this system, the following notation is used: 

• A: valve stress corrosion cracking 

• B, D: pump bearings failure modes for pumps 1 and 2, respectively 

• C, E: rotor cage winding failure for pumps 1 and 2, respectively 

The FT for the considered system is shown in Figure 25 along with the NMTF for each basic event of 
the FT. 

 
d Note that the generation of MCSs from the cut sets is typically performed using basic Boolean algebra rules: 
• Idempotent law: 𝑋	𝑋	 = 𝑋;  𝑋 + 𝑋 = 𝑋 
• Absorption law: 𝑋(𝑋 + 𝑌) = 𝑋;	 𝑋 + 𝑋	𝑌 = 𝑋 

When performing NMTF calculation, the generation of MCS is actually not required given formulation of Equation (8). As an 
example: 

	𝑁𝑀𝑇𝐹(𝑋 + 𝑋	𝑌) = 𝑚𝑖𝑛 0
𝑁𝑀𝑇𝐹(𝑋)
𝑁𝑀𝑇𝐹(𝑋	𝑌)1 = 𝑚𝑖𝑛 2

𝑁𝑀𝑇𝐹(𝑋)
3𝑁𝑀𝑇𝐹(𝑋)% +𝑁𝑀𝑇𝐹(𝑌)%

4 = 𝑁𝑀𝑇𝐹(𝑋) 

since 𝑁𝑀𝑇𝐹(𝑋) < 3𝑁𝑀𝑇𝐹(𝑋)% +𝑁𝑀𝑇𝐹(𝑌)%. 
 

Pump 2

Pump 1

Control 
valve 1



 

41 
 
 
 

 

Table 3. ER activities and data for the system shown in Figure 24. 

Component Failure mode Maintenance 
type ER activity NMTF data 

Pumps 
(Includes 
Motor) 

Pump bearings 
failure PdM 

Vibration monitoring 
coupled with prognostic 
and diagnostic system 

Estimated RUL of 
pump bearings 

Rotor cage winding 
failure PM 

Every 5 years the rotor 
undergoes a rewinding 
process 

Time from next 
rewinding process 

Valve 
Stress corrosion 
cracking of the 
valve disk failure 

CBM 

Measure of time to 
complete a full-open to 
full close to full-open 
transient 

If the transient testing 
time falls above 4 
seconds, then the 
component is replaced 

 
 

 
Figure 25. Reliability data expressed in terms of NMTF and reliability model for the system shown 

in Figure 24 

The list of MCSs for this FT is follows: 

𝑇𝐸 = {𝐴, 𝐵𝐷, 𝐵𝐸, 𝐶𝐷, 𝐶𝐸} 
By applying the rules of Section 5.4 for the AND and OR gates: 

𝑁𝑀𝑇𝐹(𝐴) = 0.8	

A

TE

B C D E

c d

b

aBasic Event NMTF
A 0.8
B 0.5
C 0.6
D 0.2
E 0.4
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𝑁𝑀𝑇𝐹(𝐵𝐷) = 0.5385	
𝑁𝑀𝑇𝐹(𝐵𝐸) = 0.5830	
𝑁𝑀𝑇𝐹(𝐶𝐷) = 0.6324	
𝑁𝑀𝑇𝐹(𝐶𝐸) = 0.6708 

it is possible to determine the NMTF for the top event: 𝑁𝑀𝑇𝐹(𝑇𝐸) = 0.5385. 

In addition, given the continuous nature of NMTF it is possible to perform a sensitivity study for each 
basic event 𝐵𝐸3 in terms of: 

𝑆(/& =
𝜕(𝑁𝑀𝑇𝐹(𝑇𝐸))
𝜕(𝑁𝑀𝑇𝐹n𝐵𝐸3o)

 (10) 

Table 4 provides a summary of the sensitivities for each basic event. 

 

Table 4.  𝑺𝑩𝑬 for the five basic events shown in Figure 47. 

Failure mode Basic event 𝑺𝑩𝑬 
Valve stress corrosion cracking A 0 
Pump 1 bearings failure mode B 0.93 
Pump 1 motor rotor cage winding 
failure  

C 0 

Pump 2 bearings failure mode D 0.41 
Pump 1 motor rotor cage winding 
failure  

E 0 

 
Table 4 indicates that at the present time, the pump bearings failure modes for both pumps are the ones 

that dominate the NMTF of the system. Note that the definition of 𝑆(/ does not take into account any 
temporal evolution information; an alternative sensitivity analysis measure could be the following: 

𝑆p(/3 =
𝜕𝑁𝑀𝑇𝐹(𝑇𝐸)

𝜕𝑡
𝜕𝑁𝑀𝑇𝐹(𝐵𝐸𝑗)

𝜕𝑡

 (11) 

 

5.5 Integration of ER Data into NMTF Models 
One of the major challenges about probability-based reliability models is the integration of ER data. 

This is in particular relevant when dealing with complex components where multiple failure modes are 
present and each of these failure modes is addressed by a different maintenance strategy. 

In Sections 5.2.1 through 5.2.4 we have shown how each maintenance strategy can be modeled using 
a NMTF-based language. These failure modes can be linked together depending on the architecture of the 
components using classical Boolean logic gates (an example is shown in Figure 26). 
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Figure 26. Reliability model of a component characterized by multiple failure modes. 

In this work we are assuming that ER data is availablee. This data can either text-based or numerical. 
In detail, ER data can be categorized in the following classes [6]: 

1. Operations logs. They indicate when technical specifications action statements were entered 
and exited, and for particular surveillances, the exact time that the system was out-of-service. 
This data is relevant when performing NMTF based modeling when CBM is employed (as 
shown in Figure 15). 

2. Issue reports. They provide useful information regarding the origination date, system, 
severity, operability, and functionality associated with plant SSCs and events. This data 
provides information for CM and PM maintenance options (see Figure 13 and Figure 14) since 
it is possible to list interval between similar occurrences and determine correlations among 
events. 

3. Work orders. They provide a description of the task, start and completion dates/times, 
system/component, type of work (e.g., preventive maintenance) and labor hours. The labor 
hours are particularly useful to permit assessment of cost and economic impact.  

4. Diagnostics and prognostics data. This data directly provides information about component 
status (diagnostics) and its predicted behavior (prognostics). Thus, this data can be employed 
to construct the MTF for CBM and PdM maintenance options (see Figure 15 and Figure 16 
respectively). Here, classification and clustering algorithms [31,32] can be employed to 
perform (diagnostic): 

o Anomaly detection 

o Identification of failure modes/mechanisms 

o Identification of degradation status 

while stochastic models (e.g., particle filtering [33]) can be employed to evaluate (prognostics): 

o Degradation trending 

o RUL prediction 

 

 
e The challenge at this point is the development of methods that can automatically retrieve and process ER data such that it can be 

automatically used by LOGOS and SR2ML to manage and optimize plant resources and activities 
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5.6 Reliability Models for NMTF 
Currently, applications of a number of reliability models are under development and evaluation (e.g., 

GRA models) as part of the US DOE LWRS program. These models are being constructed using standard 
reliability approaches that have been used in commercial nuclear power applications (i.e., ET/FT models) 
over many years and, as such, are based on the assumptions that each basic event is defined over a 
probability of failure value. 

The goal now is to deploy these reliability models by feeding NMTF values at the component level and 
propagate these results through the models in order to determine NMTF at a level where the degraded 
performance or failures would result in actual consequences to plant safety or economics (e.g., the system 
or train level). This flow is shown in Figure 26. 

 

 
Figure 27. NMTF-based risk-informed analysis. 

 

6. VERT FOR GRA MODELING 
NPPs are currently operating in a competitive industry. As a result, NPPs need tools to increase the 

efficiency and reduce the costs of supplying electricity to consumers. A large focus has been placed on ER 
programs. The goal of ER programs is to optimize the relationship between ER and availability [6]. ER 
programs have proven to increase the operational performance of NPPs. However, current ER programs 
utilized in the nuclear sector are labor intensive and expensive.  

Cost optimization is achieved when the maintenance or replacement of systems, structures, and 
components (SSCs) is performed just before failure occurs. There is large uncertainty when predicting the 
time of failure for SSCs. NPPs often take the approach of frequent inspection and maintenance to reduce 
the probability of SSC failure [7]. Overconservative inspection and maintenance requiring NPP derating is 
not a cost-effective approach to improving SSC availability. Knowing the risk imposed on NPPs from 
certain SSCs gives insight into lowering the frequency of inspection and maintenance activities. 

Generation Risk Assessment (GRA) is a systematic method for prioritizing SSCs based on the estimated 
impact on the loss of future electricity generation. GRA is a useful tool in supporting ER programs but 
construction of the models is time consuming and costly. The Versatile Economic Risk Tool (VERT) 
eliminates the time and costs associated with developing the GRA model. VERT quickly and effectively 
evaluates the economic risk that systems and sub-systems impose on NPPs. ER programs coupled with 
VERT can improve operational performance. Knowing what systems and sub-systems contribute the most 
to derates at NPPs can give valuable insight to maintenance and inspection activities. Improvement of NPP 
operational performance also can directly result in safety improvements and reduced risks [8].  

Understanding the degradation of SSCs has become vital for establishing long active periods of NPP 
operation [4]. Several programs, including the proactive management of materials degradation (PMMD) 

GRA model

Maintenance 
cost model

NMTF values 
for each SSC

NMTF at the 
system level

System 
maintenance costs

SSC maintenance 
costs
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program developed by the NRC, have been undertaken to address the SSC degradation. VERT introduces 
time-dependent capabilities into GRA modeling. VERT can directly use the knowledge gained from 
degradation programs to provide time-dependent analysis of SSC economic risks. 

More details about VERT are shown in Appendices A, B, and C. 

 

6.1 Methodology 
NPPs have been assessing safety risks effectively with Probabilistic Risk Assessment (PRA) for 

decades. The GRA methodology is largely based on PRA concepts, focusing on what can go wrong, how 
likely it is, and what the consequences are. NPP shutdowns and reductions of power (derates) are the only 
scenarios identified in GRA. The components evaluated in GRA are identified using two of the criteria in 
the INPO AP-913 Scoping and Identification of Critical Components section in which any component 
failure resulting in a significant power derate or shutdown is considered a critical component [5]. GRA risk 
is the product of critical components’ failure likelihoods and the consequences of the failures. VERT 
compresses GRA risks into a single program. GRA has not yet been adopted by industry because of the 
large time and manpower resource constraints (in particular use of personnel knowledgeable in PRA 
methods and tools). VERT addresses the time requirements and reduces the required manpower and 
specialized knowledge to use the program.  

Risk is assumed to be constant with respect to time in most GRA models. However, critical components 
are subject to aging and degradation which increases failure probabilities over time. The integration of 
degradation models into GRA provides more realistic risk estimates. Predicting how economic losses 
change as equipment in NPPs degrade is imperative for making long-term business decisions [6]. 

 

6.2 VERT Architecture 
The program developed is a generic economic risk tool adaptable to any Light Water Reactor (LWR) 

NPP. The foundation of the program is based on equipment found in all LWR power units. Figure 28 shows 
the constituents of VERT at the highest systemic level. The four main sectors comprise the critical 
components in NPPs. 

 
Figure 28. The four highest systems of VERT. 

The main systems are further broken down into the comprising sub-systems. Figure 29 shows the 
balance of plant composition of sub-systems as an example. 
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Figure 29. Balance of plant system constituents. 

Each sub-system shown in Figure 29 contains all of the equipment necessary for power generation. 
Appendix A shows the constituents of the four main systems.  

VERT couples INL’s RAVEN and SAPHIRE software packages with a specified database to perform 
time-dependent economic analyses. The general flow of VERT is shown in Figure 30. The database and 
the model in SAPHIRE are interconnected with component specified inputs. The SAPHIRE model contains 
all the components in the database and the respective location in the NPP. The database is a comma-
separated values (.CSV) spreadsheet with all the unavailability information of the components in the 
SAPHIRE model. VERT generates all the necessary post-processing actions and file creations necessary to 
couple RAVEN with the data spreadsheet and SAPHIRE. After VERT executes, RAVEN can run to 
perform the analysis and produce the results. 

 
Figure 30. Flow chart of VERT. 

VERT uses the SAPHIRE modeling software to evaluate the probability of NPP tripping or derating. 
FTs are used to represent systemic logic to obtain cut sets for the power reduction events. A post-processing 
tool available with SAPHIRE is used to multiply the cut set probabilities by the consequences of each cut 
set. The estimated risk is obtained with the equations used for GRA [7]: 

𝑅𝑖𝑠𝑘 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 (12) 
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𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝐷𝑒𝑟𝑎𝑡𝑒(%) × 𝑅𝑎𝑡𝑒𝑑	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑀𝑊)

× (𝑀𝑇𝑇𝑅 + 𝑇𝑖𝑚𝑒	𝑡𝑜	𝑟𝑒𝑠𝑡𝑜𝑟𝑒	𝑝𝑜𝑤𝑒𝑟)(ℎ𝑟) × 𝐶𝑜𝑠𝑡 y
$

𝑀𝑊ℎ
{ (13) 

VERT is adaptable to any NPP using generic Pressurized Water Reactor (PWR) and Boiling Water 
Reactor (BWR) databases and FT structures. The program also enables the user to add or remove the 
quantity of trains in any system, e.g. a four loop PWR would have four steam generator trains. The user 
may also change the failure probabilities and consequences of equipment failure to match the particular 
NPP design and operating data. The default failure rates, MTTR, and derate percentages are derived from 
the North American Electric Reliability Corporation – Generating Availability Data System (NERC-
GADS). GADS is discussed further in the appendices.  

VERT can integrate degradation into the economic models. Equations 14 and 15 represent linear and 
exponential degradation of the failure rates of the components. The user can specify the equation type for 
each component and the respective “b” value. 

𝜆(𝑡) = 	𝜆6(1 + 𝑏𝑡) (14) 

 

𝜆(𝑡) = 𝜆6𝑒7+ (15) 

 

6.3 Results 
VERT quantifies the risk of the NPP system specified by the user and automatically generates several 

plots and spreadsheets. The spreadsheets give estimates of economic loss imposed on the NPP according 
to specific sections of the NPP. The plots display relationships between the systems and sub-systems of the 
NPP. Figure 31 shows an example of the total system contribution to economic loss and the individual 
contributions by the main constituent systems of the NPP relative to one another over a projected 10 year 
period. 

The results shown in the plot are also generated for the sub-systems comprising the Balance of Plant, 
Generator, Reactor, and Steam Turbine systems. The plots provide insights into what systems contribute 
the most to economic loss as well as the least. If a utility used VERT and wished to investigate strategies 
to improve the economic risk of the reactor system, for example, Figure 32could be utilized to identify the 
risk in the reactor sub-systems relative to each another. 

The plot shows the sub-systems corresponding to cause codesf 2200-2399 (reactor coolant system) and 
2400-2599 (e.g., steam generators and steam system) contribute the most to the risk of lost generation for 
a four loop NPP. Maintenance and inspection activities could be used to improve the economic risk of these 
sub-systems. Identifying the lowest contributors to risk will also provide insight into what maintenance and 
inspection activities could be decreased or defunded. Time and money spent on the sub-systems 
contributing the least amount to risk could be re-distributed to those systems that provide greater 
contribution to risk (e.g., the reactor coolant system, steam generators, and steam system). 

 

 

 
f These codes match the NERC-GADS ones. 
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Figure 31. Logarithmic plot of the NPP system relative risk estimates. 

 
Figure 32. Reactor system economic risk plot. 
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6.4 Improvements 
The risk from the individual basic events is not directly quantified with VERT. The risk of small groups 

of components is quantified, but there is no further breakdown of the components in the group. The data 
spreadsheet contains a row with the associated risk for each individual basic event. A future advancement 
to assist in comparing basic events to one another is the automatic generation of bar charts with the basic 
events and the associated risks.  

The uncertainty sampling method with RAVEN increases the computing time substantially. The 
uncertainty sampling with SAPHIRE currently works for most FTs. The uncertainty sampling is absent for 
four of the FTs. The uncertainty will be applicable to all the FTs and plots will be automatically generated 
for VERT results.  

Maintenance and planned derating occur during power generation operations. Knowing the 
unavailability of equipment due to failures and planned unavailability will provide information to improve 
production. The pc-GAR software holds information on maintenance unavailability and can be integrated 
with VERT.  

Versions of VERT compatible with Linux and Mac operating systems need to be developed. Currently, 
VERT is compatible with Windows systems with SAPHIRE and RAVEN. Use with Linux and Mac 
operating systems have not been tested. 

There are multiple importance measures relating to NPP performance. Unplanned capability loss factor, 
thermal performance, chemistry performance, safety system performance, etc. are all statistics valuable to 
understanding how safely and economically an NPP is performing [8]. Some of these measures, such as the 
unplanned capability loss factor, can directly be generated from VERT. Some modifications in the coding 
of VERT can automatically quantify some of these importance measures. 

 

7. MCS SOLVER MODEL  
The reliability model at the system level typically consists of a hierarchical set of FTs, which are made 

up of a Boolean logic structure designed to link the Top Event (TE) under consideration (e.g., system failure 
to perform its desired function) given the Boolean status of its basic components, the BEs. 

The FT structure can be solved in probability terms with the goal of determining the probability of TE 
occurrence, given the probability values associated to each BE. This can be achieved by first generating a 
list containing combinations of BEs that lead to the TE under consideration (i.e., the minimal cut sets 
[MCSs]). Then, the probability associated with the TE can be calculates as the probability of the union of 
all MCSs. 

During FY-20, we have developed a model designed to determine TE probability provided the list of 
MCSs and the probability associated to each BE—the MCSSolver model, which can be directly employed 
within RAVEN and linked to component reliability models. Below, we indicate how the computation of 
the TE probability is performed. The following notation is used: 

• Ξ : Set of MCSs, 𝑀𝐶𝑆, ∈ Ξ		(𝑛 = 1,… ,𝑁) 

• Ψ : Set of BEs, 𝐵𝐸8 ∈ Ψ		(𝑙 = 1,… , 𝐿) 

Note that: 

• 𝑀𝐶𝑆, ⊂ Ψ, i.e., 𝑀𝐶𝑆, can be considered a set of BEs.  

• 𝑀𝐶𝑆9 ⊈ 𝑀𝐶𝑆: 
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• It can happen that 𝑀𝐶𝑆9 ∩𝑀𝐶𝑆: ≠ ∅ 

From a model perspective, the MCSSolver model input-output variables are the following 

1. Inputs variables: BE probability 𝑃(𝐵𝐸8)		𝑙 = 1,… , 𝐿 

2. Output variables: TE probability 𝑃(𝑇𝐸) 

The MCSSolver is initialized by reading from the list of MCSs from the file and it constructs the 
terms required to determine the probability of TE, 𝑃(𝑇𝐸), as follows: 

𝑃(𝑇𝐸) = 𝑃 ��𝑀𝐶𝑆,

;

,-%

� =

= Z𝑃(𝑀𝐶𝑆,)
;

,-%

−Z Z 𝑃(𝑀𝐶𝑆,	𝑀𝐶𝑆<)
;

<-,$%

;=%

,-%

+⋯

+ (−1);=%	𝑃(𝑀𝐶𝑆%…	𝑀𝐶𝑆;) 

 

(16) 

where 

𝑃(𝑀𝐶𝑆,) = � 𝑃(𝐵𝐸)
(/∈"?@'

 

𝑃n𝑀𝐶𝑆9	𝑀𝐶𝑆:o = � 𝑃(𝐵𝐸)
(/∈("?@(	∪	"?@))

 

𝑃n𝑀𝐶𝑆9	𝑀𝐶𝑆:𝑀𝐶𝑆Do = � 𝑃(𝐵𝐸)
(/∈("?@(∪"?@)∪"?@*)

 

 

(17) 

The analysis can specify the parameter solverOrder which specifies the maximum calculation envelope 
for	𝑃(𝑇𝐸), i.e., the maximum number of MCSs to be considered when evaluating the probability of their 
union. 

 

8. SR2ML REPOSITORY 
SR2ML is a software package that contains a set of reliability models designed to be interfaced with the 

INL developed RAVEN code. These models can be employed to perform both static and dynamic system 
risk analysis and determine the risk importance of specific elements of the considered system. These 
developed models are stored in the INL GitLab software repository as shown in Figure 33. 
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Figure 33. Snapshot of the SR2ML repository. 

Two classes of reliability models have been developed; the first class includes all classical reliability 
models (FTs, ETs, Markov models and reliability block diagrams) which have been extended to deal not 
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only with Boolean logic values but also time dependent values. The second class includes several 
component ageing models. Models of these two classes are designed to be included in a RAVEN ensemble 
model to perform time dependent system reliability analysis (i.e., dynamic analysis). Similarly, these 
models can be interfaced with system analysis codes within RAVEN to determine the failure time of 
systems and evaluate accident progression (i.e., static analysis). 

Reliability models/functions are the most frequently used in life data analysis and reliability 
engineering. These models/functions give the probability of a component operating for a certain amount of 
time without failure. As such, the reliability models are functions of time, in that every reliability value has 
an associated time value. In other words, one must specify a time value with the desired reliability value. 
This degree of flexibility makes the reliability model a much better reliability specification than the mean 
time to failure (MTTF), which represents only one point along the entire reliability model. 

 

8.1 Probabilistic Modeling 
From probability and statistics, given a continuous random variable 𝑥, we denote [23]: 

• The probability density function (pdf), as 𝑓(𝑥). 

• The cumulative distribution function (cdf), as 𝐹(𝑥). 

If 𝑥 is a continuous random variable, then the probability that 𝑥 takes on a value in the interval [𝑎, 𝑏] 
is the area under the pdf 𝑓(𝑥) from 𝑎 to 𝑏: 

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = � 𝑓(𝑥)𝑑𝑥
7

)
 (18) 

The cumulative distribution function is a function 𝐹(𝑥) of a random variable 𝑥, and is defined for a number 
𝑥6 by: 

𝐹(𝑥6) = 𝑃(𝑥 ≤ 𝑥6) = � 𝑓(𝑥)𝑑𝑥
E+

=F
 (19) 

That is, for a given value of 𝑥6, 𝐹(𝑥6) is the probability that the observed value of 𝑥 would be, at most, 𝑥6. 
The mathematical relationship between the pdf and the cdf is given by: 

𝐹(𝑥) = � 𝑓(𝑠)𝑑𝑠
E

=F
 (20) 

Conversely: 

𝑓(𝑥) =
𝑑𝐹(𝑥)
𝑑𝑥

 (21) 

The functions most used in reliability engineering and life data analysis, namely the reliability functions 
and failure rate functions, can be determined directly from the pdf definition, or 𝑓(𝑡). Different distributions 
exist, such as Lognormal, Exponential, Weibull etc., and each of them has a predefined pdf 𝑓(𝑡). These 
distributions were formulated by statisticians, mathematicians and engineers to mathematically model or 
represent certain behavior. Some distributions tend to better represent life data and are most are referred to 
as lifetime distribution.  
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8.2 Reliability and Failure Rate Models 
Given the mathematical representation of a distribution, we can derive all functions needed for 

reliability analysis, i.e. reliability models/functions. This would only depend on the value of 𝑡 after the 
value of the distribution parameters are estimated from the data. Now, let 𝑡 be the random variable defining 
the lifetime of the component with cdf 𝐹(𝑡), which is the time the component would operate before failure. 
Note that the following represent standard relations in statistics; for the further information the reader 
should consult standard statistics texts. The cdf 𝐹(𝑡) of the random variable 𝑡 is given by [23]:  

𝐹(𝑡) = 𝑃(𝑠 ≤ 𝑡) = � 𝑓(𝑠)𝑑𝑠
+

=F
 (22) 

If 𝐹(𝑡) is a differentiable function, then the pdf of 𝑡 is given by: 

𝑓(𝑡) =
𝑑𝐹(𝑡)
𝑑𝑡

 (23) 

The reliability function or survival function 𝑅(𝑡) of the component is given by: 

𝑅(𝑡) = 𝑃(𝑠 > 𝑡) = 1 − 𝑃(𝑠 ≤ 𝑡) = 1 − 𝐹(𝑡) (24) 

This is the probability that the component will operate after time 𝑡, sometimes called survival probability.  

The failure rate of a system during the interval [𝑡, 𝑡 + Δ𝑡] is the probability that a failure per unit time 
occurs in the interval, given that a failure has not occurred prior to 𝑡, the beginning of the interval. The 
failure rate function (i.e., instantaneous failure rate, conditional failure rate) or the hazard function is defined 
as the limit of the failure rate as the interval approaches zero. Hence [23]: 

𝜆(𝑡) = lim
G+→6

𝐹(𝑡 + Δ𝑡) − 𝐹(𝑡)
Δ𝑡𝑅(𝑡)

=
1

𝑅(𝑡)
lim
G+→6

𝐹(𝑡 + Δ𝑡) − 𝐹(𝑡)
Δ𝑡

=
1

𝑅(𝑡)
𝑑𝐹(𝑡)
𝑑𝑡

=
𝑓(𝑡)
𝑅(𝑡)

 (25) 

The failure rate function is the rate of change of the conditional probability of failure at time 𝑡. It 
measures the likelihood that a component that has operated up until time 𝑡 fails in the next instant of time. 
Generally, 𝜆(𝑡) is the one tabulated because it is measured experimentally and because it tends to vary less 
rapidly with time than the other parameters. When 𝜆(𝑡) is given, all other three parameters 𝐹(𝑡), 𝑓(𝑡), 𝑅(𝑡) 
can be computed as follows [23]: 

𝑅(𝑡) = expy−� 𝜆(𝑠)𝑑𝑠
+

6
{ (26) 

𝑓(𝑡) = 𝜆(𝑡)𝑅(𝑡) = 𝜆(𝑡) expy−� 𝜆(𝑠)𝑑𝑠
+

6
{ 

(27) 

𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − exp y−� 𝜆(𝑠)𝑑𝑠
+

6
{ 

(28) 

The Mean Time Between Failure (MTBF) can be obtained by finding the expected value of the random 
variable 𝑡, time to failure. Hence: 

𝑀𝑇𝐵𝐹 = � 𝑡𝑓(𝑡)𝑑𝑡
F

6

= � 𝑅(𝑡)𝑑𝑡
F

6

 (29) 
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8.3 Ageing Models 
We have implemented several of the most useful reliability models based on different probability 

distributions for describing failure of continuous operating devices within the SR2ML tool, including: 
Exponential, Erlangian, Gamma, Lognormal, Fatigue Life, Weibull, Exponential Weibull, Bathtub, Power 
Law model, and Log Linear model. These models are described in further detail in the sections that follow. 
These represent standard statistical distributions used in reliability engineering; for the further information 
the reader should consult standard statistics and reliability engineering texts [23]. 

 
The Lognormal Model 
The probability density function of the lognormal is given by 

𝑓(𝑡) =
1

𝛼𝑡√2𝜋
𝑒
=%.I

JK+=LM
N O

,

 
(30) 

where 𝑡 ≥ 𝜇, 𝜇, 𝛼, 𝛽 > 0, and 𝛽  is the scale parameter, 𝛼  is the shape parameter, and 𝜇  is the location 
parameter.  

 

The Exponential Model 
The exponential distribution can be used in reliability as a model of the time to failure of a component, and 
its probability density function is given by 

𝑓(𝑡) = 𝜆𝑒=P(+=L), 𝑡 ≥ 0 (31) 

where 𝑡 ≥ 𝜇, 𝜇, 𝜆 > 0, 𝜆 is the mean failure rate or the inverse of the scale parameter, and 𝜇 is the location 
parameter.  

 

The Weibull Model 
The probability density function of the three-parameter Weibull distribution is given by: 

𝑓(𝑡) =
𝛼
𝛽 �
𝑡 − 𝜇
𝛽 �

M=%
𝑒=Q

+=L
M R

-

 (32) 

where 	𝑡 ≥ 𝜇, 𝜇, 𝛽, 𝛼 > 0, and 𝛽 is the scale parameter, 𝛼 is the shape parameter, and 𝜇 is the location 
parameter. 

 

The Erlangian Model 
The probability density function of the Erlangian distribution is given by: 

𝑓(𝑡) =
𝜆n𝜆(𝑡 − 𝜇)oS=% expn−𝜆(𝑡 − 𝜇)o

(𝑘 − 1)!
 (33) 
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where 𝑡 ≥ 𝜇, 𝜇, 𝜆 > 0, and 𝜆 is the inverse of the scale parameter, 𝑘 is a positive integer that controls the 
shape, and 𝜇 is the location parameter. 

 

The Gamma Model 
The probability density function of the Gamma is given by: 

𝑓(𝑡) =
𝛽n𝛽(𝑡 − 𝜇)oN=% expn−𝛽(𝑡 − 𝜇)o

Γ(𝛼)
 (34) 

where 𝑡 ≥ 𝜇, 𝜇, 𝛽, 𝛼 > 0, and 𝛽 is the inverse of scale parameter, 𝛼 is the shape parameter, and 𝜇 is the 
location parameter. 

 

The Fatigue Life Model (Birnbaum-Saunders) 
The probability density function of the Fatigue Life model is given by: 

𝑓(𝑡) =

𝑡 − 𝜇
𝛽 + 1

2𝛼�2𝜋 �𝑡 − 𝜇𝛽 �
0
	

exp(−
�𝑡 − 𝜇𝛽 − 1�

.

2�𝑡 − 𝜇𝛽 �𝛼.
) (35) 

where 𝑡 ≥ 𝜇, 𝜇, 𝛽, 𝛼 > 0, and 𝛽 is the scale parameter, 𝛼 is the shape parameter, and 𝜇 is the location 
parameter. 

 

The Exponentiated Weibull Model 
The probability density function of the Exponentiated Weibull distribution is given by: 

𝑓(𝑡) = 𝛾𝛼 y1 − expy−�
𝑡 − 𝜇
𝛽 �

N
{{

T=%

�
𝑡 − 𝜇
𝛽 �

N=%
expy−�

𝑡 − 𝜇
𝛽 �

N
{ (36) 

where 	𝑡 ≥ 𝜇, 𝜇, 𝛽, 𝛼, 𝛾 > 0, and 𝛽  is the scale parameter, 𝛼  and 𝛾 is the shape parameter, and 𝜇 is the 
location parameter. 

 

The Bathtub Model 
The probability density function of the Bathtub model is given by: 

𝑓(𝑡) = exp �−𝑐𝛽 �
𝑡 − 𝜇
𝛽 �

N
− (1 − 𝑐) yexp y−�

𝑡 − 𝜇
𝜃 �

U
{ − 1	{� (37) 

where 	𝑡 ≥ 𝜇, 𝜇, 𝛽, 𝛼, 𝜃, 𝜌, 𝑐 > 0, and 𝛽, 𝜃 is the scale parameter, 𝛼, 𝜌 are shape parameters, 𝑐 ∈ [0,1] is the 
weight parameter, and 𝜇 is the location parameter. 
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The Power Law Model 
The hazard rate satisfies a power law as a function of time: 

𝜆(𝑡) = 𝜆 + 𝛼(𝑡 − 𝜇)M (38) 

where 𝑡 ≥ 𝜇, 𝜇, 𝛼, 𝛽, 𝜆 > 0, and 𝜇 is the location parameter. 

 

The Log Linear Model 
The hazard rate satisfies an exponential law as a function of time: 

𝜆(𝑡) = expn𝛼 + 𝛽(𝑡 − 𝜇)o (39) 

where 𝑡 ≥ 𝜇, 𝜇, 𝛼, 𝛽 > 0, and 𝜇 is the location parameter. 

 

8.4 Maintenance Models 
Maintenance models are models designed to model maintenance and testing from a reliability 

perspective.  These models are designed to optimize preventive maintenance at the system level. Two 
classes of models are considered in this report: operating and stand-by. 

For an operating component, the unavailability 𝑢�# is calculated as: 

𝑢�# =
𝜆	𝑇#

DV9

1 + 𝜆	𝑇#
DV9 +	

𝑇#WX

𝑇#!"
 (40) 

where: 

• 𝑇#
DV9: MTTR 

• 𝜆: component failure rate 

• 𝑇#WX: mean time to perform PM 

• 𝑇#!": PM interval 

For a stand-by component, the unavailability 𝑢�# is calculated as: 

𝑢�# = 𝜌 +
1
2
𝜆	𝑇#+VY+ +

𝑇#Z+

𝑇#+VY+
+ n𝜌 + 𝜆	𝑇#+VY+o

(𝑇#
DV9)

𝑇#+VY+
+
𝑇#WX

𝑇#!"
 (41) 

where: 

• 𝑇#
DV9: MTTR 

• 𝜆: component failure rate 

• 𝑇#WX: mean time to perform PM 

• 𝑇#!": PM interval 

• 𝑇#Z+: mean time to perform surveillance test  

• 𝑇#+VY+: surveillance test interval 
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In order to include component ageing in this analysis, the component failure rate 𝜆# is not constant but 
can change with time such that 𝜆# = 𝜆#(𝑡). 

 

9. RAVEN ENSEMBLE AND LOGICAL MODELS 
RAVEN’s scope [22] is to provide a set of capabilities to build analysis flows based on UQ, reliability 

analysis, optimization and data analysis techniques to be applied to any physical model(s). The main 
objective of RAVEN is to assist the engineer/user to perform: 

• Uncertainty quantification 

• Probabilistic risk and reliability analysis 

• Data mining analysis 

• Model optimization 

The RAVEN software employs several novel and unique techniques, based on extensive use of artificial 
intelligence algorithms, such as adaptive (smart) sampling, adaptive branching algorithms (dynamic event 
tree), time-dependent statistical analysis and data mining. The overall set of algorithms implemented in the 
RAVEN software are designed to handle highly non-linear systems, characterized by system response 
discontinuities and discrete variables. These capabilities are crucial for handling complex system models, 
such as those used in the analyses of NPPs. For example, reliability surface analysis, as implemented in 
RAVEN, is unique and capable to handle non-linear, discontinuous systems, allowing for faster and more 
accurate assessing of failure risk for complex systems.  

Among its different capabilities, RAVEN provides the unique functionality to combine any model (e.g., 
physical models, surrogate models, data analysis models, etc.) in a single entity called the Ensemble Model, 
where each model can feedback into others. In the following section, a more detailed description of this 
capability is reported. 

 

9.1 Ensemble Model 
In several cases multiple models need to be interfaced with each other since the initial conditions of 

some models are dependent on the outcomes of others. To solve this problem, RAVEN provides a model 
entity named EnsembleModel. This class is able to assemble multiple models of other categories (i.e., 
Code, External Model, Reduced Order Models - ROM), identifying the input/output connections, and, 
consequentially the order of execution and which sub-models can be executed in parallel.  

Figure 34 shows an example of an EnsembleModel that is constituted of 3 sub-models (e.g., Reduced 
Order Models [13], Codes, or External Models) where: 

• Model 2 is connected with Model 1 through the variable Θ (Model 1 output and Model 2 input); 

• Model 3 is connected with Model 2 through the variable Π (Model 2 output and Model 3 input); 

In this case, the EnsembleModel is going to drive the execution of all the sub-models in sequence, since 
each model (except Model 1) is dependent on the outcomes of previously executed models. 
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Figure 34. Example of an EnsembleModel constituted of 3 sequential sub-models. 

 

9.2 Logical Model 
Logical modeling in RAVEN is a process where multiple models with the same inputs and outputs are 

grouped together and controlled by a user provided control function to compute the responses of interest. 
A model entity named LogicalModel is developed and implemented in RAVEN to group multiple 
models, i.e. codes, external models, reduced order models and ensemble models, and identify which model 
to execute through the control function. A logical system consists of four different types of models 
connected via a control function as illustrated in Figure 35, and a detailed example using LogicalModel 
to group different failure mechanisms of pumps and valves is depicted in Figure 36 and is used for the case 
studies in this report.  

 

 
Figure 35. Illustration of LogicalModel constituted by four different types of RAVEN models. 
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Figure 36. Example of LogicalModel modeling pump and valve with different types of failure 

mechanisms. 

 

10. DATA, MODELING, AND FORECASTING FOR NUCLEAR PLANT 
SYSTEM HEALTH 

The goal of this research is to provide methods and computational tools to integrate operational data 
and simulation models to forecast the degradation of SSCs for prognostic health management. 

A considerable expense for nuclear power is O&M activities, and yet the health of SSCs is currently 
determined by regular time-based maintenance and inspection. Plants could better manage their O&M costs 
if they had a better understanding of the health of components and could forecast when they need 
maintenance or replacement. Such forecasts could estimate for SCCs the time to failure or the remaining 
useful life. In addition, a major concern for nuclear utilities is maintaining and replacing high-value assets. 
High value assets could include components of the reactor internals (e.g., control rod guide tubes, baffle-
former bolts, thermal shield flexures), reactor coolant pumps (e.g., seals, electrical motors), or branch line 
piping. Such assets are often critical to the operation of the plant and have been shown to impact outage 
schedules and maintenance costs. For example, evidence of unexpected fatigue accumulation in a pipe 
junction or discovering within the reactor internals unacceptable guide card wear or baffle-former bolt 
degradation could require extended outages. The ability to estimate the condition and life expectancy of 
critical assets is essential for planning outages, O&M activities, the purchase and installation of 
replacements, and risk-informed systems assessment. For this, a critical need is improved assessment of 
the health of SSCs. 

In this research, we have developed the signal processing and prognostics approach necessary to 
evaluate and assess SSC health. This health assessment provides much needed input to risk-informed 
systems assessment. While there is currently a lot of interest in purely data-driven approaches, for nuclear 
power, faults and failures of components are in fact quite rare. When there arelots of data, data-driven 
methods, like machine learning can be used. When there is little or no data, model-based methods that rely 
on first principles are necessary. Nuclear power lies somewhere in between, and what is needed is an 
approach that properly combines model-based and data-driven techniques. Such hybrid techniques should 
use the best of both approaches to model components and estimate their health. To meet this need, we have 
explored techniques that provide some estimate SSC health. 
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In Appendix E, we have developed the signal processing and prognostics approach that can be used to 
assess health. In contrast to purely data-driven approaches, this approach properly combines model-based 
and data-driven techniques to evaluate unknown characteristics in a system. 

Of particular interest for this project was the degradation of reactor internals during the life of a reactor 
and from outage to outage. Due to the large flow velocities in a reactor, there can be considerable vibration 
of the reactor internals. In this research, we are specifically interested in the core barrel and its support 
structures. The vibrations of the reactor internals are measured by fluctuations in the ex-core neutron 
detectors, which presents its own challenges since this is an indirect measure of the vibrations. Over time, 
the nature and contact between the reactor internals and the reactor vessel changes. A gradual decline in 
contact frequency as the unit ages is a result of a reduction in contact and an increase in the space between 
the vessel and internals, e.g., wear in the radial key. 

Purely data-driven approaches for component health use historical values for time to failure and 
establish inspection and maintenance activities based on that history. Other than periodic inspections, little 
about the operating condition of the component is used to establish its health. Statistical characteristics of 
signals to establish residuals can be tracked and changing trends can be used to signal the need for 
inspection, repair, or replacement. But such approaches are missing knowledge about the physical 
characteristics of the component and cannot provide any physical insight to the degradation mechanism. 

Machine learning can be used to identify patterns and predict system behavior based on historical 
measurements. It is therefore natural to expect that machine learning techniques can be applied to this 
problem. But machine learning strategies cannot be applied in a “black box” manner. There are two reasons 
for this. First, the measurements are do not provide a direct class or label about the state of the reactor 
internals. Therefore, the signals may not allow an algorithm to find a relationship between the degradation 
of the radial key, say, because the data do not include any measurements inside the reactor vessel. The 
neutron noise data consist of zero observations inside the reactor vessel and so no input to output 
relationships can be established. Second, physical context must be provided by numerical models. A 
numerical model makes use of the underlying governing equations, physical laws, and Subject Matter 
Expert (SME) engineering insight. If the state of the system is known, the dynamics can be simulated, and 
its response can be compared to the measurements. This inverse structure — given a response then learn 
the input — is aligned with the goal of determining the characteristic of the contact. 

The challenge when integrating model-based and data-driven techniques is that there must be a coherent 
framework that combines the known physics-based model and the as yet unknown data-driven model of 
the degradation mechanism. In the reactor internals case studied here, what must be captured is the 
interaction between the vibrational model of the reactor internals and a data-driven model that describes 
the contact mechanics. This interaction is a feedback mechanism where the vibrations drive the contact 
mechanics and contact then affects vibration. We have modeled explicitly the feedback interaction between 
the vibrational system and the as-yet unknown contact mechanics. 

We have used a full Bayesian approach for inferring the unknown contact model by combining the 
neutron noise measurements with computer simulations. The computer simulations provide the context, 
and the full Bayesian approach represents the unknown states as probability distributions. In an operational 
context, decisions can thus be made by considering the uncertainty in the state and the type of action that 
should be scheduled. For example, if the expected behavior is considered acceptable but the uncertainty is 
“large” an inspection could be scheduled. However, if the behavior is considered to be “precisely” near off-
nominal conditions, then a replacement can be ordered and scheduled before a planned outage. 

By tracking the contact mechanism over time, we can track changes in the health of the true system. 
More importantly, once trained we can separate the contact model from the vibration model. We can use 
the contact model to elucidate the dependence of contact on operating condition. This provides new insight 
to the character of the contact in a way that a priori contact models cannot. This contact model can then be 
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used for further hypothesis testing of the physics of contact and for forecasting health of components in 
real-time using real data. 

  

11. CONCLUSIONS 
In this report we have shown the recent developments in the PHM project and how it relates to its 

counterpart, the RIAM project. During FY-20 the PHM project focused on providing a large variety of 
reliability models at both the component and system level which can be easily linked to each other through 
the RAVEN analysis platform. 

The models at the component level are designed to include maintenance, testing, and ageing effects 
using a probability-based language. The models at the system level are designed to be adaptable to most 
U.S. plant configurations (e.g., PWRs and BWRs) using well known FT based reliability structures. 
Component models can be linked to system reliability models such that it is possible to propagate 
maintenance, testing and ageing effects at the system level using a probability-based language. This 
language can be changed into a new one which better reflects the types of data available from plant ER 
programs and the M&D center. Rather than inferring complex probabilistic models from limited amounts 
of data, we change to the language which better suits the data: the margin to failure. By doing so we are 
able not only to better utilize the available data, but we can still employ the developed reliability models 
with different solvers compatible with the concept of MTF. 

 

 
Figure 37. Classification of the developed PHM models. 

 shows in graphical form the models that have been developed so far within the PHM project. These 
models have been classified into three categories as follows: 

• Component models: designed to model component reliability/availability and costs for each 
component 
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• System models: designed to model system reliability/availability (i.e., PRA and GRA models) 
and costs; the MCSsolver (see Section 7) which performs the actual probability calculation 
belongs also to this class 

• Architecture models: designed to link the component and system models together depending 
on the application of interest (i.e., the logic and ensemble models).  

Lastly, we investigate how data can be enhanced by employing simulator tools. We follow the 
philosophy that an artificial intelligence bounded only by data is doomed to fail. Learning is coming not 
only from data but especially from analytical models (e.g., system codes). This learning can easily 
compensate for lack of, erroneous, or imprecise data and thus provide more robust predictive capabilities. 

In FY-21 we are planning to deploy what has been developed during FY-19 and FY-20 in the RIAM 
and PHM projects for specific use cases that are of interest to our industry partners. We will focus even 
more on data assimilation and integration with our developed models and methods. 
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APPENDIX A: NERC-GADS PC-GAR MT PROGRAM 
The North American Electric Reliability Corporation (NERC) began a data collection system in 1982. 

The Generating Availability Data System (GADS) collects data from over 5,000 electric generating units 
in North America. GADS collects performance information from generating units that have an electrical 
capacity of at least 20 MW.  

The participating utilities follow instructions to report data to NERC, which is then incorporated into 
GADS. The pc-GAR programs expand the effectiveness of GADS through a specialized data retrieval 
system. Users of pc-GAR may access anonymous operational and reliability information from more than 
1,189 active generating units. The pc-GAR software allows users to conduct data searches with specified 
criteria of unit design, fuel characteristics, operating data, etc. The software is updated annually and 
contains data dating back to 1982.  

The MT version of pc-GAR contains information for mean-time-between-failure and mean-time-to-
repair data [9]. The data obtained from the pc-GAR software are assigned to basic events in the GRA model. 
The basic events correspond to certain cause codes as defined by NERC. The cause codes are four-digit 
numbers identifying specific pieces of equipment or trains of equipment (e.g., cause code 4030 corresponds 
to high pressure steam turbine rotor shaft). The cause codes used in the GRA model include all the NPP 
critical components reported to GADS. Table 5 shows the cause code ranges for the sub-systems in the 
nuclear reactor, balance of plant, steam turbine, and generator main systems. 

 

Table 5. Model systems and subsystems. 

 
 

Some cause codes were intentionally left out of VERT. Any cause code specifically related to CANDU 
reactors was not used. Cause codes specifically related to BWR units were not included in the PWR version 
and vice-versa. If a cause code was not reported for all nuclear units from 1985-2019 the code was not used. 

Description Cause Code Range Description Cause Code Range
Core/Fuel 2010-2090 Condensing System 3110-3199
Control Rods and Drives 2110-2160 Circulating Water Systems 3210-3299
Reactor Vessel and Internals 2170-2199 Condensate System 3310-3399
Reactor Coolant System 2200-2399 Feedwater System 3401-3499
Steam Generators and Steam System 2400-2599 Heater Drain Systems 3501-3509
Core Cooling/Safety Injection 2600-2649 Extraction Steam 3520-3529
Electrical Safety Systems 2650-2699 Electrical 3600-3689
Containment System 2700-2799 Auxiliary Systems 3810-3899
Chemical and Volume Control/Reactor Water Cleanup 2805-2819 Miscellaneous (Balance of Plant) 3950-3999
Nuclear Cooling Water Systems 2820-2839
Auxiliary Systems 2840-2890 Description Cause Code Range
Miscellaneous (Reactor) 2900-2999 High Pressure Turbine 4000-4099

Intermediate Pressure Turbine 4100-4199
Description Cause Code Range Low Pressure Turbine 4200-4250
Generator 4500-4580 Valves 4260-4269
Exciter 4600-4609 Piping 4270-4279
Cooling System 4610-4650 Lube Oil 4280-4289
Controls 4700-4750 Controls 4290-4309
Miscellaneous (Generator) 4800-4899 Miscellaneous (Steam Turbine) 4400-4499

Nuclear Reactor Balance of Plant

Steam Turbine 

Generator
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Several cause codes relating to the “Electrical” sub-system were omitted due to the vast variations. The 
cause codes had different variations depending on the voltage of the components. The voltages where 
variant anywhere from 480 volts to 12 kilovolts. 
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APPENDIX B: VERT USER’S MANUAL 
The goal of the following process is to produce a .xml file, which will then be used as an input file for 

the RAVEN program. RAVEN will then iterate through SAPHIRE and generate information regarding the 
specific plant in graph and excel sheet forms. Aside from the SAPHIRE and RAVEN programs, initially 
everything will be contained in two “.zip” files. One “.zip” file, “MAC.zip”, will need to be placed in the 
RAVEN directory as shown. The other “.zip” file, “DEMO.zip” will need to be placed in the SAPHIRE 8 
directory as shown. These files contain all the documentation needed following installation of SAPHIRE 
and RAVEN. Figure 38 displays the contents of the “DEMO.zip” file after it has been extracted. The demo 
file needs to be in the “raven” directory or the program will not run. 

 

 
Figure 38. Contents of the VERT documentation. 

“DATA.csv” should be opened in excel or another spreadsheet editing software. “DATA.csv” contains 
the data associated with all the basic events contained in the model. To insert additional basic events, follow 
the formatting of the spreadsheet and type in the appropriate data. The “Cause Code” identified in the 
spreadsheet needs to be included in the basic event name in the SAPHIRE model. An example of inserting 
a new event into SAPHIRE is shown later. Figure 39 shows the “DATA.csv” spreadsheet with a new event 
typed in. 



 

68 
 
 
 

 
Figure 39. Input data spreadsheet for the program. 

After “DATA.csv” has been opened and modified as desired for the program, the SAPHIRE project 
should be opened and run. The SAPHIRE project is contained in the “MAC.zip” file. Before the SAPHIRE 
project is run the “MAC.zip” file should be copied and relocated to the “SAPHIRE 8” directory on the 
computer. The contents of the “MAC.zip” file should be extracted in the “SAPHIRE 8” location. Figure 40 
shows how the demo project should be placed on the computer.  

 
Figure 40. SAPHIRE 8 location for the demo project. 

The project should then be opened using SAPHIRE. To do this, first open SAPHIRE. Next, open the 
demo project by first clicking “File”, then “Open existing project…”. Then locate the MAC project.  Double 
click the .SRA file (see Figure 41) The project can now be edited as desired.  
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Figure 41. Project .SRA file. 

After the project has been edited to satisfy the new events placed in “DATA.csv”, a basic event report 
should be created. Make sure the MTTR value of new basic events is created if different from existing 
MTTR values. The notation of the MTTR event should be “REVENTNAME”; e.g. for the case of a new 
event named “NEW”, the MTTR event should be “RNEW”. If events were not added to “DATA.csv”, no 
new events need to be edited or added in the SAPHIRE project. Publish a basic event report by locating the 
“Basic Events” window in SAPHIRE and changing the basic event types to “All.” To do this first click on 
the first basic event so it is highlighted. After the first basic event is highlighted press Ctrl + A on the 
computer keyboard. After all of the basic events are highlighted as shown in Figure 42, click on the 
“Publish” tab and then the “Basic Event Report” tab.  

 

 
Figure 42. All the basic events highlighted for the basic event report. 
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The basic event report should be published to an “.xls” spreadsheet and a “Basic Event Listing” report 
should be selected. The screen should look like Figure 43.  

 

 
Figure 43. The basic event publishing screen. 

The basic event report should be automatically opened in excel or some other spreadsheet editing 
program. The opened file should then be changed to a “.csv” file and saved as “BE.csv” in the “DEMO” 
folder. The “DEMO” folder should now contain the “BE.csv” basic event report. Next, locate and run the 
“VERT” application file. It should be in the “DEMO” folder with the “DATA.csv” and “BE.csv” files.  
When the VERT application is run it should look like Figure 44. Follow the prompts and run the 
POSTPROCESSING script. The POSTPROCESSING script should generate a text file named “rules.txt”. 
This file should be created in the “DEMO” folder. 

 

 

Figure 44. The post processing rules text creating code. 
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The text inside “rules.txt” needs to be copied into SAPHIRE. Open “rules.txt” with any text editor and 
click CTRL+A on the keyboard to highlight all the text. The file should look similar to Figure 45. Click 
CTRL+C simultaneously on the keyboard to copy the text.  

 

 
Figure 45. Post processing text file. 

The text should be copied to SAPHIRE in the FT post processing rules text editor. To access the post 
processing rules text editor open the SAPHIRE project and click “Project”, then “Edit Rules”, and then “FT 
(Post-processing).” Click in the box to select it, then press CTRL+V to paste the post processing text in the 
box. The text editor should look like Figure 46. 

 

 
Figure 46. Post processing rules text editor. 
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Once the text is copied into the post processing text editor, the rules need to be saved and compiled. 
The “save” and “compile” buttons can be found either in the “File” dropdown menu or on the post 
processing text editor ribbon located just below the “File” and “Edit” dropdown menus. The post processing 
text editor can be closed after saving and compiling. The next step is to solve the FTs in two different 
manners. In the FT window located in SAPHIRE, change the FT type to “All” and highlight every FT by 
clicking CTRL+A. Right click on the highlighted FTs and click “Solve”. The screen should look like Figure 
47. 

 

 
Figure 47. Solving the FTs example. 

A window will pop up - make sure to select all the solution steps and ensure the rare event quantification 
method is selected. The screen should appear the same as Figure 48.  
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Figure 48. Solution step one. 

Depending on the project size, SAPHIRE may take up to twenty minutes to solve for the cut sets. Once 
the cut sets are solved, the screen should look like Figure 49. 

 

Figure 49. Solved FT s in solution step one. 
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The window can be closed after the FT are solved. The FT s need to be solved again using different 
solution steps. The solution steps selected should be the same as shown in Figure 50. 

 

 
Figure 50. Solution step two. 

The same window shown in Figure 49 will appear after the FT s are solved, differing in the results. The 
window and SAPHIRE can now be closed. After SAPHIRE is closed, the contents in the “MAC” project 
need to be sent to a compressed “.zip” file. To do this first open the “MAC” project and highlight all the 
contents by pressing CTRL+A. Then right click on the contents and select “send to compressed (zipped) 
folder”. A message stating “Windows was unable to add one or more empty directories to the compressed 
(zipped) folder” will appear. Select, “ok”, and rename the newly created .zip folder “MAC”. Move this .zip 
folder to the “SAPHIRE 8” directory. If SAPHIRE is open when the contents are sent to a .zip folder, an 
error message stating, “File not found or no read permission”, will appear. Simply close SAPHIRE and try 
again. Return to the VERT application and run the MACRO script by following the prompts. The screen 
should look like Figure 51.  



 

75 
 
 
 

 
Figure 51. VERT application macros script. 

Run the EQUATIONS script by following the prompts in the VERT application. The screen should 
look like Figure 52. 

 

 
Figure 52. VERT Application equations script. 

The final script to run is the RAVENINPUT script, which can be run by following the prompts in the 
VERT application. The screen should look like Figure 53. 
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Figure 53. RAVEN xml input file editor code. 

After the RAVENINPUT script has run, exit the program by following the prompts. Open the 
“mac.xml” file and ensure lines 9, 10, and 16 have the correct locations for the macro file, the project “.zip” 
file, and the SAPHIRE executable, respectively. The program is now ready to run. Open raven and run the 
“mac.xml” file. Open raven by locating the “raven_framework.bat” file in the “raven” directory and double 
clicking it. The screen should look like Figure 54 when RAVEN is run. 

 

 
Figure 54. RAVEN executing the program. 
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The output from VERT is contained in the user specified working directory. The output files are images or 
spreadsheets with the results from the program execution. The file containing all of the information is 
“SaphirePrint.csv.” The file contains all of the values for the basic events, risk values, and the FT results. 
The values from the spreadsheet are automatically exported into the images. The images are comparisons 
of the different systems and sub-systems on scatter plots. 
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APPENDIX C: THE VERT PROGRAM 
The fundamental purpose of VERT is to estimate the lost money imposed on NPPs from unavailable 

SSCs due to failures. The program uses PRA methodologies to evaluate the effects failed components have 
on a system. The effects of concern in the program are any form of derate occurring from equipment failure. 
FTs are arranged to depict a system and probabilistic tools are used to estimate the likelihood of an NPP 
derate. The consequences of the events are integrated into the program to quantify the associated risk of the 
failed components.  

VERT utilizes two different software packages developed by the Idaho National Laboratory (INL). The 
software package used to evaluate the FTs for LWR systems is Systems Analysis Programs for Hands-on 
Integrated Reliability Evaluations (SAPHIRE). SAPHIRE creates and analyzes PRA, primarily for NPPs. 
The RAVEN package is used to integrate time-dependence and consequences into the program. RAVEN is 
a versatile framework used for uncertainty quantification, regression analysis, PRA, data analysis, and 
model optimization. SAPHIRE and RAVEN are coupled together in the program to perform time-
dependent economic risk assessments. 

SAPHIRE is used to develop fault trees to represent an NPP system layout. Common PRA 
methodologies are used to build the FTs. PRA is much more complex in nature than the GRA methods used 
in VERT. PRA analyzes systems based on the ability to perform a safety function successfully. The only 
function of concern in an economic program is operating at full or reduced power to maximise revenue. 
Figure 55 may be used to illustrate the difference. The function of the feedwater system in PRA often 
identified is heat removal. The system may need two of the three pumps, both heaters or a single heater and 
a bypass loop, and all four steam generator loops to remove an adequate amount of heat.  

 

 
Figure 55. Availability block diagram of a feedwater system for full power. 

Failure to maintain that status may cause inadequate heat removal from the system. However, there are 
supporting systems to perform the function, such as the auxiliary feedwater system. Therefore, both the 
feedwater system and the auxiliary feedwater system must fail to lose heat removal. The NPP may be 
tripped or derated upon loss of the feedwater system even if the auxiliary system operates successfully.  

These types of events are evaluated in VERT. For example, in Figure 55 the logic is represented as full 
power of the system. The system may also be evaluated at a fractional output power level as well. To 
support 50% output power the feedwater system may only need one of the three pumps, one of the heaters 
or the bypass loop, and two of the four steam generator loops. Fractional levels of NPP electrical capacities 
are important to evaluate because derates tend to be more common than full plant trips. VERT eliminates 
the need for multiple models representing the different fractional levels of output capacity. Rather than 



 

79 
 
 
 

having different models created for derate levels of 50%, 30%, 100%, etc, the derate percentage is 
accounted for in the post-processing of the FT cut sets. The SAPHIRE post-processing tool introduces the 
consequences into Equation (C1): 

𝑅𝑖𝑠𝑘 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 (C1) 

There are many derates that can occur in an NPP and evaluating each possible derate would be time 
consuming. VERT can evaluate all possible derates using one FT model. Each component included in the 
model is associated with a derate percentage upon failure of the component. The derate percentage is 
contained in the spreadsheet included with VERT.  

The “Likelihood” value in Equation  is obtained through solving the FT model in SAPHIRE. The cut 
sets’ likelihoods are quantified using standard probabilistic methods. The data obtained from pc-GAR give 
failure frequencies for the basic events in the model. The method for obtaining data from pc-GAR is 
explained in the next paragraph. The failure probabilities are then determined from Equation(C2). The 
equation determines the probability of failure without repair for some failure frequency (λ) and some 
mission time (t). 

P = 1 − 𝑒=P+ (C2) 

Failure without repair probabilities were used because derating of the NPP occurs following a critical 
component failure. Failure with repair probabilities would be used to evaluate models where two or more 
critical components failure causes the top event to occur.  

The data obtained from pc-GAR includes the failure rates, Mean Times To Repair (MTTRs), and the 
average derates due to equipment failure. When pc-GAR is given search criteria, the results are shown in 
Table 6 for some arbitrary events.  

 

Table 6. Example output from pc-GAR search. 

Event Cause Code Time to Repair Derate 

1 3401 36 hr 34% 

2 4309 5 hr 100% 

3 2010 80 hr 10% 

4 2010 41 hr 13% 

 
The total unit service hours are also known for the pc-GAR search criteria. The failure rate for each 

cause code is determined by finding the total occurrences of each cause code event and dividing by the total 
unit service hours. The methodology for deriving the failure rate from pc-GAR was adopted from EPRI 
(Electric Power Research Institute). The MTTR values and average derates for each cause code is simply 
the arithmetic average of all the occurrences.  

There are multiple derate scenarios that components and trains are subject to. The scenarios with 
credible risk are included in the model. Figure 56 can be used as an example of excluded scenarios. If both 
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feedwater pump trains fail, assuming each pump supports 50% power, a plant trip would occur. If one of 
the pump trains fail, a 50% derate would occur. 

 

 
Figure 56. Feedwater system FT logic. 

FT logic contributing to little risk was eliminated from the model. The failure of two or more operating 
trains at the same time does not significantly affect risk. Returning to the feedwater pumps as an example, 
the economic risk due to both feedwater pump trains failing is negligible compared to the risk imposed 
from each individual train. Table 7 shows the calculations comparing the likelihood, consequences, and 
risk from failures of the feedwater pump drives.  

 

Table 7. Risk calculations for feedwater pump drive scenarios. 

Component λ (hr-1) MTTR (hr) Average Derate 
Pump A Drive (motor driven) 6.70E-06 45.4 50% 
Pump B Drive (turbine driven) 2.22E-05 40 50% 

Scenario Probability Consequences ($) Risk ($/yr) 

Pump A Drive Fails 5.70E-02 7.66E+05 4.37E+04 
Pump B Drive Fails 1.77E-01 6.75E+05 1.19E+05 
Pump A&B Drives Fail 2.70E-07 4.89E+06 1.32E+00 
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Although the consequences of both drives failing simultaneously are higher by about an order of 
magnitude, the likelihood is so low the risk becomes negligible. The likelihood is much lower because the 
failure probabilities of the feedwater pump drives now have time to be repaired. If Pump A or Pump B fail 
independently, a 50% derate will occur without time to repair the components. However, for the 100% 
derate to occur, both trains must be unavailable simultaneously. This introduces the time to repair a failed 
component before the other fails. In these situations, the failure probability is expressed as Equation (C3) : 

𝑃 = 	
𝜆𝜏

1 + 𝜆𝜏 �
1 − 𝑒=[P$

%
\]+� (C3) 

The mission time is t, the failure rate is λ, and the mean time to repair is τ. The risk of non-single mode 
failures with these assumptions is negligible and thus not included VERT.  

VERT can integrate degradation into the component analysis. VERT is currently capable of supporting 
two different equation types: linear and exponential degradation of lambda (failure rates): 

𝜆(𝑡) = 𝜆6(1 + 𝑏𝑡) (C4) 

𝜆(𝑡) = 𝜆6𝑒7+ (C5) 

The equation type and degradation constant, 𝑏, is specified by the user in the data spreadsheet.  

 
Figure 57. Balance of plant system risk. 
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The output from VERT is contained in the user specified working directory. The output files are images 
or spreadsheets with the results from the program execution. The file containing all of the information is 
“SaphirePrint.csv.” The file contains all of the values for the basic events, risk values, and the FT results. 
The values from the spreadsheet are automatically exported into the images. The images are comparisons 
of the different systems and sub-systems on scatter plots. The Balance of Plant system is shown as an 
example in Figure 57.  
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APPENDIX D: BASIC SAPHIRE USER’S GUIDE 
SAPHIRE is a program developed by INL which can perform PRA functions. To accomplish the work 

detailed in this report, this user’s guide will focus on the basics of using SAPHIRE to modify FT logic and 
generate the associated reports. 

Opening SAPHIRE 

The first step to using SAPHIRE is to open the program. This can be done by double clicking the 
application logo or by locating and running the SAPHIRE.exe file. The opening screen should look like 
Figure 58. 

 

 
Figure 58. SAPHIRE welcome screen. 

Locating/Opening a Project 

The next step is to open a new or existing project. A new project can be opened by selecting the “open 
new project” option on the main screen. An existing project can be opened by first selecting the “File” 
dropdown menu in the top-left corner of the main menu and then selecting the “Open existing project…” 
option. Locate the project folder, enter the folder, and select the project’s .sra file. See Figure 59. 
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Figure 59. Example .sra file. 

This will open the existing project for editing. 

Locating FT Section/Selecting A FT 

SAPHIRE can be used to create ETs and FTs. This guide will focus on the latter. The FT menu is 
located on the left side of the main menu, underneath the dropdown menus and the basic event menu. The 
FT menu displays existing FTs and provides an option to either filter existing FTs or create new FTs.  

 

 
Figure 60. New FT window. 

To create a new FT simply double click the “New FT” button at the top of the FT menu. A window 
similar to Figure 60 will pop up. After the information is input, click “OK”. To look at an existing FT, 
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simply double click it. When a FT is opened a new window displaying the FT will open.  See Figure 61 for 
an example.  

 

 
Figure 61. Example FT. 

Both gates and events can be easily added, deleted, or edited. To add a gate, first select the type of gate 
at the top of the FT editing window as shown in Figure 62. 

 

 
Figure 62. FT gate locations. 

Next, place the cursor over a part of the gate shown in Figure 63. The cursor will display a “null” symbol 
until it is placed over an area where a gate can be added. To add a basic event, select the basic event option 
(from the same place where the gate options are) and follow the same procedure.  
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Figure 63. Valid gate addition locations. 

Following FT Transfer Gates 

Large FTs will generally be made of several smaller fault trees. Because the entire FT cannot fit on one 
page, these smaller FTs will be attached to the larger FT using “transfer gates”. To follow a transfer gate to 
the attached FT, simply click on the locations shown in Figure 64. 

 

Figure 64. Transfer gate links. 
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FT Edits 

To edit gate or basic event information, simply double click the gate or basic event of interest. This will 
open a window similar to Figure 65. 

 

 

Figure 65. FT edit window. 

To delete a gate or basic event, simply click on the gate or basic event of interest and click the “delete” 
key on the keyboard. Alternatively, right clicking on a gate or basic event will display several options, 
including “edit” and “delete”. 

 

Basic Event Location 

The basic event window is located in the top-left side of the SAPHIRE main menu, just below the 
dropdown menus and just above the FT window. The basic event window functions in the same way as the 
FT window. It displays all existing basic events, has a dropdown menu containing several filtering options, 
and has a “New basic event” button. See Figure 66. 

 
Figure 66. Basic event window location. 
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Basic Event Edits 

When a basic event is opened for editing, a window similar to Figure 67 will open. Each field can be 
edited. 

 

Figure 67. Basic event editing window. 

Basic Event Report Generation 

Generating a basic event report is an important step for VERT. To do this, first navigate to the basic 
event window. Next, from the dropdown menu, select “all” so all the existing basic events are displayed. 
Select one of the basic events and then click CTRL+A to select all the basic events. All the basic events 
should now be highlighted. Now select the “publish” dropdown box from the top of the main menu and 
click “Basic Event Report”. See Figure 68. In the next window, select the “Basic Event Listing” and “Excel 
Format (XLS)” options (see Figure 43), then select “Publish”. This will automatically open the basic event 
listing using a compatible program.  
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Figure 68. Basic event report location. 

FT Rule Editing  

Another important step for VERT is FT rule editing. To edit FT rules, click “project”, then “edit rules”, 
and finally “FT (Post-Processing)”. See Figure 69.  

 

 

Figure 69. FT post-processing rules location. 

A window similar to Figure 70 should appear. Enter the post-processing rules into the box, then click 
the “save” and “compile” buttons located at the top of the window under the “File” dropdown box. 
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Figure 70. Post-processing rule editor window. 

Solving FT 
The final step is to solve the FTs. First select the “all” option from the dropdown box in the FT window 

in the main menu. Next, highlight all the FTs by selecting one and then pressing CTRL+A. Right click on 
a FT and select “solve”. A window similar to Figure 71 should appear. In the “Solution Steps” section of 
the window, make sure to select the “Apply Post-Processing Rules” checkbox. Then click “Solve”. 
Depending on the size and quantity of FTs, the solving process can take several minutes. 

 

 
Figure 71. FT solve window. 
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APPENDIX E: INTEGRATING EXPERIMENAL DATA AND SIMULATION 
MODELS 

E.1. Reactor Internals and Contact Wear 
Of particular interest for this project is the degradation of reactor internals during the life of a reactor 

and from outage to outage. Due to the large flow velocities in a reactor, there can occur considerable 
vibration of the reactor internals. In this research, we are specifically interested in the core barrel and its 
support structures; see Figure 71. The core barrel motion can be of a variety of types: beam, tilting, shell, 
and others. The vibrations of the reactor internals are measured by fluctuations in the ex-core neutron 
detectors [14, 15, 16, 18, 20] (see Figure 72). Over time, the nature and contact between the reactor internals 
and the reactor vessel changes. A gradual decline in contact frequency as the unit ages is a result of a 
reduction in contact and an increase in the space between the reactor vessel and internals, e.g., wear in the 
radial key. Inspections at shutdown have supported the that interpretation that there is some “hammering 
in” of contact surfaces [20]. 

 

 
Figure 72. The core barrel is mounted in the reactor and held in place by hold-down springs. 

The motion at the base of the core barrel is constrained by the radial keys [20]. 

It is clear that changes in the contact and wear are indicative of the health of the core-barrel support 
structures. Some researchers have used the change in vibration signatures, measured by ex-core detectors, 
as an indicator of health, but this approach can incorrectly convolve changes in the vibrating structure itself 
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with changes, say, in the radial-key. Changes in the vibrating structure can result from factors other than 
contact at the radial key, while changes in the radial-key contact are a result of the “hammering in” 
phenomenon. Having an approach that lets us distinguish vibrations from the radial key is necessary. 

 

 
Figure 73. During the operation of the reactor, decreasing contact between the internals and the re- 
actor vessel changes the signature pattern. Tracking changes over time is one method of monitoring 

the health of the core barrel, the radial key, and reactor internals. [source: 11] 

What is challenging for this analysis is that the changing contact and wear often results from 
considerable changes in a non-linear contact. Trying to emulate the contact and characterizing the contact 
forces outside of the reactor in a laboratory environment is quite difficult. Trying to do so without the 
environment of the reactor, and without the resulting vibration of the reactor internals, would miss 
significant characteristics of the motion and forces needed to characterize the contact. Furthermore, 
determining the change in the contact is necessary to monitor the health of the support structures. During 
the life of the parts, continual vibrations create stresses on the parts that result in wear. This wear then 
changes the characteristics of the contact. Monitoring just the changes in the contact, versus changes in the 
vibrations of the reactor internals overall, provides a better picture of the health of the support structures 
like the radial-key. As such, an analysis of the contact forces must be done in situ and must provide a way 
to separate the contact forces from the vibration motion. 

 

E.2. Integrating Model-Based and Data-Driven Techniques 
Current data-driven approaches for component health use historical values for time to failure and 

establish inspection and maintenance based on that history. Other than periodic inspections, little about the 
operating condition of the component is used to establish its health. Recent developments use statistical 
characteristics of signals to establish residuals that can be tracked and changing trends can be used to signal 
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the need for inspection, repair, or replacement. These approaches are missing knowledge about the physical 
characteristics of the component and cannot provide any physical insight to the degradation mechanism. 
What is needed is an approach that can integrate physical knowledge based on well-modeled simulations 
and data-driven techniques that can account for the true operating conditions. 

The challenge when integrating model-based and data-driven techniques is that there must be a coherent 
framework that combines the known physics-based model and the as yet unknown data-driven model of 
the degradation mechanism. What must be captured is the interaction between the physics-based model and 
the data-driven model. This interaction is a feedback mechanism where the response of a system drives 
degradation, and degradation then affects system response. 

 

 
error update 

 

 physics-based model machine learning  

Figure 74. The interconnection of a vibrational system (model) and a contact mechanism is a 
feedback process. The contact mechanism can be identified using machine learning in real-time 
using model-matching. Its change over time can then be used to estimate and predict component 

health. 

In this research, we explicitly model the feedback interaction between the nominal system and the 
degradation mechanism. Figure 73 illustrates this for our specific problem, which accounts for the effect of 
contact mechanics on a vibrational structure. This configuration is a common framework in systems and 
control theory, and the problem can be transformed into a standard model-matching problem where the 
objective is to determine, using data, the degradation mechanism that minimizes the error between the true 
system and the integrated model.  

The advantage of the model-matching framework is that a variety of machine learning, parameter 
identification, and system identification techniques can be used. Importantly, modern data-driven 
techniques can be used to infer further physical laws for the degradation mechanism; among these are 
techniques for inferring solutions to differential equations using data [18], Gaussian processes [19], and 
deep learning of physical laws from data [11]. As discussed in Section E.4.2, we are using a full Bayesian 
approach to the model-matching problem. In this way, the uncertainty on all parameters of the integrated 
model (vibration plus contact models) and the uncertainty on the error will be characterized. Resolving the 
error uncertainty provides context for interpreting the integrated model’s performance, which should aid 
stakeholders and decision makers. 
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Since the integrated model is a best match for the true system and explicitly includes the contact, by 
tracking the contact mechanism over time, we can track changes in the health of the true system. More 
importantly, once trained we can separate the contact mechanism from the system model, and we can 
elucidate the dependence of contact on operating condition. This provides new insight to the character of 
the contact in a way that a priori contact models cannot. This data-driven model can then be used for further 
hypothesis testing of the physics of contact and for forecasting health of components in real-time using real 
data. 

 

E.3. Use and Effectiveness of the Machine Learning 
An objective of this research is to use measurements of the core barrel motion, obtained from ex-core 

measurements, to infer the behavior and state of components within the reactor vessel. The measurements 
do not explicitly capture the response or state of the components. Changes in those signals reflect changes 
in the motion of the internal structures within the reactor vessel. The dynamic response of the internal 
structures may change throughout the life of the system as components degrade. Understanding the 
degradation and wear of internal structures is possible by collecting, processing, and analyzing the neutron 
noise signals throughout the cycle and across multiple cycles, as evidenced by previous studies. 

Machine learning can be used to identify patterns and predict system behavior based on historical 
measurements. It is therefore natural to expect that machine learning techniques can be applied to this 
problem. However, machine learning strategies cannot be applied in a “black box” manner. To understand 
why, we need to consider how the data are collected and how the data are associated with the goal of the 
project. First, the measurements are indirect. The signals by themselves do not provide a direct target, class, 
label, or numeric value that represents the state of the structures within the reactor vessel. The signals will 
not allow an algorithm to find a relationship between the degradation of a component, such as the radial 
key inside the reactor vessel, because the data do not include any measurements inside the reactor vessel. 
Essentially, the input is the neutron noise signal and the output is the state of a component. The neutron 
noise data consist of zero observations inside the reactor vessel and so no direct input to output relationships 
can be established. 

It might be tempting to consider using unsupervised learning approaches to overcome this limitation. 
Indeed, unsupervised learning makes no distinction between input and output. The goal is to find interesting 
patterns in the data, such as grouping or clustering observations together. Time series clustering, such as 
Dynamic Time Warping (DTW) or Principal Component Analysis (PCA) based approaches are common 
in machine learning research literature and commercial applications. Although those methods would 
identify groups of similar observations, those clusters would still suffer from lack of context. There would 
be no context about what physically makes the signals similar to each other. The goal is to understand the 
behavior inside the reactor vessel, but there would be no way of knowing which clusters correspond to 
degraded states versus nominal states. Worse yet, there would be no way of knowing which clusters contain 
a mixture of degraded and nominal conditions. 

Ultimately the solution to these challenges is to bring in engineering context into the machine learning 
problem. Context can be provided several ways. In one approach, Subject Matter Experts (SMEs) could go 
through and manually provide context to the various signals. Such an approach could be viewed as a post-
processing step to cluster analysis (an unsupervised learning technique). SMEs could then diagnose 
representative signals inside the identified clusters to provide the contextual clues about what makes the 
observations inside a cluster similar to each other and different from those in other clusters. This approach 
would combine traditional signal processing techniques executed by the SMEs with the automated cluster 
analysis of an unsupervised machine learning method. The downside of this approach is that it will be 
tedious and time consuming to examine the collected signals. As the SMEs study more signals, and thus 
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provide greater and more meaningful context, this approach would end up being as costly as first having 
the SMEs study and label the various signals before applying any machine learning methods. Either way, 
the approach will not scale well to studying behavior across years of data. 

In a second approach, physical context is provided by numerical models. A numerical model makes use 
of the underlying governing equations, physical laws, and SME engineering insight to study the dynamics 
of the complex system. If the state of the system is known, the dynamics can be simulated, and the simulated 
response can be compared to the collected measurements. The simulation must capture the dynamical 
motion of the reactor internals and the neutron transport through the system to the ex-core detector. The 
initial system state and other related information may not be known, and thus must be learned. This inverse 
structure — given a response then learn the input — is aligned with the goal of the project where we wish 
to infer behavior indirectly through measurements of something else. 

Bringing together computer simulations with the physical measurements is an area that has been 
researched, studied, and applied for decades. Point estimate “calibration” studies are used in numerous 
fields. Point estimates lack any aspect of uncertainty, since the results are single values associated with each 
unknown. Point estimates are not appropriate for this project because we wish to understand the state of a 
complicated system. It is imperative to have some representation of the uncertainty of the state, because a 
decision must ultimately be made to take some action. That action could be more thorough inspections, or 
even scheduling a replacement of the internal structures. That decision must consider the financial, 
logistical, and other management related impacts of performing such actions. 

We are using a full Bayesian approach for inferring the unknown state by combining the neutron noise 
measurements with computer simulations. The computer simulations provide the context, and the full 
Bayesian approach represents the unknown states as probability distributions. Decisions can thus be made 
by considering the uncertainty in the state, which will help in considering the type of action that should be 
scheduled. For example, if the expected behavior is considered acceptable but the uncertainty is “large” an 
inspection could be scheduled. However, if the behavior is considered to be “precisely” near off-nominal 
conditions, then a replacement can be ordered and scheduled before a planned outage. 

The full Bayesian approach will also aid the data collection and storage necessary to perform the 
inference task. The neutron noise data are high-frequency time-series signals. The data are streaming and 
continuously monitored during operation of the plant. However, long-term storage of such high-frequency 
signals may be challenging. Further, distributing such large volumes of data to the appropriate teams that 
will perform the inference task may be even more challenging. Data access, querying, and cleaning are the 
primary reasons that machine learning/data science projects fail in industrial applications (current estimates 
are between 60 % to 80 % of projects fail). Therefore, we cannot take the mindset of “give us all the data” 
and expect such a project to be successful in the long run. A limited data volume will be available, and the 
method must be capable of efficiently learning from the data. A full Bayesian viewpoint with appropriate 
prior distributions will be beneficial in learning from “small data” that ultimately must occur to solve this 
“big data” problem. 

As stated in the previous section, we are proposing integrating machine learning techniques with 
physics models. Physical phenomena that are difficult to characterize and model will be approximated by 
machine learning methods, rather than governing equations or physical laws. Machine learning will 
therefore provide the necessary closure or constitutive relationships to model the behavior of the complex 
system. Machine learning and/or statistical models have been used to capture behavior outside the 
assumptions of physical simulations for two decades. The seminal work by Kennedy and O’Hagan (KOH) 
[13] used Gaussian processes (GPs) to capture the error or model discrepancy between simulations and 
measurements. The discrepancy function was learned in a full Bayesian context to capture as many sources 
of uncertainty as possible. Once learned, the discrepancy function enables the physics simulation to draw 
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conclusions from limited physical measurements, while the measurements enable the simulation to 
overcome the inherent simplifying modeling assumptions. 

The KOH approach is a powerful technique, but it is challenging to implement. Computer simulations 
typically involve their own set of unknown parameters, which engineers hope to learn or calibrate using 
measurements. Learning the discrepancy function simultaneously with the unknown physical parameters is 
a challenging inference problem due to non-uniqueness, unidentifiability, and multi-modality [10,12]. 
Multiple authors have developed approaches to try and compartmentalize the various parameters as a way 
to simplify the learning problem. Ultimately, these challenges as a whole have made it difficult to 
implement the KOH approach in practice. 

In this work, rather than trying to learn a general discrepancy function between the measurements and 
the physical simulation, we are using machine learning to represent specific physical processes. Machine 
learning is therefore still capturing difficult to model dynamics, but prior information about the behavior of 
such processes can be directly applied to regularize and constrain the machine learning models. As 
discussed earlier, the machine-learning approximated physical behavior can then be separated from the 
physics-based simulations. The machine learning model can be interrogated by SMEs to explore trends and 
behavior of the physical process. 

 

 
Figure 75. The interconnection of the vibration model of the core barrel and contact force is a 

generalized feedback problem. 

E.4. Methods 
E.4.1. Core-Barrel Model 

E.4.1.1. Vibration Model 
In this research, we isolate the vibrations from the contact by modeling the interaction between the 

vibrational system of the core barrel and the contact. The dynamics of the vibrating core barrel are assumed 
known and modeled in a vibrational model derived from finite element analysis, modal analysis, or similar 
approach. The unknown contact, that which we want to identify, will be characterized in a machine learning 
model. It is important to realize that the physics-based vibrational model and the machine-learning contact 
model are interconnected in some feedback process like that shown in Figure 73 and Figure 74. 
Mathematically we can describe the general vibrational model as: 

𝑀	�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝐾𝑟(𝑡) = 𝐵%	𝑤(𝑡) + 𝐵.	𝑓(𝑡) (E.1) 
𝑧(𝑡) = 𝐶%	𝑟(𝑡) (E.2) 
𝑦(𝑡) = 𝐶.	𝑟(𝑡) (E.3) 
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𝑓(𝑡) = 𝜓(𝑦(𝑡), �̇�(𝑡)) (E.4) 
The signals are: 

• �̈�(𝑡), �̇�(𝑡), 𝑟(𝑡): are the generalized displacement, velocity, and acceleration; 

• 𝑤(𝑡) is an exogenous forcing function from the turbulent flow; 

• 𝑧(𝑡) is the ex-core neutron measurement; 

• 𝑦(𝑡) is the displacement at the point of contact; and, 

• 𝑓(𝑡) is the force of contact. 

And the matrices are: 

• 𝑀 is the mass matrix; 

• 𝐷 is the damping matrix; 

• 𝐾 is the stiffness matrix; 

• 𝐵% is the input matrix for the exogenous forces; 

• 𝐵. is the input matrix for contact forces; 

• 𝐶% is the output matrix for the ex-core sensors; 

• 𝐶. is the output matrix for the contact motion. 

More specifically for this research, we are modeling a single mode of vibration with natural frequency 
of 𝜔, = 10	𝐻𝑧. The exogenous force is sinusoidal with frequency of 𝜔 = 2	𝐻𝑧 and stiffness normalized 
amplitude of 𝑋 = 2	𝑐𝑚. 

 

E.4.1.2. Ex-Core Measurement Model 
For the ex-core measurement, we assume the variation in the flux is 

𝛿𝜙(𝑡) 	= 	𝐴	𝑒𝑥𝑝(𝛴	𝑟(𝑡))      (E.5) 

where the constant A does not depend upon the perturbed position of the vibrational system and 𝛴 is an 
effective macroscopic cross-section that describes the absorption by the core barrel of neutrons emitted 
from a radiation source (the core). Equation 5 represents a simplified age diffusion approximation to the 
thermal flux measured at the ex-core detector. The oscillatory behavior of the reactor internals therefore 
impacts the measurement by changing the effective distance between the source and the detector. 

The ex-core measurement is the scaled variational log-normalized flux 

𝜑(𝑡) = 𝑎	𝑙𝑜𝑔	𝛿𝜙(𝑡) = 	𝑎	𝛴	𝑟(𝑡)     (E.6) 

where the constant 𝑎 describes the sensor calibration factor. In this problem, the constants 𝑎 and 𝛴 are 
arbitrary. We assume a measurement noise that is Gaussian, 𝑛(𝑡) ∼ 𝑁(0, 𝜎.). The ex-core measurement is 
then: 

𝑧(𝑡) = 𝜑(𝑡) + 𝑛(𝑡) ∼ 𝑁(𝑎𝛴𝑟(𝑡), 𝜎.)    (E.7) 
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E.4.1.3. Contact Force Model 

We assume a non-linear friction force that is viscous (proportional to velocity) for small displacements 
from equilibrium and is constant for large displacements. We assume a hyperbolic tangent such that 

𝑓(𝑡) = 𝑚	𝛼	𝑡𝑎𝑛ℎ(𝛽	�̇�(𝑡))     (E.8) 

The parameter 𝛼  controls the asymptotic friction at large velocities; the parameter 𝛽  defines the 
characteristic velocity 𝑉* = 	1/𝛽. This model is a hybrid of linear viscous damping 𝑓 = 𝑐	𝑟	̇ and constant 
Coulomb friction 𝑓 = 𝐹6	𝑠𝑔𝑛(�̇�) with 𝐹6 = 𝑚𝛼. A graphical depiction of this is shown in Figure 75. With 
this assumption the equation of motion becomes 

�̈�(𝑡) + 𝛼	𝑡𝑎𝑛ℎ(𝛽�̇�(𝑡)) + 𝜔,.𝑟(𝑡) = 𝑋𝜔,.	cos	(𝜔𝑡)    (E.9) 

𝑧(𝑡) = 𝑎	𝛴	𝑟(𝑡) + 𝑛(𝑡)     (E.10) 

 

 
Figure 76. The friction force, shown in (red), is viscous (proportional to velocity) for small 

displacements from equilibrium and is constant for large displacements. The lightly damped 
cases of a damping ratio of 0.1 (light blue) and 0.01 (dark blue) are shown for comparison. 

The 𝛼 and 𝛽 parameters control the behavior of the contact force, which impacts the evolution of 
displacement under an external load. The displacement impacts the ex-core measurements. The problem is 
to estimate the parameters 𝛼 and 𝛽 given the noisy measurement 𝑧(𝑡). 

 

E.4.2. Inference Problem 
Inference of the unknown machine-learning parameters, 𝛼 and 𝛽, in a full Bayesian setting requires 

specifying the likelihood between the physics model and the measurements, as well as the prior on the 
unknowns. The prior may help prevent unphysical behavior by ruling out extreme values. The updated 
belief or posterior distribution on the unknown machine-learning parameters is a compromise between the 
data and the prior. 
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E.4.2.1. Likelihood Function 
The data points correspond to 𝑁  ex-core measurements collected at a specific data acquisition 

frequency. The measurement times are denoted as 𝑡,  where 𝑛 = 1, . . . , 𝑁  . The vector of all 𝑁 
measurements is denoted as 𝑧 = {𝑧(𝑡6), . . . , 𝑧(𝑡;)}. 

The integrated model consists of two coupled physics simulation. First, the vibration dynamics are 
simulated by evolving the initial state forward in time. The machine-learning-based contact model is 
integrated with the vibration dynamics model. Second, the neutron transport phenomena must be simulated 
to represent how the ex-core measurement will evolve through time. The neutron transport requires the 
system displacement (the output of the vibration dynamics model) as an input. The combined result of these 
two models is the simulated flux at the ex-core detector. That response denoted as 𝜑(𝑡,), with all 𝑁 
responses denoted as 𝝋. The 𝑁 measurements are assumed to be conditionally independent. Thus, the 
likelihood is the product the 𝑁 conditionally independent likelihoods: 

𝑝(𝑧|𝝋, 𝜎) =�𝑝(𝑧(𝑡,)|
;

,-%

𝜑(𝑡,), 𝜎) (E.11) 

Following the ex-core measurement model discussion earlier, each of the measurements is assumed 
normally distributed around the simulated response. The likelihood is thus the product of 𝑁 conditionally 
independent Gaussian likelihoods: 

𝑝(𝑧|𝝋, 𝜎) =�𝑁(𝑧(𝑡,)|
;

,-%

𝜑(𝑡,), 𝜎.) (E.12) 

The likelihood appears rather simple because all of the time dynamics are captured by the physics 
simulation. The learning problem would be considerably more complex without the physics simulation 
because the autoregressive nature of the response would need to be captured within the likelihood directly. 

 

E.4.2.2. Prior Specification 
As discussed in Section E.4.1.3, the contact force is a hyperbolic tangent function, an “S-curve”. 

𝑓(𝑡) = 𝑚	𝛼	𝑡𝑎𝑛ℎ(𝛽	�̇�(𝑡))     (E13) 

In this section, we are focusing on the specification of the machine-learning parameters, 𝛼 and 𝛽. The 
full prior consists of the joint prior distribution on both parameters, 𝑝(𝛼, 𝛽). We take the approach that a 
priori both parameters are independent, 

𝑝(𝛼, 𝛽) = 𝑝(𝛼)	𝑝(𝛽)     (E.14) 

Appropriately specified informative prior distributions on the 𝛼 and 𝛽 parameters may help prevent 
nonphysical behavior of the contact force. For example, the hyperbolic tangent model converges to a 
constant Coulomb friction model as the 𝛽 parameter increases in absolute value. If it is believed, a priori, 
that the contact force should depend on the velocity, then the prior can be formulated to prevent large 𝛽 
values. Uninformative or vague priors would be susceptible to noisy observations, and so may result in 
incorrect behavior in small sample sizes. Thus, this research uses moderately regularizing priors on 𝛼 and 
𝛽 to try and prevent large values of either parameter. For simplicity, Gaussian priors are used for both 
parameters. The priors are parameterized with prior means, µ) and µ7, and prior standard deviations, 𝜏) 
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and 𝜏7, on the 𝛼 and 𝛽 parameters, respectively. Using this notation, the joint prior can be written as the 
product of two independent Gaussians: 

𝑝(𝛼, 𝛽) = 𝑁(𝛼|µ) , 𝜏).)	𝑁n𝛽µµ7 , 𝜏7.o    (E.15) 

The prior means are both set to 0, µ) = µ7 = 0, and the prior standard deviations are both set to 3, 
𝜏) = 𝜏7 = 3, to moderately regularize the parameters. This prior formulation is analogous to using a ridge 
penalty in a non-Bayesian setting. 

 

E.4.2.3. Prior Specification 
The posterior distribution is proportional to the product of the likelihood and the prior. In this case, we 

are updating our belief about the 𝛼 and 𝛽 parameters given the 𝑁 measurements, 𝑧(𝑡,). The simulated 
response, 𝜑(𝑡,), is a function of the machine-learning parameters. Thus, 𝜑(𝑡,) can be viewed as a non-
linear mapping between the machine-learning parameters and the expected value for the measurement at a 
given point in time: 

𝐸{𝑧(𝑡,)|𝛼, 𝛽} = 𝜑(𝑡,, 𝛼, 𝛽)     (E.16) 

The simulated response at time 𝑡, will be written in a more compactly as, 𝜑,(𝛼, 𝛽) for the remainder of 
the appendix. Using this notation, the 𝑛-th likelihood can be written as: 

𝑝(𝑧(𝑡,)|𝛼, 𝛽, 𝜎) = 𝑁(𝑧(𝑡,)|𝜑,(𝛼, 𝛽), 𝜎.)    (E.17) 

Using this notation, the posterior distribution on α and β given the N measurements is written as: 

𝑝(𝛼, 𝛽|𝑧, 𝜎) ∝�𝑁(𝑧(𝑡,)|
;

,-%

𝜑,(𝛼, 𝛽), 𝜎.)	𝑁(𝛼|0, 𝜏).)	𝑁n𝛽µ0, 𝜏7.o (E.18) 

The posterior distribution in this equation holds as long as there are just two unknown machine- learning 
parameters and that the measurement error, 𝜎, is known. The physics simulation, 𝜑,(𝛼, 𝛽), could be simple 
analytic result or a complex, long running simulation. 

 

E.4.2.4. Estimating Posterior Distribution 
The hyperbolic tangent contact model discussed throughout this appendix consists of two unknowns, 

𝛼 and 𝛽. The posterior distribution of such a small dimensional problem can be solved directly via graphical 
methods. The graphical solution is sometimes referred to as the direct method or grid approximation, 
because the posterior can be evaluated at a grid of many possible “candidate” parameter values. A benefit 
of such an approach is that the only approximations in the solution scheme is the decision for how many 
grid points to use, which thus control the resolution of the posterior “image”. The main steps of the grid 
approximation are 

1. Specify a grid of candidate parameter values, (𝛼, 𝛽)< where 𝑚 = 1, . . . , 𝑀 

2. For each of the 𝑚 = 1, . . . , 𝑀 grid points: 

a. Integrate the physics simulation forward in time using the specific set of machine-
learning parameters, 𝜑,((𝛼, 𝛽)<) where 𝑛 = 1, . . . , 𝑁 

b. Calculate the log-posterior, 𝑙𝑜𝑔	𝑝((𝛼, 𝛽)<|	𝑧, 𝜎) 

3. Visualize the posterior surface over the candidate parameter grid 
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The candidate grid is usually set based on the prior. The grid approximation does not scale well beyond 
2 parameters; however, it does provide a graphical tool to understand the behavior of the “true” solution, 
the posterior distribution without any approximations. It thus helps diagnose challenging behavior, albeit 
for small-scale applications. 

To scale beyond two unknowns, rather than using MCMC sampling, this research chose to use a 
distributional approximation to the posterior. Specifically, the Laplace approximation (quadratic or normal 
approximation) was applied. The Laplace approximation is derived from a second-order Taylor series 
expansion of the log-posterior function (see Equation E.18) around the posterior mode. The Laplace 
approximation approximates a joint distribution as a multivariate normal (MVN) distribution. The mean of 
the MVN is set equal to the mode of the joint distribution and the covariance matrix is calculated using the 
local curvature around the mode. The Laplace approximation is thus a local approximation to the 
uncertainty in the parameters. 

The benefit of the Laplace approximation is that it is relatively fast to execute. An optimization 
algorithm is used to find the posterior mode. Compared to MCMC sampling, a relatively small number of 
iterative evaluations are required. The Hessian matrix was evaluated numerically, and thus only needed to 
be estimated after the posterior mode was identified. 

 

E.5. Results and Discussion 
In this section, we examine the ability to recover the parameters that were used to generate the data in 

order to understand potential pitfalls and solution strategies to overcome those challenges. The physics 
simulation was integrated forward in time from an assumed initial condition, and noisy measurements were 
generated. The true values for the machine-learning parameters were specified to produce the contact force 
model displayed as the red curve in Figure 75. The goal of the parameter recovery demonstration was 
therefore to see if the inference engine could learn the parameter values that generated the data. The grid 
approximation and the Laplace approximation strategies were applied. 

 

E.5.1. Inference of a Non-Linear Loss Model 
 

E.5.1.1. Grid Approximation Inference 
The grid approximation was applied first to graphically solve the joint posterior on the unknown contact 

force parameters, (𝛼, 𝛽). Both parameters have assumed Gaussian prior distributions. A grid of candidate 
points was created as a 115 × 115 full-factorial grid between ±3 prior standard deviations around the prior 
mean. The log-posterior was calculated for all 13225 combinations over the grid. 

The grid approximation results are displayed in Figure 76 below. The α parameter is displayed on the 
horizontal axis and the β parameter is displayed on the vertical axis. The surface fill color represents the 
posterior density associated with each grid point (𝛼, 𝛽). Yellow areas have the highest posterior density, 
dark blue regions have very low posterior density, and all (𝛼, 𝛽) considered implausible are greyed out. In 
Figure 76, implausible is defined as having a posterior probability of less than 0.01 %. Posterior contours 
are displayed by the black curves. The graph has been zoomed in between -6 and +6 for both parameters. 
The most striking aspect of Figure 76 is that most of the combinations of the two parameters have been 
“greyed out”. The second major take away is that the distribution is bimodal having a significant “banana” 
shape; this bimodal posterior shape makes sense because the hyperbolic tangent is an odd function. One 
mode corresponds to positive parameters, and the second corresponds to negative parameters. 



 

102 
 
 
 

This particular contact force model is a simplified single hidden layer feedforward neural network with 
a single neuron and a hyperbolic tangent activation function. The bias parameters of the neural network 
have been set to 0 and thus this simple neural network consists of only unknown weight parameters. Neural 
networks are notorious for having complex multi-modal objective functions (specifically here we are 
investigating the posterior surface which includes the effect of a prior). Machine learning models integrated 
within physics simulations will also suffer from these challenges, as visualized by Figure 76. 

Earlier in this appendix, it was stated that SME opinion can be easily incorporated into the framework 
by applying the machine-learning model directly to physical processes. For example, if SMEs believe that 
the contact force should increase as the velocity increases a natural constraint is to assume that the 
parameters should both be positive. Figure 77 zooms in on the quadrant with both positive parameters. The 
thin “banana” shape is apparent, representing a hyperbolic relationship between the two. It is difficult to 
assess if there is a single mode within this thin region because of the resolution of the grid approximation. 
Increasing the resolution of the grid approximation in this region would be expected to resolve such 
behavior. 

However, rather than applying the grid approximation just in the positive-positive quadrant, the desired 
lower bound constraint on the two parameters can be applied. Both parameters are log-transformed and thus 
the posterior distribution can be reformulated to study joint distribution of the log-transformed parameters, 

𝛼� = 𝑙𝑜𝑔	𝛼,	

𝛽· = 𝑙𝑜𝑔	𝛽,	

rather than the original parameters. This transformation has modified the priors to be log-normal priors on 
the log-transformed parameters. Applying the transformation allows the original Gaussian priors centered 
at zero to still be used which simplifies the prior specification process. 

The grid approximation was executed for the log-transformed parameter space. The steps are the same 
as in the original parameter space. The candidate grid was setup as 125 ×125 full factorial combinations 
between log(0.5) and log(10.5) for both transformed parameters. The result is shown in figure 8. The 
hyperbolic like thin “banana” shape is still present, but it is less pronounced in the log-transformed space. 
Most of the possible combinations of the two log-transformed parameters are still ruled out, representing 
that only a narrow “ridge” of parameters is plausible. With the higher image resolution, it is easy to see that 
a single mode exists. SME subjective opinion has therefore made a challenging neural network fitting 
operation more tractable by removing the second mode. 
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Figure 77. Joint posterior surface graphically solved by the grid approximation for the 

unknown machine-learning parameters α and β. 



 

104 
 
 
 

 
Figure 78. Zoomed in joint posterior surface grid approximation on the positive machine-

learning parameter combinations. 
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Figure 79. Joint posterior surface graphically solved by the grid approximation for the log- 

transformed machine-learning parameters, log (α) and log (β). 

E.5.1.2. Laplace Approximation Inference 
With the true posterior surface visualized, we apply the Laplace approximation to understand the 

limitations of the approximation. The MVN distribution is unimodal and so the Laplace approximation is 
appropriate for the log-transformed parameter space. The gradient and Hessian matrix calculations were 
executed numerically. Because the log-transformed space is unimodal we should not expect the initial guess 
values for an iterative gradient based optimizer to impact the final results.  

The Laplace approximation to the log-transformed joint posterior is compared relative to the true log-
transformed posterior in Figure 79. The posterior surfaces are visualized in the same manner as the previous 
figures, except that only the contours are displayed. The black contours denote the true posterior and the 
orange contours denote the Laplace approximation result. The posterior is well approximated around the 
posterior mode. However, the approximation struggles in the extreme tails since the MVN is not capable 
of representing the “banana” curves to the surface.  This is a limitation to the approach, but we see that the 
method captures the behavior around the most probable values quite well. Overcoming this limitation 
requires either variational inference techniques, which assume a different distribution to the posterior 
(potentially as a mixture model), or with MCMC sampling. 

Ultimately, we transform the log-transformed variables back to the original parameter space. Random 
sampling is used to accomplish this. An MVN random number generator is used with the mean equal to the 
mode and covariance matrix set to the results from the Laplace approximation. A desired number of 
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posterior samples are generated with all samples being independent of the others. The original parameter 
posterior samples are calculated by applying the inverse transformation functions. 

The posterior marginal histograms of the machine-learning parameters are displayed in Figure 80. Also 
show is a posterior scatter plot of the parameters. As reference, the true parameter values used to generate 
the data are displayed as vertical red lines on the histograms and as the red dot in the scatter plot. The 
posterior modes for α and β line up well with the true parameter values. The posterior uncertainty in both 
parameters appears rather high, however, the parameters are quite anti-correlated. This is due to the fact 
that the hyperbolic tangent function can increase due to both α or β increasing. The two parameters can 
trade-off each other while still maintaining the same behavior of the contact force.  

 

 
Figure 80. MVN approximate posterior relative to the true posterior for the log-transformed 

machine-learning parameters, log (α) and log (β). 

E.5.1.3. Inference of the Contact Model Parameters 
The machine-learning parameters control the behavior of the contact force. Thus, the posterior 

distribution on α and β can be propagated forward through the hyperbolic tangent function to investigate 
the posterior predictive distribution on the contact force. The inverse problem learns the parameter values, 
and then a forward problem allows studying the behavior of the machine learned physical process. 

The posterior predictive distribution of the contact force with respect to the velocity is displayed by 
Figure 81. The black curve is the posterior predictive mean trend. The inner most dark grey ribbon is the 
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posterior middle 50 percent uncertainty interval (between the 25th and 75th percentiles) and the outer grey 
ribbon displays the posterior middle 90 % uncertainty interval (between the 5th and 95th percentiles). For 
reference, the true contact force assumed in this problem is displayed by the dashed red curve. The contact 
force behavior is well learned with the “S-curve” shape easily identifiable in the posterior predictive 
distribution. The uncertainty seems quite low relative to the uncertainty in the parameters due to the strong 
anti-correlation between the two parameters. The machine-learning parameter posterior represents a 
balance or trade-off between α and β, which correspond to many similar contact force models. The posterior 
predictive distribution displayed in Figure 81 represents that trade-off. 

The machine-learning model can thus be isolated from the complete integrated model. In this 
demonstration problem that isolation represents studying the behavior of the contact force as the velocity 
changes. A more complex situation would involve studying the learned dynamics under various 
assumptions without having to run the entire physics simulation over and over again. 

 

 

 
Figure 81. The posterior marginal histograms of the machine-learning parameters α and β; the red 
lines are the true parameters (top), and the posterior scatter plot of the parameters; the red dot is 

the true parameter value (bottom). 
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Figure 82. Posterior predictive distribution on the learned contact force with respect to the velocity. 

E.5.2. Selection of the Contact Force Model 
The previous sections performed the parameter recovery exercise using the exact model formulation 

that generated the data. Doing so is an important first step in studying the behavior of the posterior under 
different prior assumptions and sample sizes. A natural question to ask, what if a more general neural 
network formulation was used? Instead of using a single layer feedforward neural network with the bias 
parameters set to zero, what if the bias terms were estimated along with the weights? This section looks at 
how we can select amongst various data-driven model. 

The contact force model with the general single hidden layer and single neuron neural network has a 
total of four unknown parameters 

𝑓(𝑡) = 𝑚(𝛼6 + 𝛼%𝑡𝑎𝑛ℎ(𝛽6,% + 𝛽%,%	�̇�(𝑡)))    (E.19) 

The biases, 𝛼6 and 𝛽6,%, are the intercepts of the output layer and the hidden linear unit, respectively. 
The weights, 𝛼% and 𝛽%,%, are the slopes of the output layer and the hidden linear unit, respectively. All four 
machine-learning parameters must be learned simultaneously. The neural network will be susceptible to 
multi-modal posteriors, as described earlier. Unfortunately, it might be more difficult to impose constrains 
on the general formulation to try and remove the multiple modes. After all, simplifying the problem to just 
positive parameters and no bias terms reduces to the formulation described previously. 

This more complex model still consists of a single hidden unit (neuron) and would be considered 
“simple” by machine learning standards. In a real application, it is tempting to use as complex a model as 
possible. More parameters must be learned, as more hidden units (neurons) and hidden layers are used. For 
example, a single layer two hidden unit neural network model for the contact force is: 

𝑓(𝑡) = 𝑚(𝛼6 + 𝛼%	𝑡𝑎𝑛ℎ(𝛽6,% + 𝛽%,%	�̇�(𝑡)) + 𝛼.	𝑡𝑎𝑛ℎ(𝛽6,. + 𝛽%,.	�̇�(𝑡))) (E.20) 
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Neural networks, especially deep networks, are quite easy to overfit to training data, where the model 
becomes highly sensitive to small changes in the training set. Cross-validation is commonly used in 
machine learning to try and guard against overfitting, by repeatedly splitting the complete data into 
randomly selected training and hold-out test sets. A training/test split is referred to as a fold, and within 
each fold the model is trained on the training subset and then validated on the hold-out subset. This process 
is repeated for the desired number of folds. The generalization error is approximated by averaging the 
performance over the folds. 

We cannot use such an approach in our current application. There is a natural order to the data, and so 
randomly selecting the training and test splits would be inappropriate. Time series cross-validation methods 
ensure the hold-out sets are always structured as true forecasts, where the trained model is always evaluated 
against future behavior. That said, appropriately validating a complex time series model is difficult. 
Information criterion based performance metrics, such as AIC and BIC in non-Bayesian settings, DIC and 
WAIC in full Bayesian settings, are common alternatives which penalize complex models based on their 
number of parameters. Information criterion simplify the model selection process in that all of the data are 
used to train the model. 

We will use an information criterion like approach to compare the model performance. In addition to 
using all of the data, our choice of the Laplace approximation lends itself quite naturally to comparing 
models this way. The posterior distributions discussed in Section E.4.2.3 were formulated as proportional 
to, rather than as the complete Bayes’ theorem. That is because for most computational Bayesian 
implementations, the denominator of Bayes’ theorem is simply a normalizing constant, and can be ignored. 
Using the formulation for the general posterior of the set of 𝝃 machine-learning parameters, the “complete” 
posterior distribution statement is: 

𝑝(𝝃|𝒛, 𝜎) =
𝑝(𝒛|𝜑(𝝃), 𝜎)	𝑝(𝝃)

∫ 𝑝(𝒛|𝜑(𝝃), 𝜎)	𝑝(𝝃)	𝑑𝜉
=
𝑝(𝒛|𝜑(𝝃), 𝜎)	𝑝(𝝃)

𝑝(𝒛, 𝜎)
 (E.21) 

where φ(ξ) denotes the vector of simulated responses as a function of all unknown machine-learning 
parameters. The denominator integrates the likelihood over the prior and thus averages the predictive 
density relative to the prior density. The denominator therefore accounts for all possible values the unknown 
parameters can take. Values that allow the model to match the data well, as well as values that lead to large 
errors. The denominator, which is known as the marginal likelihood or evidence, therefore accounts for the 
balance between predictive performance and complexity since complex models will have many possible 
combinations of the parameters which do not fit the data well. Comparing models based on the marginal 
likelihood therefore attempts to find the simplest model that explains the data. The marginal likelihood is 
difficult to calculate. However, the Laplace approximation provides a simple estimate. Thus, we can 
compare models based on their approximate marginal likelihood as a way to penalize overly complex 
models and therefore find the simplest model. This approach was discussed in terms of an information 
criterion metric because the BIC (Bayesian information criterion) is an approximation to the Laplace 
approximation’s estimate to the marginal likelihood. 

A common strategy for comparing Bayesian models with their approximate marginal likelihoods is to 
calculate the Bayes factor, which is the ratio of one model’s marginal likelihood to another. In our 
application, we are interested in comparing the neural network contact force model with one hidden unit, 
𝜓;;% , to the neural network contact force model with two hidden units, 𝜓;;.	. The Bayes factor is 
calculated as: 

𝐵𝐹 =
𝑝(𝒛|𝜎, 𝜓;;%)
𝑝(𝒛|𝜎, 𝜓;;.)

 (E.22) 
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A Bayes factor value above one means that there is greater evidence for the 𝜓;;% compared to the 𝜓;;.	 
model. A general rule of thumb is that if the Bayes factor is greater than 10, then there is strong evidence 
to support 𝜓;;%, while values less than 5 are considered that the two models are relatively similar. 

The same synthetic data used in the parameter recovery demonstration in Section E.5.1 are used to 
demonstrate model selection between more general neural network formulations. The single hidden unit 
contact force and the two hidden unit contact force models are considered because the data were generated 
by a simpler version of the single hidden unit model. Thus, the goal is to confirm that the most appropriate 
model is the simpler of the two. 

The major steps for performing model selection are similar to those for applying the Laplace 
approximation. However, because we are dealing with general neural network formulations it is more 
difficult to consider how to properly constrain the parameters to ensure there is just one posterior mode. 
For those reasons, moderately regularizing zero-mean Gaussian priors with prior standard deviations of 3 
are used for all parameters. Since the Laplace approximation cannot handle a multi-modal surface, the 
optimization is performed from multiple random initial guess values for each model type. The result with 
the highest marginal likelihood estimate is selected as the best for each model type and those two models 
are then compared relative to each other. 

Before comparing the single hidden unit to the two hidden unit contact force model, the marginal 
posterior distributions are summarized via box-plots for each of parameters in the single hidden unit model 
in Figure 82, and likewise Figure 83 displays the summaries on the two hidden unit model. The single 
hidden unit model has 4 parameters, while the two hidden unit model has 7 parameters. In both figures, the 
box-plot colors denote whether the parameter is associated with the output layer or hidden unit of the neural 
network contact force model. Inspection of Figure 82 reveals that the bias terms (denoted as alpha_0 and 
beta_0_1 in the figure) are close to zero. The posterior correlations are not displayed, but many of the two 
hidden unit neural network parameters have relatively high posterior correlation. 

The Bayes factor between the single hidden unit and two hidden model was calculated using the Laplace 
approximation estimates to the marginal likelihood. 

𝐵𝐹 =
𝑝(𝒛|𝜎, 𝜓;;%)
𝑝(𝒛|𝜎, 𝜓;;.)

≅ 8.75 (E.23) 

Following the guidelines, there is substantial evidence to support the simpler single hidden unit neural 
network, relative to the more complex two hidden unit model. The Bayes factor is not greater than 10, so 
this implies that there is still some posterior chance that the two hidden unit model could be correct. The 
posterior model weights are calculated and displayed in Figure 84, which show that there is roughly a 90% 
chance that the single hidden unit model is correct. 

For further context as to why, the posterior predictive distributions on the contact forces with respect 
to the velocity are shown in Figure 85. The more complex two hidden unit model captures the correct trend; 
but is much more uncertain compared to the single hidden unit model. The high posterior predictive 
uncertainty reflects the fact there many different ways to combine the parameters of the two hidden unit 
model to capture the general behavior in the data. There might be a particular posterior mode that enables 
the more complex model to match the data very well, but we would not expect that model to perform as 
well as the simpler model on new data. 
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Figure 83. Marginal posterior parameter box-plots for the parameters of the single hidden unit 

neural network model. 
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Figure 84. Marginal posterior parameter box-plots for the parameters of the two hidden unit 

neural network model. 

 
Figure 85. Posterior model weights for the two neural network contact force models. 
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Figure 86. Posterior predictive distributions on the contact force with respect to velocity for the 

single hidden unit and two hidden unit neural network models. 


