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  EXECUTIVE SUMMARY 
This report summarizes the R&D activities of the Risk-Informed Asset 

Management (RIAM) project during fiscal year 2020 (FY-20). This project focuses on 
the development of computational methods designed to optimize plant operations (e.g., 
maintenance and replacement schedule, optimal maintenance posture) provided system 
and component health and cost data. This project development lives in cooperation with 
the Plant Health Management (PHM) project which focuses on the development of 
methods that integrate component health data and propagate such information at the 
system level to evaluate most relevant sources of risk. This year’s activities for the 
RIAM project focused on the continuation of the development of schedule optimization 
algorithms. While in FY-19 we focused on both deterministic and stochastic capital 
budgeting methods, in FY-20 we moved forward by implementing two versions of 
schedule optimization methods. The first one reformulates the capital budgeting 
problem in a distributionally robust form which allows the user to rely on data directly 
rather than proposing a distribution from the data itself. The second version 
reformulates the capital budgeting explicitly using risk measures as variables to 
maximize or minimize. Lastly, we focused on the development of methods designed to 
identify the optimal maintenance posture based on the Pareto frontier analysis. Rather 
than performing a tradeoff analysis (i.e., identify the absolute best posture), the Pareto 
frontier analysis performs a trade space exploration approach (i.e., identify value and 
costs of several postures and have the analyst perform the task of imposing desired 
value and cost constraints). This is performed by identifying maintenance postures that 
maximize value (e.g., system availability) and minimize operational costs (i.e., the 
Pareto frontier in a value-cost trade space). Lastly, we have developed discrete model-
based optimization methods based on evolutionary algorithms, i.e., genetic algorithms. 
This approach allows us to optimize maintenance schedule when system availability 
and system cost are tightly coupled to each other.  

  



 

3 

CONTENTS 
 

EXECUTIVE SUMMARY ............................................................................................................................2	

ACRONYMS .................................................................................................................................................9	

1.	 INTRODUCTION .............................................................................................................................11	

2.	 COST AND RISK CATEGORIZATION R&DD PATH .................................................................12	

3.	 METHODS FOR PLANT RESOURCES MANAGEMENT ...........................................................14	

4.	 INVESTMENT EVALUATION .......................................................................................................15	

5.	 PARETO FRONTIER ANALYSIS ..................................................................................................18	
5.1	 Pareto Frontier Analysis for RIAM Applications ...................................................................19	

5.1.1	 Identification of Plant/System Optimal Maintenance Posture ...................................20	
5.1.2	 Identification of the Optimal Set of Plant/System Maintenance Operations .............21	

5.2	 Pareto Frontier Post-Processor ................................................................................................22	
5.3	 Pareto Frontier Test Cases ......................................................................................................22	

5.3.1	 Case 1: System Reliability Modeling .........................................................................23	
5.3.2	 Case 2: Maintenance Reliability Modeling ................................................................27	

5.4	 Maintenance Schedule Optimization ......................................................................................30	

6.	 MODEL-BASED OPTIMIZATION METHODS .............................................................................33	
6.1	 Continuous Methods ...............................................................................................................35	

6.1.1	 Gradient-Based Methods ............................................................................................35	
6.1.2	 Stochastic Methods ....................................................................................................36	

6.2	 Discrete Optimization Methods ..............................................................................................36	
6.2.1	 Genetic Algorithms ....................................................................................................37	
6.2.2	 GA Data Structures ....................................................................................................38	
6.2.3	 GA Workflow ............................................................................................................39	

6.3	 GA Development ....................................................................................................................41	
6.4	 RIAM Applications for GA methods ......................................................................................41	

6.4.1	 Knapsack Problem .....................................................................................................41	
6.4.2	 Knapsack Problem (Modified) ...................................................................................42	
6.4.3	 Multiple-Knapsack Problem ......................................................................................43	
6.4.4	 Multiple-Knapsack Problem (Modified) ....................................................................43	
6.4.5	 Traveling Salesman Problem .....................................................................................44	

6.5	 Initial Testing of GA Methods ................................................................................................44	

7.	 METHODS DEVELOPMENT: LOGOS ..........................................................................................46	

8.	 STOCHASTIC OPTIMIZATION WITH CVAR .............................................................................49	



 

4 

8.1	 Deterministic Capital Budgeting .............................................................................................49	
8.1.1	 Stochastic Capital Budgeting with Options ...............................................................51	

8.2	 Risk-Based Stochastic Capital Budgeting using Conditional Value-at-Risk ..........................58	
8.2.1	 Definitions of VaR and CVaR ...................................................................................58	
8.2.2	 CVaR in Capital Budgeting .......................................................................................59	
8.2.3	 CVaR Mathematical Optimization Model .................................................................60	
8.2.4	 Analysis of Risk Versus Return Optimization using CVaR and NPV ......................61	
8.2.5	 CVaR for Single Knapsack Problem .........................................................................67	
8.2.6	 CVaR for Multi-Dimensional Knapsack Problem .....................................................67	
8.2.7	 CVaR for Multiple Knapsack Problem ......................................................................67	
8.2.8	 CVaR for Multiple-Choice Knapsack Problem .........................................................68	

9.	 DISTRIBUTIONALLY ROBUST OPTIMIZATION ......................................................................68	
9.1	 Overview .................................................................................................................................68	
9.2	 Defining a Distributional Uncertainty Set via the Wasserstein Distance ...............................69	
9.3	 Towards a Computationally Tractable Reformulation ............................................................70	
9.4	 A Computationally Tractable Reformulation ..........................................................................72	
9.5	 Tractable Reformulation Specialized to Stochastic Capital Budgeting ..................................72	
9.6	 Analysis of Risk versus Return Optimization using Distributionally Robust 

Optimization ............................................................................................................................73	
9.6.1	 DRO for Single Knapsack Problem ...........................................................................78	
9.6.2	 DRO for Multi-Dimensional Knapsack Problem .......................................................79	
9.6.3	 DRO for Multiple Knapsack Problem .......................................................................79	
9.6.4	 DRO for Multiple-Choice Knapsack Problem ...........................................................80	

10.	 LINK WITH PHM PROJECT ...........................................................................................................80	

11.	 PHM-RIAM WORKFLOW ..............................................................................................................81	

12.	 LINKING MAINTENANCE APPROACHES WITH OPTIMIZATION METHODS ....................83	

13.	 CONCLUSIONS ...............................................................................................................................84	

REFERENCES .............................................................................................................................................86	
 
 
  



 

5 

FIGURES 

 

Figure 1. High level description of the RI-PSH platform. .......................................................................... 12	
Figure 2. Interactions among the RIAM project and other DOE projects in the development of the 

RI-PSH platform. ........................................................................................................................ 13	
Figure 3. Structure of the RI-PSH computational platform. ....................................................................... 15	
Figure 4. Classification of the optimization algorithms developed under the RIAM project based 

on employed data structure and the method being used. ............................................................ 16	
Figure 5. Reliability vs. NPV plot for evaluation of candidate projects [19]. ............................................ 17	
Figure 6. Set of options (blue dots) plotted in a cost vs. utility space. ....................................................... 18	
Figure 7. Pareto frontier obtained from a set of options plotted in a cost vs. utility space. ........................ 19	
Figure 8. Propagation of uncertainties for the points on Pareto frontier and imposition of cost and 

utility constraints. ....................................................................................................................... 19	
Figure 9. Pareto frontier analysis in an availability vs. cost space. ............................................................ 20	
Figure 10. Graphical representation of the considered HPI system. ........................................................... 22	
Figure 11. Graphical representation of the RAVEN EnsembleModel for a generic system 

maintenance scheduling optimization problem. ......................................................................... 24	
Figure 12. Pareto frontier obtained for case 1. ............................................................................................ 25	
Figure 13. Zoom of the Pareto frontier obtained for case 1. ....................................................................... 25	
Figure 14. Pareto frontier obtained for case 2. ............................................................................................ 28	
Figure 15. Graphical representation of the continuous optimization problem. .......................................... 34	
Figure 16. Model-based optimization scheme. ........................................................................................... 35	
Figure 17. Data structures and methods employed in geneteic algorithms that can be employed to 

develop evolutionary programs. ................................................................................................. 38	
Figure 18. Graphical representation of the GA data structrures. ................................................................ 39	
Figure 19. GA workflow. ............................................................................................................................ 40	
Figure 20. Single point crossover operation. .............................................................................................. 40	
Figure 21. Two-points crossover operation. ............................................................................................... 41	
Figure 22. Example of a single bit mutation of a chromosome. ................................................................. 41	
Figure 23. Data workflow for the GA methods developed in RAVEN. ..................................................... 42	
Figure 24. GA workflow specified in RAVEN for the multiple knapsack problem test case. ................... 46	
Figure 25. Snapshot of the LOGOS repository. .......................................................................................... 47	
Figure 26. Candidate projects (e.g., 16 projects) are listed in the left-hand column. In a priority 

list these are mapped to priority levels in the middle column. Then the uncertain budget 
is revealed. For the budget realized in the figure, the two projects with the highest 
priority levels can be implemented. ............................................................................................ 53	



 

6 

Figure 27. Histogram of NPV realizations across 90 scenarios accounting for the probability mass 
of each scenario. The optimized priority list maximizes the expected net present value 
but does not account for risk. ...................................................................................................... 58	

Figure 28. Relationship between value-at-risk and conditional value-at-risk. A typical value of α 
is  α=0.90. ................................................................................................................................... 59	

Figure 29. Flow-chart illustrating two principled ways to approach risk-averse optimization. In 
both cases we start with available data. The left path then fits a probability distribution 
to that data, and then select a risk-averse objective function. One popular choice is a 
weighted sum of expectation and conditional value-at-risk. We then minimize risk, 
after possibly forming a Monte Carlo sample average approximation or employing 
some other discretization of the probability distribution. The right-hand path instead 
formulates and solves a distributionally robust optimization model. We defer detailed 
discussion of the right-hand path to Section 11. ......................................................................... 60	

Figure 30. Subset of the Pareto frontier using just λ=0,0.5, and 1, where the risk is measured by 
CVaR and return is measured by Expected NPV. Optimal solutions are obtained by 
solving model (1) with input from Table 17. The plot is oriented so that risk grows 
moving left-to-right on the x-axis and return grows moving bottom to top along the y-
axis. Starting from the upper-right point, we can reduce risk by $2.18M by reducing 
expected NPV by $1.22M. Additional reduction is risk of $0.33M requires reducing 
NPV by an additional $1.17M. ................................................................................................... 63	

Figure 31. Histogram for scenario NPVs accounting for probability mass associated with each 
scenario. The red histogram corresponds to λ=0.05 when most weight is on maximizing 
NPV and the blue histogram corresponds to λ=0.95 when most weight corresponds to 
minimizing CVaR for low NPV realizations. ............................................................................. 64	

Figure 32. Pareto frontiers for different values of a. The figure repeats the Pareto frontier for 
α=0.75 (left-most plot) from Figure 30 except that now we include the full range of 
values of λ and achieve five rather than three points on the efficient frontier. The 
additional four plots repeat similar frontiers but for α=0.8,0.9,0.95,0.99. where we 
focus on values that are further in the poor-outcome tail of NPV. Note that as the figure 
shows, there are specific NPV values that repeat across different values of α, but as α 
grows the conditional expectation increasingly focuses on low realizations. ............................ 65	

Figure 33. Pareto frontiers for different values of ε when solving the DRO model. The figure is 
analogous to Figure 32 for NPV-CVaR model. Note that this figure has a larger range 
of NPV values, but is otherwise similar to Figure 32. Note that we only include non-
dominated solutions from Table 25. ........................................................................................... 75	

Figure 34. Compares histograms for two values of epsilon, 0 (red) and 10 (blue). .................................... 76	
Figure 35. Probability mass functions for budget scenarios as risk aversion grows. ................................. 78	
Figure 36. Probability mass functions for medium-risk project scenarios. ................................................ 78	
Figure 37. From ER data to decision making using PHM-RIAM models and methods. ........................... 82	
Figure 38. Classification scheme for the considered maintenance approaches and the relative 

optimization methods developed in this report and in [2,3]. ...................................................... 83	
Figure 39. Overview of the developed optimization methods. ................................................................... 84	
  



 

7 

TABLES 

 

Table 1. Case 1: cost and reliability data for the components of the syste shown in Figure 10. ................ 23	
Table 2. Case 1: system configurations lying on the Pareto frontier and satisfying the cost and 

unavailability constraints. ........................................................................................................... 26	
Table 3. Case 2: unavailability and cost data for each component of Figure 10. ....................................... 27	
Table 4. Case 2: system configurations lying in the Pareto frontier and satisfying the cost and 

unavailability constraints. ........................................................................................................... 29	
Table 5.  Data for the maintenace optmization use case. ............................................................................ 30	
Table 6. Schedule options for each maintenance activity. .......................................................................... 30	
Table 7. Summary of the risk data for each maintenance activity. ............................................................. 31	
Table 8. Optimal maintenance schedule. .................................................................................................... 33	
Table 9. Summary of discrete optimization problems. ............................................................................... 37	
Table 10. RIAM application of discrete optimization problems. ............................................................... 37	
Table 11. Multiple knapsack problem employed to test GA performances. ............................................... 45	
Table 12. Point estimates of the annual capital budget over a five-year planning horizon for the 

multiple knapsack problem test case. ......................................................................................... 45	
Table 13. LOGOS solution for the multiple knapsack problem test case indicated in Table 11 and 

Table 12. ..................................................................................................................................... 45	
Table 14. Candidate set of 16 projects for an example problem in capital budgeting. The 

“Category” column distinguishes optional and must-do projects. The “NPV” column 
provides a point estimate of each project’s net present value. “Capital costs” provide 
point estimates of the liability streams induced by selecting each project over a five-
year horizon. Values are in millions of dollars. .......................................................................... 50	

Table 15. Point estimates of the annual capital budget over a five-year planning horizon. Values 
are in millions of dollars. ............................................................................................................ 51	

Table 16. Optimal solution to the deterministic capital budgeting problem in which we select 4 of 
10 optional projects, and all must-do projects. This solution respects the annual capital 
budgets of Table 12 and maximizes NPV, achieving a portfolio NPV of $19.90M. ................. 51	

Table 17. The table replicates information from Table 14 except that most of the projects now 
have two or three implementation options via Plan A, B, and/or C. Values are in 
millions of dollars. ...................................................................................................................... 52	

Table 18. We replace the point forecast of the annual capital budget over a five-year horizon in 
Table 12 with 10 scenarios. The probability distribution puts equal mass (probability 
0.1) on each of the 10 values, and the values are perfectly correlated across time; e.g., if 
the budget realization is scenario 6 (S6) then the budget is $31.0M in each of the five 
years. Values are in millions of dollars. ..................................................................................... 53	

Table 19. Example solution under 10 budget scenarios, S1-S10. If a project has a “0” in the 
corresponding entry, that project is not selected under that scenario, and it is selected 
under entry “1.” The must-do projects are selected under all scenarios. The right-most 



 

8 

column indicates the priority level associated with each project. For example, there are 
seven projected tied for the highest priority because they are selected under all 
scenarios, and there are two projects tied for priority 15-16 because they are not 
selected under any scenario. For simplicity of presentation, this example has no timing 
options. ........................................................................................................................................ 54	

Table 20. The table replicates information from Table 14, and also shows the uncertain NPVs. 
The NPV values for the low-risk and medium-risk projects are shown for the three 
possible scenarios: pessimistic, most likely, and optimistic. The probabilities associated 
with the scenarios are given in Table 18. No-risk projects 2, 4, 5, 7, 9, 10, 12, and 14 
are not subject NPV uncertainty and their values repeat those shown in Table 14. ................... 55	

Table 21. The table shows no-risk, low-risk, and medium-risk projects. There are pessimistic, 
most likely, and optimistic scenarios for the NPVs of these projects, which are realized 
with the probabilities shown in the table. ................................................................................... 56	

Table 22. Optimal prioritization when both budget, costs, and NPV values are uncertain, with a 
total of 90 scenarios. The “Priority” column indicates the priority level, ranging from 1-
16. The columns for Plan A, B, C, and Do Nothing indicate the number of scenarios in 
which each option is selected. Note that while “must do” projects are selected under all 
90 scenarios, their priority can decrease based on the timing of their implementation. 
The expected NPV associated with this prioritization is $168.90M. ......................................... 57	

Table 23. Optimal project prioritization. Here we optimize a weighted sum of the expected value 
of NPV (weight 1-λ) and CVaR (weight λ). The respective NPV and CVaR values are 
as follows:  λ=0: (NPV=168.90, CVaR=140.54), λ=0.5: (NPV=167.68, CVaR=142.72), 
and λ=1: (NPV=166.51, CVaR=143.05). We note that we write λ=0+ and λ=1- in the 
column headers because we prefer to place small positive weight on CVaR in the 
former case and NPV in the latter case. For example, solving with λ=0.0 yields the 
same NPV but CVaR of 128.16, a dramatic increase in risk, while using λ=0.01 or 0.05 
results in the same NPV but eliminates low NPV scenarios. ..................................................... 62	

Table 24. Optimal project prioritization from solving model (1) when α=0.75 and λ ranges from 
0.1 to 0.9. .................................................................................................................................... 66	

Table 25. Optimal project prioritization from solving the distributionally robust optimization 
model when ε ranges from 0 to 1000. This table can be compared with Table 24 when 
optimizing a weighted sum of NPV and CVaR. ......................................................................... 74	

Table 26. Frequencies for plans A, B, and C and do nothing under the DRO approach for 𝜺 =
𝟎	and 𝜺 = 𝟏𝟎. ............................................................................................................................. 77	

Table 27. Emphases and timeframes for system health and asset management Use Cases. ....................... 80	
Table 28. List of steps for the combined PHM-RIAM workflow. .............................................................. 82	
 



 

9 

ACRONYMS 
 

 

AM Asset Management 

BE Basic Event 

CDF Core Damage Frequency 

CVaR Conditional Value at Risk 

DKP Multidimension Knapsack Problem 

DOE Department of Energy 

DRO Distributionally Robust Optimization 

DUS Distributional Uncertainty Set 

EPRI Electric Power Research Institute 

ER Equipment Reliability 

ESF Engineered Safety Features 

ET Event Tree 

FT Fault Tree 

GA Genetic Algorithm 

HPI High Pressure Injection 

I&C Instrumentation and Controls 

ILCM Integrated Life Cycle Management 

INL Idaho National Laboratory 

INPO Institute of Nuclear Power Operations 

IPOP Investments Portfolio Optimal Planning 

IRR Internal Rate of Return 

JH Jensen-Hughes 

LCMP Life Cycle Management Plan 

LERF Large Early Release Frequency 

LTAM Long-Term Asset Management 

LWRS Light Water Reactor Sustainability 

MBSE Model Based System Engineering 

MC Monte-Carlo 

MCS Minimal Cut Set 

MKP Multi-Knapsack Problem 

MCKP  Multiple-choice Knapsack Problem 



 

10 

MMKP  Multidimension Multiple-choice Knapsack Problem 

MSPI Mitigating Systems Performance Index 

MWe Megawatt of Electrical power 

MWh Megawatt hour of energy 

NAM Nuclear Asset Management 

NEI Nuclear Energy Institute 

NPP Nuclear Power Plant 

NPV Net Present Value 

O&M Operations and Maintenance 

PDF Probability Density Function 

PRA Probabilistic Risk Assessment  

PWR Pressurized Water Reactor 

RAVEN Risk Analysis Virtual Environment 

RCP Reactor Coolant Pump 

RIAM Risk Informed Asset Management 

RI-PSH Risk Informed Plant System Health 

RISA Risk Informed Systems Analysis 

RUL Remaining Useful Life 

RWST Refueling Water Storage Tank 

R&D Research and Development 

SA Simulated Annealing 

SKP Single Knapsack Problem 

SLR Second License Renewal 

SPSA Simultaneous Perturbation Stochastic Approximation 

SQA Software Quality Assurance 

SR2ML Safety Risk and Reliability Model Library 

SSCs Structures, Systems, and Components 

T&M Testing and Maintenance 

UQ Uncertainty Quantification 

VaR Value-at-Risk 

 

 

  



 

11 

Development and Application of a 
Risk Analysis Toolkit for 

Plant Resources Optimization 
 

 

 

1. INTRODUCTION 
This report summarizes the R&D activities of the Risk-Informed Asset Management (RIAM) project 

during fiscal year 2020 (FY-20) under the Risk Informed System Analysis (RISA) pathway for the Light 
Water Reactor Sustainability (LWRS) program [1]. This project focuses on the development of methods 
designed to optimize plant operations (e.g., maintenance and replacement schedule, optimal maintenance 
posture) provided system and component health and cost data.  

In this respect, we are developing several classes of optimization methods that can be applied to a large 
variety of plant operation problems, i.e., Equipment Reliability (ER) and asset management related. This 
project development lives in cooperation with the Plant Health Management (PHM) [2] project, which 
focuses on the development of methods that integrate component health data and propagate this information 
at the system level to determine system sources of risk.  

While the PHM project aims to assess current risk (e.g., safety or economic) related to a system, the 
RIAM project aims to reduce this risk or balance the risk with operational cost. The data and the models 
that are currently under development for the PHM project are, in fact, directly employed within the 
optimization methods developed in the RIAM project. 

This year’s activities for the RIAM project focused on the continuation of schedule optimization 
algorithms developed in FY-19. While in FY-19 we focused on both deterministic and stochastic capital 
budgeting methods [3], in FY-20 we moved forward by implementing two versions of schedule 
optimization methods. The first one reformulates the capital budgeting problem in a distributionally robust 
form [4] which allows the user to rely on data directly rather than proposing a distribution from the data 
itself. The second version reformulates the capital budgeting explicitly using risk measures as variables to 
maximize or minimize.  

In parallel to these data-based optimization methods, we have also made progress in the development 
of model-based optimization methods in both continuous (e.g., gradient descent methods) and discrete form 
(e.g., genetic algorithms [5]). While data-based optimization methods are framed to a specific class of 
problems (e.g., multiple knap-sack problem), model-based optimization methods are independent from the 
class of problem under consideration. The user can in fact design fairly complex models that integrate 
reliability and cost models at the component level to determine system configurations that minimize costs 
provided risk constraints.   

During FY-20, we also focused on the development of methods designed to identify the optimal 
maintenance posture based on the Pareto frontier analysis [6]. Rather than performing a tradeoff analysis 
(i.e., identify the absolute best posture), the Pareto frontier analysis performs a trade space exploration 
approach (i.e., identify value and costs of several postures and let the analyst impose desired value and cost 
constraints). This is performed by identifying maintenance postures that maximize value (e.g., system 
availability) and minimize operational costs, i.e., the Pareto frontier in a value-cost trade space.  

From a plant operation perspective, a Pareto frontier analysis is designed for “here-and-now” decisions 
(i.e., planning phase) while the developed optimization methods are designed for “wait-and-see” decisions 
(i.e., during operation). 
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In this report, we also show several applications of the developed methods and how they are linked to 
the PHM project.  Lastly, we summarize how the development of these optimization methods has been 
structured with the vision of releasing them to the industry as open-source tools. 

 

2. COST AND RISK CATEGORIZATION R&DD PATH 
The goal of the Cost and Risk Categorization research path under the LWRS-RISA project [1] is to 

leverage advanced computational capabilities to support enhanced system performance and health 
management. The first objective of this effort is to integrate various elements of system health monitoring, 
management, and reporting in a manner that is significantly less labor intensive and is at least as technically 
effective as current programs. The second objective is to manage equipment and system performance and 
its financial risk and reduce costs associated with monitoring and regulatory compliance.  

While the first objective is covered by the PHM project [2], the second objective is covered by the 
RIAM project. These two projects are coordinated to materialize the goal of the “Cost and Risk 
Categorization” research path into a software platform which is refereed to here as Risk Informed Plant 
System Health (RI-PSH) platform (see Figure 1). 

 

 
Figure 1. High level description of the RI-PSH platform. 

The RI-PSH platform can be summarized as a Model Based System Engineering (MBSE) [7] platform 
for system operations: from system health data, it provides decision-making knowledge on the best 
maintenance posture and optimal component maintenance/replacement schedule. By maintenance posture 
we refer here as the maintenance strategy for each component that reduces O&M costs while maintaining 
adequate system availability. The term MBSE summarizes the main feature of the RI-PSH platform: rather 
than focusing on specific O&M applications, we are providing to the analyst a set of models and methods 
along with a computational analysis framework. Depending on the issue to be analyzed, the analyst can 
then assemble models together (e.g., a combination of reliability and cost models), and apply to it a series 
of computational methods (e.g., optimization, uncertainty quantification, and data analysis). 

From a development perspective, the PHM project is focusing mainly on the development of models 
and health data integration while the RIAM project is focusing on the development of optimization 
methods. During this and past years, this development has been coordinated with other projects with another 
LWRS pathway (the plant modernization pathway) and other DOE-NEUP projects. Figure 2 shows a 
complete picture of the external collaborators that contribute effectively to the PHM-RIAM projects. These 
collaborators include both academic and industry partners. 
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Figure 2. Interactions among the RIAM project and other DOE projects in the development of the 

RI-PSH platform. 

We have structured the RI-PSH platform on different repositories where each repository contains a 
specific class of models or methods. Figure 3 shows the hierarchical structure of the repositories currently 
being developed and maintained. The items shown in yellow represent those fully developed under the 
RIAM-PHM projects while the items shown in red are co-developed with other programs. A more detailed 
description of these repositories is presented as follows: 

• RAVEN [8]: It is a flexible and multi-purpose uncertainty quantification, regression analysis, PRA, 
data analysis and model optimization software. Depending on the tasks to be accomplished and on 
the probabilistic characterization of the problem, RAVEN perturbs (through Monte-Carlo, Latin 
Hypercube, reliability surface search [8] sampling methods) the response of the system by altering 
its parameters.  The data generated by the sampling process is analyzed using classical and more 
advanced data mining approaches. RAVEN also manages the parallel dispatching (i.e., both on 
desktops, workstations and large high-performance computing machines) of the software 
representing the physical model. RAVEN heavily relies on artificial intelligence algorithms to 
construct surrogate models of complex physical systems in order to perform UQ, reliability analysis 
(limit state surface), and parametric studies. 

• LOGOS: It contains a set of discrete optimization models that can be employed for capital 
budgeting optimization problems, and LOGOS integrates economic and reliability risk into a single 
analysis framework. More specifically, provided systems, SSCs health (e.g., failure rate or failure 
probability), O&M costs, replacement costs, cost associated to component failure and budget 
constraints, LOGOS provides the optimal set of projects (e.g., SSC replacement) that maximizes 
profit and satisfies the provided requirements. The items listed above have input data that can be 
either deterministic or stochastic in nature, i.e., they can be point values or probability distribution 
functions. In the latter case, several scenarios are generated by sampling the provided distributions. 
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The developed models are based on different versions of the knapsack optimization problem. Two 
main classes of optimization models have been initially developed: deterministic and stochastic. 
Stochastic optimization models evolve deterministic models by explicitly considering data 
uncertainties (associated to constraints or item cost and reward). These models can be employed as 
stand-alone models or interfaced with the INL developed RAVEN code to propagate data 
uncertainties and analyze the generated data (i.e., sensitivity analysis). 

• SR2ML: It is a software package which contains a set of reliability models designed to be interfaced 
with the INL developed RAVEN code. These models can be employed to perform both static and 
dynamic system risk analysis and determine risk importance of specific elements of the considered 
system. Two classes of reliability models have been developed; the first class includes all classical 
reliability models (fault trees, event trees, Markov models and reliability block diagrams) which 
have been extended to deal not only with Boolean logic values but also time dependent values. The 
second class includes several component ageing models. Models included in these two classes are 
designed to be included in a RAVEN ensemble model to perform time dependent system reliability 
analysis (dynamic analysis). Similarly, these models can be interfaced with system analysis codes 
within RAVEN to determine failure time of systems and evaluate accident progression (static 
analysis). 

• TEAL: It enables the capability to compute the NPV (Net Present Value), the IRR (Internal Rate 
of Return) and the PI (Profitability Index) with RAVEN. Furthermore, it is possible to do an NPV, 
IRR or PI search, i.e. TEAL will compute a multiplicative value (for example the production cost) 
so that the NPV, IRR or PI has a desired value. The plugin allows for a generic definition of cash 
flows which drivers are provided by RAVEN. Furthermore, TEAL includes flexible options to deal 
with taxes, inflation, discounting and offers capabilities to compute a combined cash flow for 
components with different component lives. 

• VERT: The Versatile Economic Risk Tool (VERT) is a model library designed to perform 
Generation Risk Assessment (GRA). VERT quickly and effectively evaluates the economic risk 
systems and sub-systems impose on NPPs. This is performed by employing classical PRA tools, 
such as Fault Trees, with component reliability and availability models to evaluate risk associated 
to loss of production. 

• SRAW: The System Risk Analysis Workflow (SRAW) plugin for the RAVEN code. SRAW, as a 
plugin, enables RAVEN to perform stochastic analysis of NPP asset management. The primary 
function of SRAW is to generate the complex RAVEN workflows necessary to optimize asset 
management under various scenarios. 

While some repositories are already available with an open-source license (RAVEN and TEAL), the 
vision is to release all of them with an open-source license within FY-21. This will greatly improve 
collaboration and development with external collaborators. 

 

3. METHODS FOR PLANT RESOURCES MANAGEMENT 
As mentioned in the introduction, the RIAM project is focusing on the development of methods 

designed to optimize plant resources (e.g., SSC, personnel, and ER activities). These methods can be 
classified as either: 

• Sampling methods 

• Optimization methods. 

Sampling methods are designed mainly to propagate data and model uncertainties (e.g., investment 
evaluation). Optimization methods are designed to determine the best solution to a problem that satisfies a 
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limited set of criteria (also known as constraints). In this report we will briefly describe the sampling 
methods while we will concentrate more on the optimization methods developed during FY-20 and 
highlight how they relate to the ones developed during FY-19. 

 

 
Figure 3. Structure of the RI-PSH computational platform. 

Depending on the problem to be solved and the type of data available, the optimization algorithm to be 
used might change. As an example, the data structure might be either discrete or continuous in nature. In 
addition, the problem under consideration might require a specific data set or, alternatively, a specific model 
(which balances system reliability/availability and cost) which changes the problem structure depending on 
the considered boundary conditions. 

Figure 4 shows in a graphical form the available algorithms developed within the RIAM project for 
plant resources management depending on the data structure and the method that the problem requires. In 
the following sections we will cover all these methods. Note that some of these methods have been 
developed during FY-19 (and they will be briefly presented) while several others have been developed 
during FY-20 (and they will be extensively described). 

 

4. INVESTMENT EVALUATION 
The first application of the RIAM tool set can be the evaluation of the impact of an investment from an 

economic perspective. In [2] we have presented a mathematical formulation to measure economic impact 
of an investment that directly affects the reliability and availability of the plant or system.  

It is here assumed that: 

• A single system 𝑠𝑦𝑠 is analyzed 

• The considered system is composed of a set of 𝑁 components 
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• System failure can be uniquely determined from the logical status of its components (e.g., by 
employing a Fault-Tree logic structure) 

• Time horizon is fixed (i.e., [0, 𝑇!"#]) and it is discretized into 𝑇 time intervals having identical 
length ∆𝑡 (i.e., 𝑇!"# = 𝑇 ∙ ∆𝑡). 

 

 
Figure 4. Classification of the optimization algorithms developed under the RIAM project based on 

employed data structure and the method being used. 

 

This formulation is based on the evaluation of the NPV for the operation of the system (here indicates 
as 𝑁𝑃𝑉$%&'"()$*) which is a mathematical balance between: 

• 𝑃𝑉$%&'"()$*: the present value of plant or system operation 

• 𝑃𝑉+),&: the present value of plant or system life costs 

• 𝑃𝑉,")+-'&: the present value of plant or system failure. 

The mathematical formulation for 𝑁𝑃𝑉$%&'"()$*  is discretized in time interval and it is shown as 
follows: 

 
𝑁𝑃𝑉$%&'"()$* = 𝑃𝑉$%&'"()$* − 𝑃𝑉+),& − 𝑃𝑉,")+-'& = 
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where: 

• 𝑅(./(𝑠𝑦𝑠): reliability of the considered system 𝑠𝑦𝑠 within time interval 𝑡 − 1 

• 𝑝((𝑠𝑦𝑠): probability of failure of the considered system 𝑠𝑦𝑠 within time interval 𝑡 

Capital budgeting,
DRO,

Risk-based

Genetic algorithms,
Pareto frontier

Gradient-based,
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• 𝑉(: economic production value (e.g., power generation) due to the correct operation of the system 
within time interval 𝑡 

• 𝐶*
%'$2: procurement costs of component 𝑛 (note that here more complex supply chain models can 

be added) 

• 𝐶(,*5!: O&M costs for component 𝑛 within time interval 𝑡 

• 𝑝((𝑛): probability of failure of component 𝑛 within time interval 𝑡 

• 𝑝((𝑠𝑦𝑠|𝑛): probability of failure of the considered system 𝑠𝑦𝑠 within time interval 𝑡 given that 
component 𝑛 has failed  

• 𝐶(,*
,")+-'& : cost associated with system failure caused by failure of component 𝑛  (e.g., loss of 

production, replacement costs, or regulatory burden) within time interval 𝑡. 

From a decision-making perspective, two possible paths can be followed: 

• Evaluate and compare the actual 𝑁𝑃𝑉$%&'"()$*  with the  𝑁𝑃𝑉$%&'"()$*  generated by the 
investment 

• Evaluate and compare E𝑁𝑃𝑉$%&'"()$*, 𝑅(𝑠𝑦𝑠)F for both the actual and the investment. 

An important factor to consider is that some elements in Equation (1) might not be certain but they 
might be affected by uncertainties. Thus, it is required to propagate uncertainties throughout the model. 
Graphically this can be plotted in a 2-dimentional graph (see Figure 5) where each dimension corresponds 
to the incremental 𝑁𝑃𝑉$%&'"()$* and incremental 𝑅(𝑠𝑦𝑠). Note that these two dimensions are correlated 
since 𝑁𝑃𝑉$%&'"()$* is also function of 𝑅(𝑠𝑦𝑠).  

Another important feature about propagating uncertainties is that it is possible to evaluate the sensitivity 
of   𝑁𝑃𝑉$%&'"()$* and 𝑅(𝑠𝑦𝑠) to a variation of each uncertain parameter. This sensitivity analysis might 
prove to be useful to rank the most relevant uncertain parameters from a decision-making standpoint.  

 
Figure 5. Reliability vs. NPV plot for evaluation of candidate projects [19]. 
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5. PARETO FRONTIER ANALYSIS 
The Multi-Attribute Utility Analysis (MAUA) is a structured methodology in decision theory designed 

to handle the tradeoffs among multiple objectives [9]. Provided several options, the goal is to identify the 
“best” option that satisfies a specific set of needs or requirements. 

The first step is to identify the set of attributes that affect the decision at hand. Typically, these attributes 
can be condensed into two, utility and cost, but, in some applications, the number of attributes might be 
higher (e.g., other factors might be: lifecycle cost, performance, etc.). 

Let’s assume that a decision can be taken from a set of options by considering the utility and cost of 
each option. Using a graphical representation (see Figure 6), it is possible to plot each option as a point in 
a 2-dimensional space, cost vs. utilitya: 

• Cost: this axis represents the cost associated with each option ranging from 0 (i.e., cheapest option) 
to a maximum value 𝐶6"# (i.e., the most expensive option) 

• Utility: this axis represents the added value (or the performance) associated with each option 
ranging from 0 (i.e., lowest performance option) to a maximum value 𝑈6"#  (i.e., option with 
highest performance). 

 

 
Figure 6. Set of options (blue dots) plotted in a cost vs. utility space. 

Once the complete set of options have been generated and the utility and cost values have been 
determined for each option, the next step is the determination of the Pareto optimal frontier which is 
fundamentally an envelope of options that dominates (in terms of both utility and cost) the set of remaining 
options (see Figure 7). 

The final step in the analysis is to impose the utility and cost constraints (see Figure 8) and select those 
points that satisfy both of these requirements. In some applications, the data provided to each option to 
generate its values of utility and cost might be affected by uncertainties. In such cases, data uncertainties 
are propagated for each selected option; the final outcome is that rather than having a single point for each 
option, we have a cloud of options centered around the selected option. By performing this analysis, now it 
is possible to determine not only the best options, but also how uncertainties affect such a decision process. 

 
a As indicated earlier, the number of attributes considered in complex settings can be 𝑁 > 2. Thus, in such cases, the space would 

be 𝑁 -dimensional. 
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Figure 7. Pareto frontier obtained from a set of options plotted in a cost vs. utility space. 

 

 
Figure 8. Propagation of uncertainties for the points on Pareto frontier and imposition of cost and 

utility constraints. 

 

5.1 Pareto Frontier Analysis for RIAM Applications 
Within the scope of the PHM and RIAM project, a Pareto frontier analysis can mainly be used for two 

kinds of use cases: 

• Identification of plant or system optimal maintenance posture  

• Identification of the optimal set of plant or system maintenance operations  

For simplicity, let’s consider a system 𝑠𝑦𝑠 composed by a set of 𝑁 components 𝐶* (𝑛 = 1,… ,𝑁).  
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5.1.1 Identification of Plant/System Optimal Maintenance Posture 
In the first use case, assuming a failure mode for each component, a set of 𝑅* possible maintenance 

strategies can be chosen for each component 𝑛	(𝑛 = 1,… ,𝑁). Let’s indicate with 𝑀*
'  (𝑟 = 1,… , 𝑅*), a 

maintenance strategy for component 𝑛. For each 𝑀*
' it is possible to determine component availability 𝐴*'  

(or, alternatively, reliability) and the corresponding maintenance costs 𝐶*'. 

Provided a model 𝒜  which relates system availability 𝐴787  to component availabilities 𝐴*' , and a 
model 𝒞 which relates system cost 𝐶787  to component costs 𝐶*' , it is possible to define a maintenance 
posture option ℳ as the set of maintenance strategy chosen for each component: 

ℳ = (𝑀/, …𝑀*, … ,𝑀3) 

where 𝑀*  is the maintenance option chosen for component 𝑛 : 	𝑀* = (𝐴*, 𝐶*), 𝐶* ∈ {𝐶*'}'1/
9! , 𝑀* ∈

{𝑀*
'}'1/
9!  

For each maintenance posture option ℳ, it is possible to generate the corresponding values of 𝐴787 and 
𝐶787 for that option: 

𝐴787 = 𝒜(𝐴/, … , 𝐴3)
𝐶787 = 𝒞(𝐶/, … , 𝐶3)

 (2) 

Assuming independence between maintenance strategies 𝑀*
' , the complete number of maintenance 

posture options can be calculated as: 

Q𝑅*

3

*1/

 (3) 

At this point, optimal maintenance posture can be determined using the Pareto frontier analysis as 
indicated in Section 5.1. In this case utility is substituted by system availability while cost is substituted by 
system maintenance cost (see Figure 9). Each point in this 2-dimensional space is characterized by specific 
values of 𝐴787 and 𝐶787 . 

 

  
Figure 9. Pareto frontier analysis in an availability vs. cost space.  
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5.1.2 Identification of the Optimal Set of Plant/System Maintenance Operations 
As indicated previously, the primary objective of a plant maintenance program is to effectively and 

efficiently maintain plant SSCs so that plant safety and production are maximized in a manner that is cost 
effective throughout the expected operational lifetime of the plant (including periods of license renewal). 
Although the performance of the current fleet of operating NPPs has achieved exemplary levels of 
performance in terms of safety and power production, consistently high maintenance expenditures, 
combined with implementation of safety upgrades required as a result of the Fukushima Daiichi accident, 
have challenged the economic viability of these plants.  

The approach described in previous sections is intended to provide an integrated system and suite of 
tools to support plant decision makers to evaluate the impact of plant maintenance decisions on critical 
parameters important to plant safety and power production (i.e., system availability and reliability) while 
minimizing both short- and long-term maintenance costs. The following provides an outline of how this 
system would be implemented and used.  

1. Identify various maintenance options for each component; for purposes of illustration assume 𝑟* 
options are possible for component 𝑛. These options can be developed from a number of existing 
sources including the following: 

• Current assigned maintenance activities (including use of existing SSC maintenance templates) 

• Application of “alternative treatments” specified in a plant’s 10CFR50.69 program (if 
applicable) 

• Additional information from industry experience and vendor or manufacturer 
recommendations.   

2. Define availability and cost model for each component option:  

(𝐴*, 𝐶*)' 			𝑟 = 1,… , 𝑅* 

In this step, it is required to evaluate the impact of each maintenance option from both availability 
and cost perspective at the component level. Existing sources might include the following: 

• ER data for similar components from industry databases 

• Estimates of testing and maintenance costs based on industry practices (sources: EPRI, NEI 
databases). 

3. For all possible option combinations, evaluate system availability and system operational cost 

4. Plot the evaluations of Step 3 in a 2-dimentional space (availability vs. cost), (e.g., see conceptual 
example in Figure 6) 

5. Evaluate Pareto frontier for the plot of Step 4 (see Figure 7) to identify the most cost effective 
combinations of maintenance strategies to achieve desired plant safety and operational (e.g. 
production) objectives 

6. Propagate uncertainties for the points located on the Pareto frontier (see Figure 8) 

7. Impose cost and utility constraints (see Figure 8) 

8. Select best candidate point (decision maker). 
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5.2 Pareto Frontier Post-Processor  
Pareto frontier analysis can be performed in RAVEN using the ParetoFrontier post processor. 

This post processor is designed to identify the points lying on the Pareto frontier in a cost-utility space. This 
post processor receives as input a dataset which contains all data points in the cost-utility space and it 
returns the subset of points lying in the Pareto frontier as a new dataset. The generation process of the input 
dataset is shown in the set of provided examples (see Section 6). 

The following algorithm provides the main operations for evaluating the Pareto frontier (cost is 
indicated as C and utility as U): 

1. Project all points on cost dimension in ascending order, e.g. 𝑃/, … , 𝑃) , 𝑃):/, … , 𝑃6"# 

2. Add the first point (i.e., less expensive point) to the set of the Pareto frontier (PF), i.e., 𝑃𝐹 = [𝑃/] 

3. Move to the next point 𝑃;, if 𝑈(𝑃;) > 𝑈(𝑃𝐹[−1]), then add 𝑃; to the PF, i.e., 𝑃𝐹 = [𝑃1, 𝑃2], else 
disregard 𝑃2	(as this point represents a nonoptimal maintenance strategy) 

4. Repeat Steps 3 for all the rest points, i.e., 𝑃<, … , 𝑃6"# 

 
 

5.3 Pareto Frontier Test Cases 
This section provides practical examples on the application of the Pareto frontier analysis applied to 

system reliability evaluation, and maintenance optimization. Consider a Pressurized Water Reactor (PWR) 
High Pressure Injection (HPI) system. As shown in Figure 10, the HPI system consists of a set of 
components (mainly valves and pumps) that are required to maintain redundancy and increase system 
reliability.  

 

 
Figure 10. Graphical representation of the considered HPI system. 
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5.3.1 Case 1: System Reliability Modeling 
The first application of the Pareto frontier analysis is dealing with the design of a system which aims 

to balance system cost and reliability. In this respect, it is assumed here that each component (i.e., valves 
and pumps) can be chosen from three options (i.e., A, B, and C). 

For each option for both components, the reliability and cost data are reported in Table 1 (note that the 
option for each component does not have to be identical). The goal of the analysis is to determine the 
optimal design of the system that minimizes costs and maintains adequate system reliability/availability. 
(Note that since the HPI system is a standby system, both availability and reliability objectives will be 
applicable. However, for the purposes of illustration of the method we focus on the availability metric.)  

 

Table 1. Case 1: cost and reliability data for the components of the syste shown in Figure 10. 

Component Option Failure rate Cost 

Valve 
A 1.0 E-8 h-1 $ 40,000  
B 5.0 E-7 h-1 $ 30,000  
C 1.0 E-7 h-1 $ 20,000  

Pump 
A 5.0 E-8 h-1 $ 80,000  
B 1.0 E-7 h-1 $ 70,000  
C 3.0 E-7 h-1 $ 60,000  

 
The analysis is structured in three steps: 

• Evaluate system cost and reliability for all possible system configurations  

• Determine the Pareto frontier in the unavailability vs. costs space at the system level 

• Apply unavailability and costs constraints to points lying on the Pareto frontier.  

 

5.3.1.1 Step 1  
Given that we are dealing with ten components and each component can be chosen from three options, 

there are 3/= = 59,049 possible system configurations to evaluate. This step has been solved using the 
RAVEN [8] statistical framework by evaluating system cost and reliability for all possible system 
configurations. 

System configuration cost and unavailability have been determined by employing: 

a) A RAVEN logic model for each component which provides component failure rate, reliability 
and unavailability values based on the sampled option 

b) Ageing models for each component which determine component unavailability and reliability 
provided the chosen failure rates provided in a) 

c) Cost models for each component based on the ageing models constructed in b) 

d) A system reliability model which determines system reliability provided component reliability 
values determined in b) 

e) A system cost model which determines system cost provided component cost values 
determined in c) 
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f) A RAVEN ensemble model (see Figure 11) which is actually responsible to logically connect 
all the models shown in a) through e). This model receives input for the option chosen for each 
component and it provides the corresponding values of system cost and reliability. 

 

 
Figure 11. Graphical representation of the RAVEN EnsembleModel for a generic system 

maintenance scheduling optimization problem. 

The model described above has been evaluated 3/= = 59,049 times by sampling the option for each of 
the ten components in order to determine system cost and reliability for all possible system configurations. 
Note that if the number of options and if the number of components grow, then the number of possible 
system configurations grows exponentially. This might be an issue if the computational time to evaluate 
system reliability is relevant (minutes rather than a fraction of a second). In this case, rather than using a 
PRA code such as SPAHIRE [10] or CAFTA [11] (which would increase computational time) we are 
employing an internal RAVEN model, the MCSsolver, which is designed to determine the probability 
associated with a Top Event (e.g., of a fault tree) provided the list of Minimal Cut Sets (MCSs) and the 
probability associated with each Basic Event (BE). The list of MCS is provided through a .csv file and is 
compatible with most existing PRA codes.  

 

5.3.1.2 Step 2  
Figure 12 plots the obtained values of system cost and reliability for all 59,049  possible system 

configurations (blue color). Note that the 2-dimensional space does not match exactly what has been 
presented in Section 5, i.e., we are dealing with a cost-unavailability space rather than a cost-value space. 
This is not an issue for the determination of the Pareto frontier, the only difference is that the layout of the 
Pareto frontier will differ from the one presented in Section 5. 

Figure 12 also plots the points lying on the Pareto frontier (red points); as indicated earlier, the envelope 
of the Pareto frontier is slightly different from the one presented in Section 5. As expected, as system 
unavailability decreases, system cost increases. The determination of the Pareto frontier was performed 
within RAVEN using the ParetoFrontier post processor. Provided the data set generated in Step 1, 
this post processor generates a new data set which contains the points in the original data set that are within 
the Pareto frontier. Figure 13 provides a more detailed zoom of the of the Pareto frontier to explore the 
underlined structure of the points lying in the two lower clusters. 
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Figure 12. Pareto frontier obtained for case 1. 

 
Figure 13. Zoom of the Pareto frontier obtained for case 1. 
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5.3.1.3 Step 3  
Using the ParetoFrontier post processor used in Step 2, it is possible to specify the desired limits 

for both dimensions of the space under consideration (i.e., cost and unavailability). For this specific case 
we have set these limits to be: 

• Max cost: $ 400k  

• Max unavailability: 7.5 E-5 

If system cost and unavailability requirements are imposed on the set of points lying on the Pareto 
frontier, then it is possible to obtain 14 system configurations that satisfy these requirements as indicated 
in Table 2. Note that in these 14 system configurations, the resulting options chosen for the majority of the 
valves is identical (i.e., V1, V4, V5, V6, V7). Greater variability involves the choice for the pumps which 
mostly range between options B and C. 

At this point the decision maker can chose the best solution by prioritizing either system cost or 
unavailability. In this example, the system unavailability does not change much among the 14 system 
configurations; however, system costs have a higher degree of variability (i.e., $ 340K-390K). Given this 
situation, the most appropriate course of action (assuming there are no other considerations which could 
influence the decision) would be to choose system configuration #12: cheaper solution which satisfies the 
imposed unavailability constraints. 

 

Table 2. Case 1: system configurations lying on the Pareto frontier and satisfying the cost and 
unavailability constraints. 

# V1 V2 V3 V4 V5 V6 V7 P1 P2 P3 Cost Unav. 
12 A A C C C C C C B C 340K 7.4E-6 
13 A A C C C C C B B C 350K 7.4E-6 
14 A A C C C C C C C C 350K 7.4E-6 
15 A A C C C C C B C C 360K 7.4E-6 
16 A A C C C C C C A C 360K 7.4E-6 
17 A A C C C C C C B B 360K 7.4E-6 
18 A B C C C C C C C C 360K 7.3E-6 
19 A B C C C C C B C C 370K 7.3E-6 
20 A B C C C C C C B C 370K 7.3E-6 
21 A B C C C C C B B C 380K 7.3E-6 
22 A B C C C C C C A C 380K 7.3E-6 
23 A B C C C C C C B B 380K 7.3E-6 
24 A B C C C C C B B B 390K 7.3E-6 
25 A B C C C C C C A B 390K 7.3E-6 
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5.3.2 Case 2: Maintenance Reliability Modeling 
The second application of the Pareto frontier analysis involves the determination of the optimal 

maintenance posture for the system shown in Figure 10. It is assumed here that all the components of the 
system of Figure 10 are subject to preventive maintenance. The time 𝑇>!  between two consecutive 
maintenance operations must be chosen for each component. For this example, three options are assumed 
to be available: 4,000 hours, 7,000 hours, and 10,000 hours. 

Each component has been modeled using two models (see [2]) 

• Component unavailability model:  

𝑢 = 𝑝)>! +
𝑇)?0

𝑇)>!
+ 𝑃@ (4) 

where: 

o 𝑝)>!: Component unavailability due to PM error of omission 

o 0"
#$

0"
%& : Component unavailability due to performance of the PM activities 

o 𝑃@: Component unavailability due to component failure, i.e., the probability of failure 
of the component in Z0, 𝑇)>![. 

• Component cost model:  

𝐶𝑜𝑠𝑡]]]]]])!")*( =
𝐶𝑜𝑠𝑡)>! + 𝑃@ ∙ 𝐶𝑜𝑠𝑡)A!

𝑇)>!
 (5) 

where: 

o 𝐶𝑜𝑠𝑡)>!: cost for performing PM 

o 𝐶𝑜𝑠𝑡)A!: cost for performing CM due to component failure. 

Provided the cost and reliability values for the variable indicated above it is possible to determine 
component unavailability and maintenance cost for each option for each component as indicated in Table 
3. 

Table 3. Case 2: unavailability and cost data for each component of Figure 10. 

Component Option 𝑻𝑷𝑴 [hr] Unavailability Maintenance cost [$/hr] 

Valve 
A 4,000 0.0198 0.8806 
B 7,000 0.0344 0.6479 
C 10,000 0.0595 0.6044 

Pump 
A 4,000 0.0302 0.1614 
B 7,000 0.0418 0.1626 
C 10,000 0.0654 0.1881 

 
We then proceeded to construct a system model able to determine system reliability and system cost 

provided the chosen 𝑇>! for each component. We have employed the following models available in the 
SR2ML repository: 

• Component models: 
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o Unavailability model 

o Costs model. 

• System models 

o Unavailability model  

o Costs model. 

We have then employed the EnsembleModel feature of RAVEN (see [3]) to link all these models 
together in a single model as shown in Figure 11. The analysis has been completed by performing the 
following two steps: 

a) Identify the Pareto frontier in the unavailability vs. costs space at the system level 

b) Apply unavailability and costs constraints to point selected in Step a) 

The model described above has been evaluated 3/= = 59,049 times by sampling the option for each of the 
ten components in order to determine system cost and reliability for all possible system configurations. 

Figure 14 plots the obtained values of system cost and reliability for all 59,049  possible system 
configurations (blue color). Figure 14 also plots the points lying on the Pareto frontier (red points); as 
indicated earlier, the envelope of the Pareto frontier is slightly different from the one presented in Section 
5. As expected, as system unavailability decreases, system cost increases. The determination of the Pareto 
frontier was performed within RAVEN using the ParetoFrontier post processor. Provided the data 
set generated in Step 1, this post processor generates a new data set which contains the points in the original 
data set that are within the Pareto frontier. In this case the Pareto frontier contains 64 system configurations 
lying on the Pareto frontier. 

 
Figure 14. Pareto frontier obtained for case 2. 
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If system cost and unavailability requirements: 

• Max cost: 5 $/hr  

• Max unavailability: 2.0 E-3 

are imposed to the set of points lying on the Pareto frontier, then it is possible to obtain 15 system 
configurations that satisfy these requirements as indicated in Table 4. Note that in these 15 system 
configurations, the resulting options chosen for the majority of the pumps is identical (i.e., P1, P2, P3). In 
this case, greater variability involves the choice of maintenance strategy for the valves which mostly ranges 
between options B and C. 

At this point the decision maker can chose the best solution by prioritizing either system cost or 
unavailability. While system unavailability does not change much among the 15 system configurations, 
system costs has a bit higher degree of variability (i.e., 4.8 – 5 $/hr). Given this, a possible course of action 
would be to choose system configuration #3: cheaper solution which satisfies unavailability constraints. 

However, it should be noticed that the selection of an “optimal” solution in this case is not as 
straightforward as in the example presented in Section 6.1 (see Figure 13 and Table 2). In the current 
example there is a more gradual trade-off between system reliability and cost; thus, achieving and “optimal” 
decision is not as clear-cut discrimination. Hence, in this case, other considerations (e.g. availability of 
spare parts) would likely have a larger influence on the decision. 

 

Table 4. Case 2: system configurations lying in the Pareto frontier and satisfying the cost and 
unavailability constraints. 

# V1 V2 V3 V4 V5 V6 V7 P1 P2 P3 Cost Unav. 
3 B B C C C C C A A A 4.802 0.00120 
4 B B B C C C C A A A 4.8455 0.00120 
5 B B C B C C C A A A 4.8455 0.00120 
6 B B C C C B C A A A 4.8455 0.00120 
7 B B B B C C C A A A 4.889 0.00120 
8 B B B C C B C A A A 4.889 0.00120 
9 B B C B B C C A A A 4.889 0.00120 
10 B B C B C B C A A A 4.889 0.00120 
11 B B B B C B C A A A 4.9325 0.00120 
12 B B C B B B C A A A 4.9325 0.00120 
13 B B C B C B B A A A 4.9325 0.00120 
14 B B B B B B C A A A 4.976 0.00120 
15 B B B B C B B A A A 4.976 0.00120 
16 B B C B B B B A A A 4.976 0.00120 
17 C C C C C C C A A A 4.9912 0.00119 
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5.4 Maintenance Schedule Optimization 
This use case focuses on the optimization of scheduling of maintenance operations for a simplifies 

example system on the secondary side of a PWR composed of seven components (i.e., M1 trough M7). 
Table 5 lists, for each component, the Mean Time To Repair (MTTR) and loss of power generation caused 
by the failure of the component while the component is under repair. It is here assumed the reactor is 
generating a rated power set to 1 GW. 

 

Table 5.  Data for the maintenace optmization use case. 

Component MTTR [h] Power Loss 
M1 10 10% 
M2 12 15% 
M3 6 15% 
M4 9 10% 
M5 10 20% 
M6 7 12% 
M7 12 20% 

 
 

Table 6. Schedule options for each maintenance activity. 

 T1 T2 T3 T4 T5 T6 
Budget 50K 90K 90K 90K 70K 40K 
M1-A (40,0.2)      
M1-B  (40,0.25)     
M1-C   (40,0.3)    
M2-A  (50,0.1)     
M2-B   (50,0.2)    
M2-C    (50,0.35)   
M3-A   (35,0.2)    
M3-B    (35,0.2)   
M3-C      (35,0.4) 
M4-A    (40,0.2)   
M4-B     (40,0.3)  
M4-C      (40,0.3) 
M5-A  (45,0.1)     
M5-B   (45,0.2)    
M5-C    (45,0.3)   
M6-A (25,0.2)      
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M6-B  (25,0.3)     
M6-C   (25,0.35)    
M7-A   (30,0.3)    
M7-B    (30,0.35)   
M7-C     (30,0.35)  

 
Table 6 lists six time instances (i.e., T1 through T6) where it is possible to perform system maintenance. 

Each time instance is characterized by a maximum available budget to perform maintenance. Table 6 also 
provides three schedule options (i.e., A, B, or C) for each component. Each option is set on a specific time 
instance. In addition, each option is characterized by a tuple of values: cost and SSC failure probability 
𝑝@")+. 

The goal is to determine the optimal maintenance schedule which minimizes plant risk. In this case, the 
risk 𝑟𝑖𝑠𝑘) for each component 𝑖 is calculated as follows: 

𝑟𝑖𝑠𝑘) 	[𝐺𝑊ℎ] = 	𝑝,")+) ∙ 𝑀𝑇𝑇𝑅) ∙ 𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠) (6) 

Hence, the goal is to minimize the function: 

𝑟𝑖𝑠𝑘	[𝐺𝑊ℎ] = 	4𝑟𝑖𝑠𝑘)

D

)1/

 (7) 

Table 7 expands Table 6 by including the risk 𝑟𝑖𝑠𝑘) associated with each component 𝑖. 

By employing the Multi-Knapsack Problem (MKP) methods shown in [3] we were able to obtain the 
solution to this use case which is summarized in Table 8. For each component, the optimal schedule which 
satisfies the budget requirement and minimizes overall risk is presented. 

 

Table 7. Summary of the risk data for each maintenance activity. 

  T1 T2 T3 T4 T5 T6 MTTR 
[h] 

Power 
Loss 

Failure 
Probability Risk 

Budget 50K 90K 90K 90K 70K 40K 

M1-A 40           10 10% 0.2 0.2 

M1-B   40         10 10% 0.25 0.25 

M1-C     40       10 10% 0.3 0.3 

M1-
DoNothing             10 10% 1 1 

M2-A   50         12 15% 0.1 0.18 

M2-B     50       12 15% 0.2 0.36 

M2-C       50     12 15% 0.35 0.63 
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M2-
DoNothing             12 15% 1 1.8 

M3-A     35       6 15% 0.2 0.18 

M3-B       35     6 15% 0.2 0.18 

M3-C           35 6 15% 0.4 0.36 

M3-
DoNothing             6 15% 1 0.9 

M4-A       40     9 10% 0.2 0.18 

M4-B         40   9 10% 0.3 0.27 

M4-C           40 9 10% 0.3 0.27 

M4-
DoNothing             9 10% 1 0.9 

M5-A   45         10 20% 0.1 0.2 

M5-B     45       10 20% 0.2 0.4 

M5-C       45     10 20% 0.3 0.6 

M5-
DoNothing             10 20% 1 2.0 

M6-A 25           7 12% 0.2 0.168 

M6-B   25         7 12% 0.3 0.252 

M6-C     25       7 12% 0.35 0.294 

M6-
DoNothing             7 12% 1 0.84 

M7-A     30       12 20% 0.3 0.72 

M7-B       30     12 20% 0.35 0.84 

M7-C         30   12 20% 0.35 0.84 

M7-
DoNothing             12 20% 1 2.4 
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Table 8. Optimal maintenance schedule. 

  T1 T2 T3 T4 T5 T6 MTTR 
[h] 

Power 
Loss 

Failure 
Probability Risk 

Budget 50K 90K 90K 90K 70K 40K 

M1-B   40         10 10% 0.25 0.25 

M2-B     50       12 15% 0.2 0.36 

M3-B       35     6 15% 0.2 0.18 

M4-A       40     9 10% 0.2 0.18 

M5-A   45         10 20% 0.1 0.2 

M6-A 25           7 12% 0.2 0.168 

M7-A     30       12 20% 0.3 0.72 

Total 25 85 80 75 0 0       2.058 
 
 

6. MODEL-BASED OPTIMIZATION METHODS 
Model-based optimization methods are designed for a different kind of problem compared to the data-

based optimization methods. Data-based optimization aims to find the global maxima or minima of 
analytical functions (e.g., algebraic sum of NPV terms) that are relevant to the application at hand (e.g., 
optimal replacement schedule). In other terms, the data that are provided as input are limited and are 
assumed to be constant throughout the optimization process. 

On the other hand, model-based optimization methods are designed to find the maxima or minima of a 
generic model (i.e., an external model) where the response of the model can change throughout the 
optimization process. In simple terms, data-based methods can be seen as a sub-case of model-based 
methods. 

In mathematical form we are dealing with models that can be considered as a black box where we can 
define its input and output variables: 

• 𝒙: input variable, 𝒙	 = 	 [𝑥/, … , 𝑥3]	

• 𝒚: output variable, 𝒚	 = 	 [𝑦/, … , 𝑦!].	

A model-based optimization method aims to minimize (or maximize) one elementb of the output variables: 

 
min
𝒙

𝑦/
𝑠. 𝑡. 𝒙 ∈ Ξ

𝐆(𝐲) ≤ 0
 (8) 

 

 
b Note that here we are focusing on single-objective optimization problem; another class of optimization problems is the multi-
objective one. This class of mathematical optimization problems involves more than one objective function to be optimized 
simultaneously. We approached this class of optimization problems using the Pareto frontier analysis (see Section 5.1). 
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In this case, it is a model (e.g., system code, PRA model) that determines 𝒚 given 𝒙: 

 
𝒚 = 𝑭(𝒙) (9) 

 
In most of our applications, when provided 𝒙 , 𝒚  is unique (i.e., the model does not possess any 

stochastic behavior). Note that two possible types of constraints can be introduced: 

• 𝒙 ∈ Ξ : explicit constraints which limit the range of variability of the input variables 

• 𝐆(𝐲) < 0 : implicit constraints which limit the range of variability of other output variables. 

An example of an optimization problem is shown in Figure 15 where the objective is to find  the 
minimum of a function	𝑦 = 𝑓(𝒙) where 𝒙 is a 2-dimensional space 𝒙 = [𝑥/, 𝑥;]. In this case Ξ is explicitly 
shown in Figure 15 as a finite region in the [𝑥/, 𝑥;] space.  

	
 

 
Figure 15. Graphical representation of the continuous optimization problem. 

While the data-based methods tend to be not computationally expensive, the model-based methods tend 
to require more computational resources since the model under consideration might have to be run a large 
number of times and each model evaluation might take a considerable amount of time (from minutes to 
hours) to execute. 

 

Ξ



 

35 

 
Figure 16. Model-based optimization scheme. 

Figure 16 shows in a flow diagram how a model-based optimization can be performed. In the RIAM 
application, the employed models are currently under development within the PHM project (refer to [13] 
for a complete overview of the developed models). In more detail, the function 𝑭(𝒙) can be modeled by 
linking system and component reliability and cost models; afterward, it is possible to iteratively loop over 
the decision variable 𝒙 to obtain the optimal value of 𝒙 that minimize/maximize the objective function 𝑦/ 
(e.g., minimization of operating costs, maximization of system availability). As an example, 𝒙  can 
represents a candidate maintenance schedule to be performed on a system. 

We have focused on the development and use of two main classes of optimization methods: continuous 
and discrete. Continuous methods perform optimization on a set of variables which can take on an 
uncountable set of values. Discrete methods act on variables defined over finite or countably infinite sets. 
For the scope of the RIAM project, we are concentrating on one method for each class: the gradient based 
method (continuous class), and genetic algorithms (discrete and, in the future, also continuous] class). The 
following two sections describe in more detail these two classes of methods and their application for specific 
RIAM problems of interest. 

 

6.1 Continuous Methods 
This section discusses various approaches to evaluate and optimize decisions typically encountered in 

operating NPPs. Since there exists a vast literature on the methods presented here the reader is referred to 
the literature for details. All of the techniques described in this section are described in standard operations 
research texts at the undergraduate and graduate level [25]. 

 

6.1.1 Gradient-Based Methods  
The optimization problem described in Equation 8 can be numerically solved by employing gradient 

based optimization algorithms. Gradient based algorithms are first-order iterative optimization algorithms 
and they are ideal for this kind of application. The objective is to find the minimum of a function 𝐹(𝒙): 
starting from an initial point 𝒙=, this is performed by determining at each iteration 𝑟 the gradient of 𝐹(𝒙), 
∇𝐹(𝒙), and moving to the next point in the direction of the gradient of the function at the current point. 

From a point 𝒙'determined at iteration 𝑟, the point 𝒙':/ at iteration 𝑟 + 1 is calculated as: 
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𝒙':/ = 𝒙' − 𝜸 ∙ 𝛁𝑭(𝑥) (10) 

The sequence: 

 
(𝒙=, 𝑭(𝒙=)) ⟶ 8𝒙/, 𝑭(𝒙/); ⟶ 8𝒙;, 𝑭(𝒙;); ⟶ ⋯  

 
converges to a local minima of 𝑭(𝒙). 

 

6.1.2 Stochastic Methods 
Stochastic methods are a variation of the one shown in Section 7.1.1. They introduce stochastic 

elements in the selection of point 𝒙':/ given 𝒙' obtained from the previous iteration. 

• Simultaneous perturbation stochastic approximation (SPSA): The goal of SPSA is to introduce 
a stochastic element in the calculation of the gradient 𝛁𝑭(𝒙) in Equation 10: 

𝛁𝑭(𝒙) =
𝑭(𝒙 + 𝝐) − 𝑭(𝒙)

𝝐
 (11) 

where 𝜖 is a random perturbation vector. 

• Simulated Annealing (SA): SA method determines 𝒙':/  by first determining a candidate 
neighbor 𝒙{ of 𝒙'(which is randomly generated) and it accepts it with a probability proportional 
to 𝑭(𝒙{) − 𝑭(𝒙'). 

 

6.2 Discrete Optimization Methods 
An important class of optimization methods, especially for the RIAM project is the one that includes 

all the discrete optimization algorithms (see Table 9). These algorithms can be summarized as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒		4 𝑣*𝑥*

3

*1/

 

subject to: 

4𝑤*,) 	𝑥*

3

*1/

< 𝑊) 

𝑥* ≥ 0	𝑎𝑛𝑑	𝑥* ∈ ℕ 
 

(12) 

Table 10 summarizes the direct application of the discrete optimization problems listed in Table 9 for 
specific RIAM related applications. 

The following is a list of discrete optimization algorithms that can be employed to solve discrete 
optimization algorithms: 

• Branch and bound 

• Dynamic programming 

• Constraint programming 

• Local search 

• Mixed integer programming 
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• Simulated annealing 

• Genetic algorithms 

 

 

Table 9. Summary of discrete optimization problems. 

Problem Input data Constraints Model Objective function 

Traveling 
salesman  

N cities, neighbor cities 
(graph structure) 

City can be visited 
once Sum of paths Minimize route 

Postman Graph structure 
Each node can be 
visited more than 
once 

Sum of paths Minimize route 

Knapsack 
N objects with 
associated value v and 
weight w 

Sum of weights < 
M Sum of weights Maximize value 

Bin 
packing 
problem 

N objects with  
weight w Bin capacity M Sum of weights 

for each bin 
Minimize number 
of bins 

Scheduling 
N jobs with associated 
completion time, m 
machines 

Sequential 
execution of jobs 
on each machine 

Sum of 
completion time 
on each machine 

Minimize 
completion time 

 
 

Table 10. RIAM application of discrete optimization problems. 

Application Related problem 

Maintenance scheduling  Scheduling, bin packing, 
postman, traveling salesman 

Replacement scheduling Knapsack, scheduling 

 
 

6.2.1 Genetic Algorithms  
GAs represent a relevant class of optimization methods for both continuous and discrete optimization 

problems. For the scope of the RIAM project we have focused on the development of GAs for discrete 
optimization problems. The possibility to extend the capabilities of developed GA methods to be able to 
deal with continuous variables is being scrutinized as well.  
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In addition, GAs are able to deal with any type of data structure. By data structure, we intend any form 
of encoding information into a digital format. While in FY-20 we have focused on arrays, GAs can act upon 
other data structures such as trees and graphs. 

The combination of data structure and specific genetic algorithm method (e.g., crossover mutation, 
selection, replacement) generates what is called in in the literature [5] an evolution program (see Figure 
17). 

 
Figure 17. Data structures and methods employed in geneteic algorithms that can be employed to 

develop evolutionary programs. 

From a high level perspective, these methods act on a population of sampled points 8𝒙, 𝑭(𝒙); (rather 
than focusing on a one-sample-at-a-time mindset) and they iteratively combine pairs of points to generate 
a new generation of points with higher quality. 

An initial population of 𝑁  elements is initially generated (e.g., by Monte-Carlo sampling) and 
evaluated. Each element(𝒙, 𝐹(𝒙)) of the population has the input coordinates 𝒙 encoded into a discrete 
form, a genotype, while the 𝐹(𝒙) term is encoded into a fitness value 𝑓�. The genotype form of 𝒙 (here 
indicated as 𝒙{) is called a data structure and it can be of several forms depending on the application. In this 
report we focus on arrays of discrete values. More advanced data structures can be matrices, tree structures 
or graph structures (see Figure 17). When dealing with arrays of length	𝐿 of discrete values, several options 
can be chosen: array of  𝐿 binary values, array of 𝐿 integers, combination of 𝐿 integers, permutation of 𝐿 
integers. 

 

6.2.2 GA Data Structures 
Below is a list of typical nomenclature related to evolutionary algorithms (see Figure 18): 

• Phenotype space − The actual real problem solution space, comprising of solutions in the raw 
(non-computational) representations 

• Genotype Space − The computational space comprised of all candidate solutions after encoding 
to a computational representation  

• Population − A subset of all candidate solutions in the Genotype (encoded) space  

• Chromosomes (Individual) − A single possible solution of the problem at hand taken from that 
population  

Evolution
programs

Genetic AlgorithmsData structures

Arrays

Trees

Graphs

Crossover

Mutation

Selection

Replacement
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• Gene − A single element in the chromosome.  

• Allele − The value in the Gene  

• Mating (Reproduction) Pool – a collection of parents used to create a new generation   

• Fitness Function − The function used to rank the solutions (elitism). It might or might not be 
the same as the objective function  

• Decoding and Encoding − are the optional processes to convert Phenotype representation (real 
variables) into Genotype representation (computational representation)    

• Reproduction Operations − operations that alter the composition of a certain chromosome, i.e., 
crossover, mutation, or selection.   

 

 
Figure 18. Graphical representation of the GA data structures. 

 

6.2.3 GA Workflow 
The main operators that are being employed by GAs are the following: 

• Crossover: the encodings of two chromosomes are mixed to generate two new encodings  

• Mutation: the encoding of a chromosome is altered by randomly changing the value of a single 
element of the chromosome 

• Replacement: the population of chromosomes is updated by removing chromosomes with low 
fitness or high generational age value and keeping chromosomes with high fitness or low 
generational age. 

The main structure of a GA optimization algorithm is as follows (see Figure 19): 

1. Create initial population: perform uniform sampling of the region of interest:  

• Monte-Carlo sampling of N samples (𝒙, 𝐹(𝒙))*			, 𝑛 = 1,… ,𝑁	 

2. Perform a genotype representation according to the problem under investigation 

3. Calculate fitness of each chromosome: (𝒙, 𝐹(𝒙))* → (𝒙{, 𝑓�)* 

4. Reproduction: create the new generation of offspring from current population: 
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a. Perform parent selection from the population based on their fitness 

b. Perform crossover: creation of child population (see Figure 20 and Figure 21) by 
mixing chromosome structure of parents 

5. Perform random mutation on the generated offspring (see Figure 22) 

6. Evaluate offspring (i.e., determine 𝐹(𝒙)) and calculate their fitness 𝑓� 

7. Return to Step 4 until convergence is met. 

 

 
Figure 19. GA workflow. 

 
Figure 20. Single point crossover operation. 

population 
generation

Parent 
selection

Mutation

Crossover

Replacement Converged? Stop

Children 
evaluation

Generation

1 2 3 4 5 6 7 8 9

4 3 6 1 7 9 2 8 5

Parent 1

Parent 2

Child 1 1 2 3 4 7 9 2 8 5

Child 2 4 3 6 1 5 6 7 8 9

Crossover point



 

41 

 
Figure 21. Two-points crossover operation. 

 

 
Figure 22. Example of a single bit mutation of a chromosome. 

 

6.3 GA Development 
The development of GA based methods has started in FY-20 within the RAVEN statistical framework. 

This development has been shared with another project within the RISA pathway: the plant reload process 
optimization project. A new optimizer class has been added to RAVEN which encodes the workflow shown 
in Figure 19 as indicated in Figure 23. As an initial step, the development has started for problems that are 
discrete in nature (i.e., the input space is discrete in nature). For the scope of the RIAM project, the variables 
can have only positive integer values. 

 

6.4 RIAM Applications for GA methods 
The following sections provide an overview of the specific problems that can be solved using GAs 

coupled with external models. Note that these represent standard problems and are described in the 
Operations Research literature. Application of several of these approaches to RIAM were discussed in detail 
in previous project report (see reference [19]) and are not repeated here. 

 

6.4.1 Knapsack Problem 
Given: 

• A knapsack having capacity 𝐶	 

• 𝑁 objects having value 𝑣* and cost 𝑐* (𝑛 = 1,… ,𝑁) 

1 2 3 4 5 6 7 8 9

4 3 6 1 7 9 2 8 5

Parent 1

Parent 2

Child 1 4 3 3 4 5 6 4 3 4

Crossover point 1 Crossover point 2

Child 2 1 2 6 1 7 9 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 3 6 7 8 9

Before

After

xmin xmax5
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Determine 𝒙 = [𝑥/, … , 𝑥3] such that: 

• 𝑥* ∈ {0,1} 

• the function ∑ 𝑣*3
*1/ 𝑥* is maximized 

• ∑ 𝑐*3
*1/ 𝑥* ≤ 𝐶 

 
 

 
Figure 23. Data workflow for the GA methods developed in RAVEN. 

 

6.4.2 Knapsack Problem (Modified) 
Given: 

• A knapsack having capacity 𝐶	 

Stop

Replacement

Converged?

Parent selection

Mutation

Crossover

Submit children

RAVEN GA Optimizer 
computation

RAVEN batch 
calculation

r children submitted
Variable name: point
(see _submitRun)
Type: Dict

Point = {x1:np.array()
x2:np.array()
…

xN:np.array()}

Size of numpy array = r

r children evaluated
Variable name: rlz
(see _useRealization)
Type: xarray.DataArray

Content:
x1: array of size r
…
xN: array of size r
y1: array of size r
…
yM: array of size r

Variable name: self.children
Type: xarray.DataArray

Content:
x1: array of size r
…
xN: array of size r
fitness: array of size r

Variable name: self._population
Type: xarray.DataArray

Content:
x1: array of size R
…
xN: array of size R
fitness: array of size R
age: array of size R

Variable name: self.candidateChildren
Type: xarray.DataArray

Content:
x1: array of size r
…
xN: array of size r
fitness: array of size r
age: array of size r

Variable name: self.parentIndexes
Type: list of list
[ [parent1index, parent2index],

[parent3index, parent4index],
… 

]

Children fitness 
calculation

Add children to existing population.
Update population age.

Add children
to existing 

population and 
update age

Variable name: self._population
Type: xarray.DataArray

Content:
x1: array of size S<R
…
xN: array of size S<R
fitness: array of size S<R
age: array of size S<R

Create children provided:
• Population (self._population)
• Pair of parents (self.parentIndexes)
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• 𝑁 objects having value 𝑣* and cost 𝑐* (𝑛 = 1,… ,𝑁) 

Determine 𝒙 = [𝑥/, … , 𝑥3] such that: 

• 𝑥* ∈ ℤ 

• the function ∑ 𝑣*3
*1/ 𝛿(𝑥* − 𝑛) is maximized 

• ∑ 𝑐*3
*1/ 𝛿(𝑥* − 𝑛) ≤ 𝐶 

where 

𝛿(𝑥* − 𝑛) = �	1 𝑖𝑓	𝑥* = 𝑛
	0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is the standard Dirac delta function. 

 

6.4.3 Multiple-Knapsack Problem 
Given: 

• 𝑀 knapsacks having capacity 𝐶6		(𝑚 = 1,… ,𝑀) 

• 𝑁 objects having value 𝑣* and cost 𝑐*,6 (𝑛 = 1,… ,𝑁	𝑎𝑛𝑑	𝑚 = 1,⋯ ,𝑀) 

Determine 𝑥*,6 such that: 

• 𝑥*,6 ∈ {0,1} where 

𝑥*,6 = �	1 if	object	𝑛	is	assigned	to	knapsack	𝑚
	0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• the function ∑ 𝑣*3
*1/ 𝑥* is maximized 

• ∑ 𝑐*,63
*1/ 𝑥* ≤ 𝐶6 

 

6.4.4 Multiple-Knapsack Problem (Modified) 
Given: 

• 𝑀 knapsacks having capacity 𝐶6		(𝑚 = 1,… ,𝑀) 

• 𝑁 objects having value 𝑣*,6 and cost 𝑐*,6 (𝑛 = 1,… ,𝑁) 

Determine 𝒙 = [𝑥/, … , 𝑥3] such that: 

• 𝑥* ∈ [0,… ,𝑀], e.g., 𝑥/ = 4 means that object 1 is selected for window 4 

• the function ∑ ∑ 𝑣*,6!
61/

3
*1/ 𝛿(𝑥* −𝑚) is maximized 

• ∑ ∑ 𝑐*,6!
61/

3
*1/ 𝛿(𝑥* −𝑚) ≤ 𝐶6 

where 

𝛿(𝑥* −𝑚) = �	1 𝑖𝑓	𝑥* = 𝑚
	0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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6.4.5 Traveling Salesman Problem 
Given: 

• 𝑁 cities 𝑙* (𝑛 = 1,… ,𝑁) 

• Connection matrix C= [𝑐),F] where 𝑐),F = � 1 a	path	exist	from	city	𝑖	to	city	𝑗
𝑖𝑛𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

• Distance matrix D= [𝑑),F] where 𝑑),F is the distance between city 𝑖 and city 𝑗 

Determine a path 𝒙 = [𝑥/, … , 𝑥3] such that: 

• 𝑥* ∈ [0,… ,𝑁], e.g., 𝑥; = 4 means that city 𝑙G has been the second one to be visited  

• the function ∑ 𝑑*./,*𝑥*./,*3
*1;  is minimized; here, 𝑑*./,* represents the distance between the 

city visited at step 𝑛 and the one visited at step 𝑛 − 1 

 

6.5 Initial Testing of GA Methods 
An initial testing phase has started during FY-20 with the objective of assessing GA performances and 

validate their results against other methods. As an example, we tested GA methods vs. LOGOS models for 
a simple multiple knapsack problem specified in Table 11. Note that this example does not provide direct 
application of any NPP asset management use cases, but it is provided here for validation and testing 
purposes.  

Given a set of ten projects, an estimated NPV and its cost are provided in input for each project. Given 
a five-year planning scenario, the goal is to choose the optimal set of projects and their actuation year 
provided the budget constraints indicated in Table 12 which maximizes the overall NPV. Table 12 shows 
a deterministic point forecast for the available capital budget for the next five years for our example 
problem. 

By employing the multiple knapsack problem available in LOGOS (see Section 7) it was possible to 
obtain an overall NPV equal to $20M which was obtained by choosing the combination of projects indicated 
in Table 13. 

When approaching this problem using the GA methods, we have developed a model which computes 
overall NPV provided the candidate project schedule. This model penalizes those choices that exceed the 
budget constraints indicated in Table 12. Note that this is still a linear problem, however this model can be 
customized to solve more complex cases that cannot be directly solved using the available LOGOS models 
(e.g., correlations among NPV projects).  

We employed the GA optimization method summarized in Figure 24 where we specified: 

o A random selection of the parents weighed by their fitness  

o A single point crossover method (see Figure 20) 

o A single bit mutation method (see Figure 22) 

We let the optimization method operate for 300 generations and were able to obtain a family of optimal 
schedules (including the one listed in Table 13) with an overall NPV equal to $20M (as predicted by the 
LOGOS model). 
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Table 11. Multiple knapsack problem employed to test GA performances. 

Project NPV [M$] Cost [K$] 

1 1 300 
2 3 200 
3 4 500 
4 2 300 
5 1 200 
6 2 400 
7 3 600 
8 4 300 
9 2 500 
10 4 300 

 

Table 12. Point estimates of the annual capital budget over a five-year planning horizon for the 
multiple knapsack problem test case. 

Capital budget [$K] 
Y1 Y2 Y3 Y4 Y5 
400 500 400 500 500 

 

Table 13. LOGOS solution for the multiple knapsack problem test case indicated in Table 11 and 
Table 12. 

Project Year 

1 - 
2 Y5 
3 Y2 
4 Y3 
5 Y4 
6 Y1 
7 - 
8 Y4 
9 - 
10 Y5 
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      <GAparams> 
        <populationSize>60</populationSize> 
        <parentSelection>rouletteWheel</parentSelection> 
        <reproduction nParents="4"> 
          <crossover type="onePointCrossover"> 
            <points>random</points> 
            <crossoverProb>0.9</crossoverProb> 
          </crossover> 
          <mutation type="swapMutator"> 
            <locs>random</locs> 
            <mutationProb>0.1</mutationProb> 
          </mutation> 
        </reproduction> 
        <fitness type="logistic"> 
          <a>0.2</a> 
          <b>13.0</b> 
        </fitness> 
        <survivorSelection>fitnessBased</survivorSelection> 

      </GAparams> 

Figure 24. GA workflow specified in RAVEN for the multiple knapsack problem test case. 

 

7. METHODS DEVELOPMENT: LOGOS 
LOGOS is a software package which contains a set of discrete optimization models that can be 

employed for capital budgeting optimization problems. More specifically, provided a set of items 
(characterized by cost and reward values) and constraints, these models select the best combination of items 
which maximize overall reward and satisfies the provided constraints. 

The developed models are based on different versions of the knapsack optimization algorithms. Two 
main classes of optimization models have been initially developed: deterministic and stochastic. Stochastic 
optimization models evolve deterministic models by explicitly considering data uncertainties (associated 
with constraints or item cost and reward).  These models can be employed as stand-alone models or 
interfaced with the INL developed RAVEN code to propagate data uncertainties and analyze the generated 
data (i.e., sensitivity analysis). 

One of LOGOS’ objectives is to optimize capital budgeting and SSC replacements to support risk-
informed decisions in NPP operations. Since capital budgeting is influenced by various factors such as 
markets, safety, and regulations, its decision-making process should consider the relevant factors for 
balancing risks, costs, and profits. In the last year, LOGOS was developed to provide both risk-free 
approaches based on deterministic optimization schemes and risk-informed approaches based on stochastic 
optimization schemes for NPP asset management. In the literature, the problems of capital budgeting and 
SSC replacement optimization can be represented by the variants of the knapsack problem. In the last year, 
LOGOS was developed to handle several representative variants that are generally adopted for the capital 
budgeting analysis: 

• Unbounded and bounded single knapsack problem (SKP): single budget constraint 

• Multidimensional knapsack problem (DKP): multiple budget constraints, i.e. capital funds, 
operation and maintenance funds, and time-dependent funds and multi-year funds 

• Multiple knapsack problem (MKP): budget constraints for maintenance of multi-units of NPPs 
in parallel 
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• Multiple-choice knapsack problem (MCKP): multiple ways to carry out each 
investment/replacement 

• Multidimensional multiple-choice knapsack problem (MMKP): considering both multiple 
ways to carry out each investment/replacement and multiple budget constraints mentioned in 
the DKP method. 

One limitation of the deterministic optimization models for capital budgeting is that they do not account 
for risk or uncertainty in profit and cost streams associated with individual projects, nor do they account 
for risk in future resource availability. LOGOS was extended to handle the risks and uncertainties during 
the asset management analysis via a two-stage stochastic optimization scheme to provide priority lists to 
decision-makers in support of risk-informed decisions.  

These methods are being developed and maintained in an INL GitLab repository as shown in Figure 
25. 

 
Figure 25. Snapshot of the LOGOS repository. 
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In FY-20, LOGOS capabilities were further extended to provide more robust RIAM by adding both 
Conditional Value at Risk (CVaR) optimization and Distributionally Robust Optimization (DRO). CVaR, 
also called mean excess loss, mean shortfall, or tail (VaR), is defined as the conditional expected loss under 
the condition that it exceeds VaR. For the value-at-risk capital budgeting problem, LOGOS tries to 
maximize a reward functions (e.g., expected NPVs) while minimizing the risk, as measured by CVaR. The 
previously developed stochastic optimization approach assumes that the decision maker has complete 
knowledge about the underlying uncertainty through a known probability density function (PDF). The PDF 
of the random parameters is inferred from historical data, prior beliefs, or expert opinions. In DRO, on the 
other hand, the designer can provide a set of possible pdfs and DRO then optimize for the worst-case pdf 
within this set.  

In the following sections, we provide the mathematical representations of CVaR and DRO 
optimizations for different situations of capital asset management. The notation and formulation of the 
CVaR and DRO optimizations are as follows: 

Indices and Sets: 

𝑖, 𝑖′ ∈ 𝑁 candidate projects 
𝑗 ∈ 𝐽) options for selecting project 𝑖, e.g., initiate project 𝑖 in year 𝑡 or 𝑡 + 2 and in a standard 

(three year) or in an expedited (two year) manner. Note that the last option for project 𝑖 
is always used to indicate “non-selection”, i.e. the investment 𝑖 is not selected. 

𝑑 ∈ 𝐷 types of resources, e.g., capital funds, O&M funds, labor-hours, time during outage 
𝑡 ∈ 𝑇 time periods (years) 
𝜔 ∈ Ω Scenarios 
𝜎 ∈ Ω Scenarios 

 
Data:  

𝑝)H profit of investment 𝑖 under scenario 𝜔 (NPV) 
𝑝),FH  profit of investment 𝑖 via option 𝑗 under scenario 𝜔 (NPV) 
𝑐 available budget under scenario 𝜔 
𝑐IH available budget for a resource of type 𝑑 under scenario 𝜔 
𝑐6H  available budget for unit 𝑚 under scenario 𝜔 
𝑐(H available budget in year 𝑡 under scenario 𝜔 
𝑐I,(H  available budget for a resource of type 𝑑 in year 𝑡 under scenario 𝜔 
𝑤)H cost of investment 𝑖 under scenario 𝜔 
𝑤),IH  consumption of resource of type 𝑑 if investment 𝑖 is selected under scenario 𝜔 
𝑤),F,(H  consumption of resource in year 𝑡 if investment 𝑖 is performed via option 𝑗 under 

scenario  
𝑤),F,I,(H  consumption of resource of type 𝑑 in year 𝑡 if investment 𝑖 is performed via option 𝑗 

under scenario 𝜔 
𝑞H 

𝜆 ∈ [0, 1] 
𝛼 
𝜀 

probability of scenario 𝜔 
weight for CVaR analysis  
confidence level 
ambiguity radius for DRO analysis 



 

49 

𝑑J,H the Euclidean distance between scenario 𝜎 and scenario 𝜔  
 
Decision variables:  

𝑦),)' = �		1 if	project	𝑖	has	no	lower	priority	than	project	𝑖′
		0 otherwise	

 

𝑥)H = �		1 if	project	𝑖	is	selected	under	scenario	𝜔
		0 otherwise

	
	 

𝑥),6H = �		1 	if	project	𝑖	is	selected	for	unit	𝑚	under	scenario	𝜔
		0 	otherwise

 

𝑥),FH = �		1 	if	project	𝑖	is	performed	via	option	𝑗	is	selected	under	scenario	𝜔
		0 otherwise

 

𝑢 variable to indicate VaR 
𝑣H dummy variable to linearize the CVaR analysis 
 𝛾 dummy variable for DRO analysis 
𝑣J dummy variable for DRO analysis 

 

8. STOCHASTIC OPTIMIZATION WITH CVAR 
 

8.1 Deterministic Capital Budgeting 
Consider a capital budgeting problem faced by an NPP. To begin, and so that we can better motivate 

what follows, we assume for the moment that we can make plans using deterministic forecasts for available 
annual capital budgets as well as the NPV and liability streams (i.e., capital costs) associated with selecting 
each project. We assume that there are some “must do” projects (e.g. those being performed to meet a 
regulatory requirement) and other optional projects. For the specific problem instance with which we begin, 
our objective is to select a set of projects in such a way that the overall NPV is maximized while respecting 
available capital budgets over a five-year horizon. Table 14 provides a brief description of the instance and 
shows the deterministic forecasts for the NPV and liability streams, for a set of 16 candidate projects. 

Table 15 shows a deterministic point forecast for the available capital budget for the next five years for 
our example problem. 

There are 6 must-do projects and 10 optional projects in this set. Hence, there are 2/= = 1,024 possible 
portfolios of projects. (If all 16 projects were optional, we would have 2/K = 65,536 possible portfolios.)  
Some portfolios are infeasible because they consume more than the available budget in one or more years. 
Given the small size of this problem instance, we can enumerate all feasible projects and select the one with 
the largest NPV. Or, we can formulate a knapsack-style optimization model – a type of integer programming 
problem–and solve it with open-source or commercially available software. Table 16 shows an optimal 
portfolio with overall NPV of $19.90M in which we select 4 of the 10 optional projects.  
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Table 14. Candidate set of 16 projects for an example problem in capital budgeting. The “Category” 
column distinguishes optional and must-do projects. The “NPV” column provides a point estimate of 
each project’s net present value. “Capital costs” provide point estimates of the liability streams 
induced by selecting each project over a five-year horizon. Values are in millions of dollars. 

Project Project name Category 
Capital costs ($M)  

Y1 Y2 Y3 Y4 Y5 NPV 
($M) 

1 HP feedwater 
heater upgrade Optional 13.01 1.31 0 0 0 27.98 

2 Pressurizer 
replacement Must Do 9.19 0.93 0 0 0 -10.07 

3 
Improvement to 

emergency diesel 
generators 

Optional 0 0 0 10.09 1.11 20.23 

4 Secondary system 
PHM system Optional 0 4.51 0.31 0.21 0 35.00 

5 
Replacement of 

two reactor coolant 
pumps 

Must Do 0 18.63 0 0 0 -18.60 

6 

Seismic 
modification, 

requalification, 
reinforcement, 
improvement 

Optional 0 2.44 0 0 0 9.48 

7 Fire protection Must Do 1.32 0.14 0 0 0 -1.44 

8 Service water 
system upgrade Optional 2.35 0 0 0 0 5.18 

9 Batteries 
replacement Optional 0.29 0 0 0 0 2.10 

10 
Replace CCW 

piping, heat 
exchangers, valves 

Must Do 0 0 4.58 0.47 0 -5.03 

11 Reactor vessel 
internals Optional 0 19.85 0 0 0 41.14 

12 
Reactor vessel 
upgrade (head 

included) 
Must Do 5.27 0 0 0 0 -5.25 

13 Replace LP turbine Optional 0 0 18.79 0 0 167.94 

14 
Replace 

instrumentation 
and control cables 

Must Do 5.94 0.61 0 0 0 -6.52 

15 Condenser 
retubing Optional 5.26 0 0 0 0 16.72 

16 Replace moisture 
separator reheater Optional 3.17 0 0 0 0 8.26 
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Table 15. Point estimates of the annual capital budget over a five-year planning horizon. Values are 
in millions of dollars. 

Capital budget [$M] 
Y1 Y2 Y3 Y4 Y5 

22.664 36.896 20.636 23.784 22.814 
 

Table 16. Optimal solution to the deterministic capital budgeting problem in which we select 4 of 10 
optional projects, and all must-do projects. This solution respects the annual capital budgets of 

Table 12 and maximizes NPV, achieving a portfolio NPV of $19.90M. 

ID Category Project name Decision 
1 Optional HP feedwater heater upgrade Do Nothing 
2 Must do Pressurizer replacement Select 
3 Optional Improvement to emergency diesel generators Select 
4 Optional Secondary system PHM system Select 
5 Must do Replacement of two reactor coolant pumps Select 

6 Optional Seismic modification, requalification, reinforcement, 
improvement Select 

7 Must do Fire protection Select 
8 Optional Service water system upgrade Do Nothing 
9 Optional Batteries replacement Select 
10 Must do Replace CCW piping, heat exchangers, valves Select 
11 Optional Reactor vessel internals Do Nothing 
12 Must do Reactor vessel upgrade (head included) Select 
13 Optional Replace LP turbine Do Nothing 
14 Must do Replace instrumentation and control cables Select 
15 Optional Condenser retubing Do Nothing 
16 Optional Replace moisture separator reheater Do Nothing 

 

 

8.1.1 Stochastic Capital Budgeting with Options 
We now introduce three significant changes to the simple problem just sketched. First, we introduce 

multiple options for some of the projects. As shown in Table 17, Projects 9, 12, and 14 simply replicate the 
information in Table 14, labeling the only available option as “Plan A.” The other 13 projects either have 
two implementation options (Plans A and B) or three implementation options (Plans A, B, and C). Here, 
Plans B and C involve the possibility of shifting the timing of implementing the project relative to that of 
the nominal Plan A from Table 14.  

For the optional projects, delaying the project’s start date means that we delay its benefit and hence 
NPV is reduced as the table shows. Delaying a must-do project delays the liability stream and increases a 
negative NPV, although some must-do projects cannot be delayed. (Note that in our example we assume 
that all of the must do projects represent regulatory requirements and provide no additional economic value 
to the plant other than permitting it to continue to operate.)  

This increased flexibility, due to the possibility of shifting the timing, allows for greater total NPV of 
the selected portfolio because we can choose additional, or different and more profitable, projects while 
still respecting the annual capital budgets; see [19] for further details. Table 17 shows that there are three 
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possibilities for the optional Project 1: do nothing, Plan A, or Plan B, with plan B delaying implementation 
by one year, along with lower NPV. The must-do Project 2 also has three options: Plan A, B, or C. Thus, 
there are 9 ways to select these two projects. With this type of logic, over the 16 candidate projects that we 
consider, we now have over 2.5 million possible portfolios.  

 

Table 17. The table replicates information from Table 14 except that most of the projects now have 
two or three implementation options via Plan A, B, and/or C. Values are in millions of dollars. 

ID Project name Category Options  Capital costs ($M)  

Y1 Y2 Y3 Y4 Y5 NPV ($M) 

1 HP feedwater heater upgrade Optional Plan A, B 
A: 13.01 1.31 0.00 0.00 0.00 27.98 

B: 0.00 13.01 1.31 0.00 0.00 27.17 

2 Pressurizer replacement Must do Plan A, B, C 

A: 9.19 0.93 0.00 0.00 0.00 -10.07 

B: 0.00 9.19 0.93 0.00 0.00 -9.78 

C: 0.00 0.00 0.00 9.19 0.93 -9.22 

3 Improvement to emergency 
diesel generators Optional Plan A, B 

A: 0.00 0.00 0.00 10.09 1.11 20.23 

B: 0.00 0.00 10.09 1.11 0.00 20.84 

4 Secondary system PHM system Optional Plan A, B 
A: 0.00 4.51 0.31 0.21 0.00 35.00 

B: 0.00 0.00 4.51 0.31 0.21 33.98 

5 Replacement of two reactor 
coolant pumps Must do Plan A, B 

A: 0.00 18.63 0.00 0.00 0.00 -18.60 

B: 0.00 0.00 0.00 0.00 18.63 -17.02 

6 
Seismic modification, 

requalification, reinforcement, 
improvement 

Optional Plan A, B, C 

A: 0.00 2.44 0.00 0.00 0.00 9.48 

B: 0.00 0.00 0.00 2.44 0.00 8.94 

C: 0.00 0.00 0.00 0.00 2.44 8.68 

7 Fire protection Must do Plan A, B 
A: 1.32 0.14 0.00 0.00 0.00 -1.44 

B: 0.00 0.00 0.00 1.32 0.14 -1.32 

8 Service water system upgrade Optional Plan A, B 
A: 2.35 0.00 0.00 0.00 0.00 5.18 

B: 0.00 0.00 2.35 0.00 0.00 4.88 

9 Batteries replacement Optional Plan A A: 0.29 0.00 0.00 0.00 0.00 2.10 

10 Replace CCW piping, heat 
exchangers, valves Must do Plan A, B, C 

A: 0.00 0.00 4.58 0.47 0.00 -5.03 

B: 0.00 4.58 0.47 0.00 0.00 -5.18 

C: 0.00 0.00 0.00 4.58 0.47 -4.88 

11 Reactor vessel internals Optional Plan A, B 
A: 0.00 19.85 0.00 0.00 0.00 41.14 

B: 0.00 0.00 0.00 0.00 19.85 37.65 

12 Reactor vessel upgrade (head 
included) Must do Plan A A: 5.27 0.00 0.00 0.00 0.00 -5.25 

13 Replace LP turbine Optional Plan A, B 
A: 0.00 0.00 18.79 0.00 0.00 167.94 

B: 0.00 0.00 0.00 18.79 0.00 163.05 

14 Replace instrumentation and 
control cables Must do Plan A A: 5.94 0.61 0.00 0.00 0.00 -6.52 

15 Condenser retubing Optional Plan A, B 
A: 5.26 0.00 0.00 0.00 0.00 16.72 

B: 0.00 0.00 5.26 0.00 0.00 15.76 

16 Replace moisture separator 
reheater Optional Plan A, B, C 

A: 3.17 0.00 0.00 0.00 0.00 8.26 

B: 0.00 0.00 0.00 3.17 0.00 7.56 

C: 0.00 0.00 0.00 0.00 3.17 7.34 
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The second significant change that we introduce is to now model stochasticity in capital budgets. That 

is, we retain deterministic point forecasts for the capital costs and the NPV associated with each of the 
16 projects. However, we assume that we have uncertain capital budgets with a total of 10 scenarios. In 
particular, we replace the deterministic point forecast of the annual budget in each of the five years with a 
discrete distribution between $22M and $40M as shown in Table 18. 

 

Table 18. We replace the point forecast of the annual capital budget over a five-year horizon in 
Table 12 with 10 scenarios. The probability distribution puts equal mass (probability 0.1) on each 

of the 10 values, and the values are perfectly correlated across time; e.g., if the budget realization is 
scenario 6 (S6) then the budget is $31.0M in each of the five years. Values are in millions of dollars. 

Annual capital budget ($M) 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

22.0 23.8 25.6 27.4 29.2 31.0 32.8 34.6 36.4 40.0 
 

An optimal solution to the deterministic capital budget problem involves “selecting” all of the must-do 
projects along with selecting a subset of the optional projects so that the annual capital budget constraint is 
satisfied in each of the five years. What is a solution to the analogous problem when we have uncertain 
capital budgets? If we could wait to see the realization of the budget prior to selecting the portfolio of 
projects then we would simply solve 10 separate knapsack problems, i.e., one for each budget scenario. 
However, if we must commit to a capital budgeting plan prior to realizing the budget then we can employ 
a priority list as depicted in Figure 26. 

 

 
Figure 26. Candidate projects (e.g., 16 projects) are listed in the left-hand column. In a priority list 

these are mapped to priority levels in the middle column. Then the uncertain budget is revealed. 
For the budget realized in the figure, the two projects with the highest priority levels can be 

implemented.  

An example solution under 10 budget scenarios is shown Table 19. Of course, the must-do projects are 
selected in all budget scenarios, as indicated by the values of “1” under scenarios S1-S10.  Project 3 is also 
selected under all budget scenarios. The right-most column of the table indicates these seven projects are 
tied for priority levels 1-7. Projects 9 and 13 enter under budget scenario 2 (S2) and are at priority levels 8-
9, Project 4 enters under S3 (priority 10), Projects 6 and 15 under S4 (priority 11-12), Project 16 under S6 
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(priority 13), and Project 8 under S7 (priority 14). Projects 1 and 11 are not selected under any budget 
scenario and have the lowest priority level, tied for 15-16. For simplicity of presentation the model assumes 
that Plan A is the only option. Note that the prioritized nature of the solution means that as we read the table 
from left-to-right, once a project is selected (indicated by a “1”) it must remain selected under all higher 
budget scenarios. The expected NPV of the prioritized solution is $178.90M. 

 

Table 19. Example solution under 10 budget scenarios, S1-S10. If a project has a “0” in the 
corresponding entry, that project is not selected under that scenario, and it is selected under entry 

“1.” The must-do projects are selected under all scenarios. The right-most column indicates the 
priority level associated with each project. For example, there are seven projected tied for the 

highest priority because they are selected under all scenarios, and there are two projects tied for 
priority 15-16 because they are not selected under any scenario. For simplicity of presentation, this 

example has no timing options. 

ID Category Project name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Priority 

1 Optional HP feedwater heater 
upgrade 0 0 0 0 0 0 0 0 0 0 15-16 

2 Must do Pressurizer 
replacement 1 1 1 1 1 1 1 1 1 1 1-7 

3 Optional 
Improvement to 

emergency diesel 
generators 

1 1 1 1 1 1 1 1 1 1 1-7 

4 Optional Secondary system 
PHM system 0 0 1 1 1 1 1 1 1 1 10 

5 Must do Replacement of two 
reactor coolant pumps 1 1 1 1 1 1 1 1 1 1 1-7 

6 Optional 

Seismic modification, 
requalification, 
reinforcement, 
improvement 

0 0 0 1 1 1 1 1 1 1 11-12 

7 Must do Fire protection 1 1 1 1 1 1 1 1 1 1 1-7 

8 Optional Service water system 
upgrade 0 0 0 0 0 0 1 1 1 1 14 

9 Optional Batteries replacement 0 1 1 1 1 1 1 1 1 1 8-9 

10 Must do 
Replace CCW piping, 

heat exchangers, 
valves 

1 1 1 1 1 1 1 1 1 1 1-7 

11 Optional Reactor vessel 
internals 0 0 0 0 0 0 0 0 0 0 15-16 

12 Must do 
Reactor vessel 
upgrade (head 

included) 
1 1 1 1 1 1 1 1 1 1 1-7 

13 Optional Replace LP turbine 0 1 1 1 1 1 1 1 1 1 8-9 

14 Must do 
Replace 

instrumentation and 
control cables 

1 1 1 1 1 1 1 1 1 1 1-7 

15 Optional Condenser retubing 0 0 0 1 1 1 1 1 1 1 11-12 

16 Optional Replace moisture 
separator reheater 0 0 0 0 0 1 1 1 1 1 13 
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Table 20. The table replicates information from Table 14, and also shows the uncertain NPVs. The 
NPV values for the low-risk and medium-risk projects are shown for the three possible scenarios: 
pessimistic, most likely, and optimistic. The probabilities associated with the scenarios are given in 

Table 18. No-risk projects 2, 4, 5, 7, 9, 10, 12, and 14 are not subject NPV uncertainty and their 
values repeat those shown in Table 14. 

ID Project name Risk 
Level Options 

Capital costs ($M) NPV ($M) 

Y1 Y2 Y3 Y4 Y5 Pessimistic Most 
likely Optimistic 

1 HP feedwater heater 
upgrade Medium 

A: 13.01 1.31 0.00 0.00 0.00 12.35 20.68 24.68 

B: 0.00 13.01 1.31 0.00 0.00 11.99 20.08 23.97 

2 Pressurizer 
replacement No 

A: 9.19 0.93 0.00 0.00 0.00  -10.07  

B: 0.00 9.19 0.93 0.00 0.00  -9.78  

C: 0.00 0.00 0.00 9.19 0.93  -9.22  

3 
Improvement to 

emergency diesel 
generators 

Low 
A: 0.00 0.00 0.00 10.09 1.11 -3.15 1.81 5.32 

B: 0.00 0.00 10.09 1.11 0.00 -3.23 1.86 5.48 

4 Secondary system 
PHM system No 

A: 0.00 4.51 0.31 0.21 0.00  35.00  

B: 0.00 0.00 4.51 0.31 0.21  33.98  

5 
Replacement of two 

reactor coolant 
pumps 

No 
A: 0.00 18.63 0.00 0.00 0.00  -18.60  

B: 0.00 0.00 0.00 0.00 18.63  -17.02  

6 

Seismic 
modification, 

requalification, 
reinforcement, 
improvement 

Low 

A: 0.00 2.44 0.00 0.00 0.00 8.27 10.92 11.42 

B: 0.00 0.00 0.00 2.44 0.00 7.79 10.29 10.76 

C: 0.00 0.00 0.00 0.00 2.44 7.56 9.99 10.45 

7 Fire protection No 
A: 1.32 0.14 0.00 0.00 0.00  -1.44  

B: 0.00 0.00 0.00 1.32 0.14  -1.32  

8 Service water system 
upgrade Medium 

A: 2.35 0.00 0.00 0.00 0.00 -5.0 5.83 8.31 

B: 0.00 0.00 2.35 0.00 0.00 -4.71 5.50 7.84 

9 Batteries replacement No A: 0.29 0.00 0.00 0.00 0.00  2.10  

10 
Replace CCW 

piping, heat 
exchangers, valves 

No 

A: 0.00 0.00 4.58 0.47 0.00  -5.03  

B: 0.00 4.58 0.47 0.00 0.00  -5.18  

C: 0.00 0.00 0.00 4.58 0.47  -4.88  

11 Reactor vessel 
internals Medium 

A: 0.00 19.85 0.00 0.00 0.00 -10.38 16.99 30.00 

B: 0.00 0.00 0.00 0.00 19.85 -9.51 15.55 27.45 

12 
Reactor vessel 
upgrade (head 

included) 
No A: 5.27 0.00 0.00 0.00 0.00  -5.25  

13 Replace LP turbine Medium 
A: 0.00 0.00 18.79 0.00 0.00 119.01 133.62 139.86 

B: 0.00 0.00 0.00 18.79 0.00 115.55 129.72 135.78 

14 
Replace 

instrumentation and 
control cables 

No A: 5.94 0.61 0.00 0.00 0.00  6.52 - 

15 Condenser retubing Low 
A: 5.26 0.00 0.00 0.00 0.00 0.28 10.63 15.05 

B: 0.00 0.00 5.26 0.00 0.00 0.27 10.02 14.19 

16 Replace moisture 
separator reheater Medium 

A: 3.17 0.00 0.00 0.00 0.00 -0.46 4.60 6.76 

B: 0.00 0.00 0.00 3.17 0.00 -0.42 4.21 6.19 

C: 0.00 0.00 0.00 0.00 3.17 -0.37 3.74 5.50 
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When considering all possible plans, a different portfolio can be selected under each scenario, and so 
the prioritization scheme must consider more than (2.5	𝑥	10K)/= ≈ 1𝑥10KG solutions, although many are 
eliminated by feasibility with respect to the budget and others due to prioritization combinatorics. We solve 
this problem using an integer programming formulation, which we detail in Table 19.  

The third significant change we make to our base model is that we allow for uncertainty in the NPV of 
the projects. In particular, we create three groups of projects, no-risk, low-risk, and medium-risk projects. 
No-risk projects have the NPV (and cost) values already shown in Table 17. Low-risk projects have three 
possible scenarios for their NPVs: a pessimistic value, most likely value, and optimistic value. All low-risk 
projects move in concert with their realizations, e.g., if the low-risk set consists of Projects 3, 6, and 15, if 
one takes its optimistic value then so do the other two. Medium-risk projects again have three realizations, 
are perfectly correlated within their group, and are independent of the low-risk realizations. The realizations 
of the low- and medium-risk projects are independent of the budget realizations leading to 90 total 
scenarios. Table 20 shows the NPV values for the low-risk and medium-risk projects for the three possible 
scenarios: pessimistic (low), most likely (medium), and optimistic (high). 

 

Table 21. The table shows no-risk, low-risk, and medium-risk projects. There are pessimistic, most 
likely, and optimistic scenarios for the NPVs of these projects, which are realized with the 

probabilities shown in the table. 

Risk Projects 
Probability 

Pessimistic Most likely Optimistic 
No risk 2, 4, 5, 7, 9, 10, 12, 14 0 1 0 

Low risk 3, 6, 15 1/6 2/3 1/6 
Medium risk 1, 8, 11, 13, 16 1/3 1/2 1/6 

 

A detailed solution to the 90-scenario model would be the analog of Table 19 with two differences: 
first there would be 90 columns, rather than 10 columns, detailing the scenarios of the budget and the 
pessimistic, most likely, and optimistic scenarios for the low-risk and medium-risk projects; and second 
instead of “1” and “0” we would have Plan “A”, “B”, “C” or “Do Nothing” to capture the timing options. 
For obvious reasons, we do not present this level of detail. However, Table 22 summarizes an optimal 
prioritization and shows the frequency–out of 90 scenarios–with which each project is implemented under 
each plan. While the 90 scenarios do not all have equal probability mass, the table suggests, in a simple and 
interpretable way, how higher priority projects are implemented more frequently under more preferred 
means. While there are exceptions (e.g., Project 13), medium risk projects tend to receive lower priority. 
Must-do projects are not necessarily top priority because their implementation can be delayed within the 
five-year horizon.  

Table 22 shows a solution which is optimized with respect to the expected NPV, but the solution does 
not account for risk. What does risk mean in the context of capital budgeting under uncertainty? Figure 27 
shows a histogram of the NPV values from the optimal prioritized solution, accounting for the probability 
mass associated with each scenario. We may be concerned about the low values of NPV in the left-hand 
tail, e.g., $129M and $144M. Would a different objective function that accounts for risk lead to a solution 
that, in some sense, better accounts for risk by decreasing the likelihood of low NPV realizations? In what 
follows we describe principled ways to optimize priorities in the context of capital budgeting while 
accounting for the risk of low-NPV outcomes.   
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Table 22. Optimal prioritization when both budget, costs, and NPV values are uncertain, with a 
total of 90 scenarios. The “Priority” column indicates the priority level, ranging from 1-16. The 

columns for Plan A, B, C, and Do Nothing indicate the number of scenarios in which each option is 
selected. Note that while “must do” projects are selected under all 90 scenarios, their priority can 

decrease based on the timing of their implementation. The expected NPV associated with this 
prioritization is $168.90M. 

ID Project name Category Risk Priority Plan A Plan B Plan C Do 
Nothing 

12 Reactor vessel upgrade (head 
included) Must do No 1-5 90 0 0 0 

14 Replace instrumentation and 
control cables Must do No 1-5 90 0 0 0 

9 Batteries replacement Optional No 1-5 90 0 0 0 

6 
Seismic modification, 

requalification, reinforcement, 
improvement 

Optional Low 1-5 90 0 0 0 

2 Pressurizer replacement Must do No 1-5 90 0 0 0 

4 Secondary system PHM 
system Optional No 6 69 21 0 0 

13 Replace LP turbine Optional Med 7-8 63 27 0 0 

3 Improvement to emergency 
diesel generators Optional Low 7-8 63 27 0 0 

1 HP feedwater heater upgrade Optional Med 9 27 63 0 0 

5 Replacement of two reactor 
coolant pumps Must do No 10 12 78 0 0 

7 Fire protection Must do No 11 6 84 0 0 

10 Replace CCW piping, heat 
exchangers, valves Must do No 12 6 71 13 0 

15 Condenser retubing Optional Low 13 0 77 0 13 

16 Replace moisture separator 
reheater Optional Med 14 0 48 5 37 

8 Service water system upgrade Optional Med 15 0 48 0 42 

11 Reactor vessel internals Optional Med 16 0 18 0 72 
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Figure 27. Histogram of NPV realizations across 90 scenarios accounting for the probability mass 
of each scenario. The optimized priority list maximizes the expected net present value but does not 

account for risk. 

 

8.2 Risk-Based Stochastic Capital Budgeting using Conditional 
Value-at-Risk 

 

8.2.1 Definitions of VaR and CVaR 
Let 𝑋 be a random variable with a cumulative distribution function 𝐹L(𝑧) 	= 	𝑃{𝑋 ≤ 𝑧}. It will be 

useful to think of 𝑋 as a “loss," or more generally be such that large values are bad. The VaR of 𝑋 with 
confidence level 𝛼 (e.g., 𝛼 = 0.90) is: 

𝑉𝑎𝑅M(𝑋) = min{𝑧|𝐹L(𝑧) ≥ 𝛼}, (13) 

which is equivalent to 𝑉𝑎𝑅M(𝑋) = 𝐹L./(𝛼)  if 𝑋  is a continuous random variable. By this definition, 
𝑉𝑎𝑅M(𝑋) is a (lower) 𝛼-percentile of the random variable 𝑋. An alternative measure of risk is conditional 
value-at-risk, 𝐶𝑉𝑎𝑅M(𝑋), introduced [20].  Here, 𝐶𝑉𝑎𝑅M(𝑋) is the conditional expectation of 𝑋 given that 
𝑋	 ≥ 𝑉𝑎𝑅M(𝑋). Figure 28 (see also [21]) shows the relationship between these two measures of risk, 
𝑉𝑎𝑅M(𝑋) and 𝐶𝑉𝑎𝑅M(𝑋). 

 



 

59 

 
Figure 28. Relationship between value-at-risk and conditional value-at-risk. A typical value of α is  

α=0.90. 

The typical definition of 𝐶𝑉𝑎𝑅M(𝑋) is 𝐶𝑉𝑎𝑅M(𝑋) = 𝔼{𝑋|𝑋 > 𝑉𝑎𝑅M(𝑋)}. There are alternative ways 
to define this measure, which are mathematically equivalent. Rockafellar and Uryasev in [20] (see also 
[22]) defines CVaR as: 

𝐶𝑉𝑎𝑅M[𝑋] = min
-
�𝑢 +	

1
1 − 𝛼

𝔼[𝑋 − 𝑢]:¯, (14) 

where [𝑋 − 𝑢]: = max(𝑋 − 𝑢, 0).	Here, variable 𝑢  is simply an auxiliary decision variable whose 
optimal value turns out to be 𝑉𝑎𝑅M(𝑋). The above definition is particularly useful for computation in the 
context of optimization.  

Researchers have argued for using CVaR over VaR as a measure of risk. Theoretically, CVaR satisfies 
the assumptions of a so-called coherent risk measure (see [23]), and VaR does not. In simpler terms, 
minimizing VaR is concerned with the numerical value of the 95-th percentile (say) of the loss, but it does 
not care about the magnitude of larger losses. CVaR takes these magnitudes into account. 

 

8.2.2 CVaR in Capital Budgeting 
Figure 29 is a flow-chart giving a roadmap for the model development and analysis that follows. While 

our focus is on capital budgeting, the framework applies more broadly. We start with data, which may be 
historical and believed to be representative, or plausible scenarios derived from expert elicitation. In what 
follows we first consider the left-hand path in the flow-chart. That means that we construct an explicit risk 
measure, and in particular, we will use a weighted combination of expectation and CVaR, which we discuss 
in detail below.  

This approach allows us to parametrically vary the weight on maximizing expected NPV versus 
penalizing solutions that yield low-NPV scenarios, and we denote the weight by 𝜆	with 0 ≤ 𝜆 ≤ 1. Let 
𝑁𝑃𝑉(𝑠, 𝜉) denote the net present value under a prioritization decision specified by decision 𝑠, and under a 
realization of the budget and profit of each project, denoted by 𝜉. Then, we seek to solve the following 
optimization model:  

max
7NO

						(1 − 𝜆)𝔼[𝑁𝑃𝑉(𝑠, 𝜉)] − 𝜆𝐶𝑉𝑎𝑅M[−𝑁𝑃𝑉(𝑠, 𝜉)]. (15) 
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When 𝜆 = 0 the model reduces to that discussed above; i.e., we seek a prioritization decision, 𝑠, to 
maximize expected NPV, where “𝑠	𝜖	𝑆” simply indicates the constraints that a prioritized solution must 
satisfy.  

As just discussed above, 𝐶𝑉𝑎𝑅M[𝑋] is typically applied to a random variable, 𝑋, which represents a 
loss; i.e., we seek to avoid large values of 𝑋. In this context, let 𝑉𝑎𝑅M[𝑋] denote the 𝛼-level quantile of 𝑋. 
Thus, if 𝛼 = 0.75 then  𝑉𝑎𝑅=.DQ[𝑋] is the value such that 75% of the realizations of 𝑋 have lower values 
of loss. Suppose for simplicity that 𝑁𝑃𝑉(𝑠, 𝜉) values are positive. Large values of 𝑁𝑃𝑉(𝑠, 𝜉) are good, and 
hence large values of −𝑁𝑃𝑉(𝑠, 𝜉)  (i.e., those closer to zero) are bad. In Figure 27 large values of 
−𝑁𝑃𝑉(𝑠, 𝜉)  are, within a sign, $129M and $144M. Using the definition of 𝐶𝑉𝑎𝑅M[𝑋] = 	𝔼[	𝑋	|	𝑋 >
𝑉𝑎𝑅M[𝑋]	] we thus have that the conditional value-at-risk is the expected value of the loss, given that the 
loss exceeds a certain percentile. So, when 𝜆 = 1 we seek to minimize the expected value of NPV given 
that they fall below a threshold. More generally, values of 𝜆 between 0 and 1 seek a trade-off between 
reward and risk, captured by expected NPV and CVaR, respectively.  

 
  

 
Figure 29. Flow-chart illustrating two principled ways to approach risk-averse optimization. In 
both cases we start with available data. The left path then fits a probability distribution to that 
data, and then select a risk-averse objective function. One popular choice is a weighted sum of 

expectation and conditional value-at-risk. We then minimize risk, after possibly forming a Monte 
Carlo sample average approximation or employing some other discretization of the probability 

distribution. The right-hand path instead formulates and solves a distributionally robust 
optimization model. We defer detailed discussion of the right-hand path to Section 11.   

 

8.2.3 CVaR Mathematical Optimization Model 
We briefly state the CVaR-based optimization model for completeness. The basic notation and 

formulation–albeit without the CVaR component–are presented in detail in [19].  The following model 
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combines three sub-models: (i) the basic knapsack-style optimization model for deterministic capital 
budgeting, (ii) the prioritization model, and (iii) optimization-based formulation of conditional value of risk 
with auxiliary variable 𝑢.  

The objective function in (CVaR-1a) forms a weighted sum of NPV and CVaR, using respective 
weights 1 − 𝜆 and 𝜆. Constraint (CVaR-1b) linearizes the positive-part operator. Constraint (CVaR-1c) 
says that either project 𝑖 is higher priority than 𝑖R or vice versa, allowing for ties. Constraint (CVaR-1d) 
requires that if project 𝑖 is higher priority than 𝑖R (𝑠))' = 1) and we select the lower priority project (𝑦)'

H =
1) then we must also select the higher priority project (𝑦)H = 1) all under scenario 𝜔. Constraint (CVaR-
1e) requires that we respect annual capital budgets.  Constraint (CVaR-1f) determines whether we select 
project 𝑖 under some plan (𝑦)H = 1) or whether we choose the do-nothing option (𝑦)H = 0). Constraint 
(CVaR-1g) says that “do-nothing” is not an option for must-do projects. Constraint (CVaR-1h) is a piggy-
backing constraint, which does not occur in our problem instance. Constraints (CVaR-1i) and (CVaR-1j) 
are logical constraints concerning a full prioritization to avoid illegal “cycles” in the logic, e.g., avoiding 
that Project 3 is higher priority than Project 2, which is higher priority than Project 7, which is higher 
priority than Project 3.  Constraint (CVaR-1k) says that if project 𝑖 is higher priority than 𝑖R (𝑠))' = 1) and 
the lower priority project is selected via Plan B (say) then the higher priority project 𝑖 can only be selected 
via Plan A or B (but not C) under that scenario.  

  

max
7,#,8,S,T,-

(1 − 𝜆) 4 𝑞H44𝑎)FH𝑥)FH − 𝜆 ´𝑢 +
1

1 − 𝛼
4 𝑞H𝑣H
HNU

µ
F∈W")∈XH∈U

 (CVaR-1a) 

s.t. 𝑣H ≥ −44𝑎)FH𝑥)FH − 𝑢,𝜔𝜖Ω
FNW")NX

 (CVaR-1b) 

 𝑠))' + 𝑠)') ≥ 1, 𝑖 < 𝑖R, 𝑖, 𝑖R𝜖𝐼 (CVaR-1c) 
 𝑦)H ≥ 𝑦)'

H + 𝑠))' − 1, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω  (CVaR-1d) 
 44𝑐)FY(H 𝑥)FH ≤

F∈W")∈X

𝑏Y(H , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,𝜔 ∈ Ω (CVaR-1e) 

 4𝑥)FH = 𝑦)H ,				𝑖 ∈ 𝐼, 𝜔 ∈ Ω
F∈W"

 (CVaR-1f) 

 𝑦)H = 1, 𝑖 ∈ 𝑀,𝜔 ∈ Ω (CVaR-1g) 
 𝑥)'F'

H 	≤ 		𝑥)FH , (𝑖R, 𝑗R) ∈ 𝐼𝐽)F 	, 𝑗 ∈ 𝐽) , 𝑖 ∈ 𝐼 (CVaR-1h) 
 	𝑠))'	 + 𝑠)')'' + 𝑠)'') ≤ 2, 𝑖 ≠ 𝑖R, 𝑖R ≠	 𝑖RR, 𝑖RR ≠ 𝑖, 𝑖, 𝑖R, 𝑖RR ∈ 𝐼 (CVaR-1i) 
 𝑠))' + 𝑠)') ≤ 1, 𝑖 < 𝑖R, 𝑖, 𝑖R ∈ 𝐼 (CVaR-1j) 
 𝑥)'F

H + 𝑠))'	 − 1 ≤ 4 𝑥)FH	, 𝑖 ≠ 𝑖R	𝑖, 𝑖R ∈ 𝐼, 𝑗 ∈ 𝐽)' , 𝜔 ∈ Ω
F'∈W"
F'[F	

 
(CVaR-1k) 

 𝑠))' , 𝑥)F
H , 𝑦)H ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝑗 ∈ 𝐽) 	, 𝜔 ∈ Ω (CVaR-1l) 

 𝑣H ≥ 0,𝜔𝜖Ω. (CVaR-1m) 
 

8.2.4 Analysis of Risk Versus Return Optimization using CVaR and NPV  
We now revisit the analysis presented above in the risk-neutral case (i.e., 𝜆 = 0) by showing an optimal 

prioritization using input data from Table 20.  We use 𝛼 = 0.75 so that we are concerned about the lowest 
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25% of NPV realizations in terms of CVaR. With this value of 𝛼, Table 23 shows an optimal prioritization 
for 𝜆 = 0, 0.5, and 1.  As Table 19 and Table 22 suggest, there are often ties at certain prioritization levels, 
and here we break these ties arbitrarily, and this theme recurs in our analysis.  The table shows that as the 
risk aversion parameter 𝜆 grows, most of the projects see little movement in the priority list.  However, 
Project 2 drops in priority from being ranked 5th to 11th, Project 3 drops from being ranked 8th to 13th, and 
Project 15 climbs in the prioritization from 13th to 4th.  

At 𝜆 = 0 optional Project 3 – which has negative NPV under the pessimistic low-risk profit scenarios 
– is implemented under Plan A in 63 scenarios and under Plan B in 27 scenarios.  At 𝜆 = 1 its lower 
prioritization has it implemented under Plan B in 61 scenarios, and it is not selected in 29 scenarios, 
avoiding the negative NPV realizations, and reducing down-side risk. In concert with this change, we delay 
the must-do Project 2 from implementation under Plan A in all 90 scenarios when 𝜆 = 0 to implementation 
under Plan B in 51 scenarios and Plan C in 39 scenarios. The altered timing of the associated costs for 
Projects 2 and 3 frees up first-year budget to select Project 15 under Plan A in all 90 scenarios under 𝜆 = 1 
rather than under Plan B in 77 scenarios and not selected under 13 scenarios when 𝜆 = 0.  

 

Table 23. Optimal project prioritization. Here we optimize a weighted sum of the expected value of 
NPV (weight 1-λ) and CVaR (weight λ). The respective NPV and CVaR values are as follows:  λ=0: 

(NPV=168.90, CVaR=140.54), λ=0.5: (NPV=167.68, CVaR=142.72), and λ=1: (NPV=166.51, 
CVaR=143.05). We note that we write λ=0+ and λ=1- in the column headers because we prefer to 
place small positive weight on CVaR in the former case and NPV in the latter case. For example, 

solving with λ=0.0 yields the same NPV but CVaR of 128.16, a dramatic increase in risk, while 
using λ=0.01 or 0.05 results in the same NPV but eliminates low NPV scenarios.   

ID Project name Category Risk 𝜆 = 0! 𝜆 = 0.5 𝜆 = 1" 

1 HP feedwater heater upgrade Optional Med 9 8 8 

2 Pressurizer replacement Must do No 5 11 11 

3 Improvement to emergency diesel generators Optional Low 8 15 13 

4 Secondary system PHM system Optional No 6 6 5 

5 Replacement of two reactor coolant pumps Must do No 10 9 10 

6 Seismic modification, requalification, 
reinforcement, improvement 

Optional Low 4 7 6 

7 Fire protection Must do No 11 10 9 

8 Service water system upgrade Optional Med 15 14 15 

9 Batteries replacement Optional No 3 3 3 

10 Replace CCW piping, heat exchangers, 
valves 

Must do No 12 12 12 

11 Reactor vessel internals Optional Med 16 16 16 

12 Reactor vessel upgrade (head included) Must do No 1 1 1 

13 Replace LP turbine Optional Med 7 5 7 
14 Replace instrumentation and control cables Must do No 2 2 2 

15 Condenser retubing Optional Low 13 4 4 

16 Replace moisture separator reheater Optional Med 14 13 14 
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Figure 30 shows the Pareto efficient frontier representing the tradeoff between risk (CVaR on the 
horizontal axis, with risk growing left-to-right, as is standard in such plots) and return (expected NPV 
growing on the vertical axis).  The upper-right point corresponds to 𝜆 = 0 in which we maximize expected 
NPV. As we move from 𝜆 = 0 to 	𝜆 = 0.5, the expected NPV drops by $1.22M in order to reduce risk as 
measured by CVaR by $2.18M.  An additional reduction in risk of $0.33M is possible but requires reducing 
NPV by an additional $1.17M. 

Figure 31 allows us to further visualize risk reduction by plotting the probability distribution of NPVs 
across the 90 scenarios, weighted by their respective probabilities. The red bars correspond to λ = 0.05 
when most weight is on maximizing NPV and the blue histogram corresponds to λ = 0.95 when most 
weight corresponds to minimizing CVaR to reduce low NPV realizations. As the weight on the risk term 
grows, note how the distribution of the NPV values change. The latter risk-averse solution increases the 
lowest NPV realization of $128M ($129M bin) by $4M to $132M ($135 bin) with a probability mass of 
6%.  

Similarly, the risk-averse solution effectively increases $144M (7%) by $8M to $152M. All subsequent 
realizations reading left-to-right come in pairs. For example, the 25% blue bar and 19% red bar both 
correspond to the $152M bin, and the 9% bars both correspond to the $161M bin. The value of α is 0.75, 
so can observe that the 25th percentile (value of $152M) is the concentration point. Overall, the risk-averse 
histogram reduces the left-hand tail and the expense of reducing the overall expected NPV. 

 

  
Figure 30. Subset of the Pareto frontier using just λ=0,0.5, and 1, where the risk is measured by 

CVaR and return is measured by Expected NPV. Optimal solutions are obtained by solving model 
(1) with input from Table 17. The plot is oriented so that risk grows moving left-to-right on the x-
axis and return grows moving bottom to top along the y-axis. Starting from the upper-right point, 

we can reduce risk by $2.18M by reducing expected NPV by $1.22M. Additional reduction is risk of 
$0.33M requires reducing NPV by an additional $1.17M. 
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Figure 31. Histogram for scenario NPVs accounting for probability mass associated with each 

scenario. The red histogram corresponds to λ=0.05 when most weight is on maximizing NPV and 
the blue histogram corresponds to λ=0.95 when most weight corresponds to minimizing CVaR for 

low NPV realizations. 

In the discussion above, we restricted attention to analysis with 𝛼 = 0.75, so that we were concerned 
about the lowest 25% of NPV realizations in computing risk via CVaR, and we further restricted attention 
to 𝜆	 ≈ 0, 𝜆 = 0.5 and 𝜆	 ≈ 1 for the relative weight on risk (CVaR) and return (expected NPV). Here, we 
expand on that analysis. Figure 32 summarizes the risk-return tradeoff for 𝛼 = 0.75, 0.80, 0.90, 0.95,	 and 
0.99. The figure repeats the Pareto frontier for α = 0.75 (left-most plot) from Figure 30 except that now 
we include the full range of values of λ and achieve five rather than three points on the efficient frontier. 
The additional four plots repeat similar frontiers but for α = 0.80, 0.90, 0.95, 0.99, where we focus on 
values that are further in the poor-outcome tail of NPV as	α grows.  

For each plot, the top-right point is for low values of λ ≈ 0 (maximizing NPV) and the lower-left point 
on the frontier is for λ ≈ 1 (minimizing CVaR).  Of course, the top-right points are identical in terms of 
NPV, regardless of the value of 𝛼. As discussed above, for 𝛼 = 0.75 moving from λ ≈ 0 to λ ≈ 1 results 
in the loss in the expected NPV of $2.4M but a gain in CVaR of $2.5M. As λ grows, the corresponding 
standard deviation of the NPV realizations, which is another measure of risk, decreases from $22.9M to 
$19.5M to $18.9M as we move from λ ≈ 0 to λ ≈ 0.5 to λ ≈ 1.  

In other words, for 𝛼 = 0.75	at the price of reducing expected NPV by $2.4M we reduce risk, as 
measured by CVaR by $2.5M, and as measured by standard deviation by $4.0M. As another example, 
consider 𝛼 = 0.90. Here, we reduce risk as measured by CVaR by $4.4M as we move from λ ≈ 0 to λ ≈ 1 
corresponding to a drop in NPV of $1.3M. The standard deviation in this case drops by $3.5M from $22.9M 
to $19.4. It is not surprising that under 𝛼 = 0.90 the standard deviation drops less than under 𝛼 = 0.75 
because CVaR only attempts to “shape” the 10% lower tail rather than the 25% lower tail of NPVs under 
𝛼 = 0.75.  In our view, these are risk-return tradeoffs worth considering. 
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More generally, Figure 32 shows diminishing returns; i.e., we obtain sharper drops in risk as we initially 
increase the weight on λ ≈ 0 to a small positive value. More modest reductions in risk follow, requiring 
greater loss of expected NPV.  As the figure shows, there are specific NPV values that repeat across 
different values of α, but as α grows the conditional expectation increasingly focuses on conditional means 
of corresponding to lower realizations of NPV. The figure shows this via the Pareto frontiers moving to the 
right as the value of 𝛼 increases from 0.75 to 0.99; i.e., as we become more and more concerned about the 
tail.  

 
 

 
Figure 32. Pareto frontiers for different values of a. The figure repeats the Pareto frontier for 

α=0.75 (left-most plot) from Figure 30 except that now we include the full range of values of λ and 
achieve five rather than three points on the efficient frontier. The additional four plots repeat 

similar frontiers but for α=0.8,0.9,0.95,0.99. where we focus on values that are further in the poor-
outcome tail of NPV. Note that as the figure shows, there are specific NPV values that repeat across 

different values of α, but as α grows the conditional expectation increasingly focuses on low 
realizations.     

Table 24 shows optimal project ranking for 𝛼 = 0.75 when solving model (1) for a range of values of  
𝜆. While there are other small changes, Table 24 a higher fidelity version of Table 23 and suggests that the 
trends discussed in the context of Table 23 capture the important shifts in prioritization as we become 
increasingly risk averse.  
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Table 24. Optimal project prioritization from solving model (1) when α=0.75 and λ ranges from 0.1 
to 0.9. 

ID Project name Category Risk 𝝀 =0.1 𝝀 =0.2 𝝀 =0.3 𝝀 =0.4 𝝀 =0.5 𝝀 =0.6 𝝀 =0.7 𝝀 =0.8 𝝀 =0.9 

1 HP feedwater heater 
upgrade Optional Med 9 9 9 8 8 8 8 8 8 

2 Pressurizer 
replacement Must do No 5 5 5 13 11 12 12 11 11 

3 
Improvement to 

emergency diesel 
generators 

Optional Low 8 8 8 15 15 15 15 14 13 

4 Secondary system 
PHM system Optional No 6 6 6 6 6 6 7 5 5 

5 Replacement of two 
reactor coolant pumps Must do No 10 10 10 11 9 10 10 10 10 

6 

Seismic modification, 
requalification, 
reinforcement, 
improvement 

Optional Low 4 4 4 7 7 7 6 6 6 

7 Fire protection Must do No 11 11 11 10 10 9 9 9 9 

8 Service water system 
upgrade Optional Med 15 15 15 14 14 14 14 15 15 

9 Batteries replacement Optional No 3 3 3 3 3 3 3 3 3 

10 
Replace CCW piping, 

heat exchangers, 
valves 

Must do No 12 12 12 12 12 11 11 12 12 

11 Reactor vessel 
internals Optional Med 16 16 16 16 16 16 16 16 16 

12 
Reactor vessel 
upgrade (head 

included) 
Must do No 1 1 1 1 1 1 1 1 1 

13 Replace LP turbine Optional Med 7 7 7 5 5 5 5 7 7 

14 
Replace 

instrumentation and 
control cables 

Must do No 2 2 2 2 2 2 2 2 2 

15 Condenser retubing Optional Low 13 13 13 4 4 4 4 4 4 

16 Replace moisture 
separator reheater Optional Med 14 14 14 9 13 13 13 13 14 

NPV ($M) 168.92 168.92 168.92 168.02 167.68 167.68 167.68 167.20 166.57 

CVaR0.75 ($M) 140.54 140.54 140.54 142.29 142.72 142.72 142.72 142.91 143.05 

Standard Deviation ($M) 22.90 22.90 22.90 19.89 19.52 19.52 19.49 19.11 18.82 

 
In the remainder of Section 10, we repeat the weighted sum formulation shown in model (CVAR-1) 

for the optimal project prioritization problem to a range of related models, starting with the single knapsack 
model.  
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8.2.5 CVaR for Single Knapsack Problem 

max(1 − 𝜆) 4 𝑞H4𝑝)H𝑥)H

)∈3H∈U

− 𝜆 ´𝑢 +
1

1 − 𝛼
4 𝑞H𝑣H
H∈U

µ (CVAR-2a) 

𝑣H ≥ −4𝑝)H𝑥)H

)∈3

− 𝑢,𝜔 ∈ Ω (CVAR-2b) 

4𝑤)H𝑥)H

)∈3

≤ 𝑐H (CVAR-2c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (CVAR-2d) 
𝑥)H ≥ 𝑥)'

H + 𝑦),)' − 1	𝑎𝑛𝑑		𝑖 ≠ 𝑖R (CVAR-2e) 
	𝑥)H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (CVAR-2f) 

𝑣H ≥ 0,𝜔 ∈ Ω, 𝜆 ∈ [0, 1] (CVAR-2g) 
 

8.2.6 CVaR for Multi-Dimensional Knapsack Problem 

max(1 − 𝜆) 4 𝑞H4𝑝)H𝑥)H

)∈3H∈U

− 𝜆 ´𝑢 +
1

1 − 𝛼
4 𝑞H𝑣H
H∈U

µ (CVAR-3a) 

𝑣H ≥ −4𝑝)H𝑥)H

)∈3

− 𝑢,𝜔 ∈ Ω (CVAR-3b) 

4𝑤),IH 𝑥)H

I∈?

≤ 𝑐IH (CVAR-3c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (CVAR-3d) 
𝑥)H ≥ 𝑥)'

H + 𝑦),)' − 1	𝑎𝑛𝑑		𝑖 ≠ 𝑖R (CVAR-3e) 
	𝑥)H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (CVAR-3f) 

𝑣H ≥ 0,𝜔 ∈ Ω, 𝜆 ∈ [0, 1] (CVAR-3g) 
 

8.2.7 CVaR for Multiple Knapsack Problem 

max(1 − 𝜆) 4 𝑞H
H∈U

4 4𝑝)H𝑥),6H

)∈36∈!

− 𝜆 ´𝑢 +
1

1 − 𝛼
4 𝑞H𝑣H
H∈U

µ (CVAR-4a) 

𝑣H ≥ − 4 4𝑝)H𝑥),6H

)∈36∈!

− 𝑢,𝜔 ∈ Ω (CVAR-4b) 

4𝑤)H𝑥),6H

)∈3

≤ 𝑐6H  (CVAR-4c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑		𝑖 < 𝑖R (CVAR-4d) 

4 𝑥),6H

6∈!

≥ 4 𝑥)',6
H

6∈!

+ 𝑦),)' − 1	𝑎𝑛𝑑	𝑖 ≠ 𝑖R (CVAR-4e) 

4 𝑥),6H

6∈!

≤ 1 (CVAR-4f) 

𝑥),6H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (CVAR-4g) 
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𝑣H ≥ 0,𝜔 ∈ Ω, 𝜆 ∈ [0, 1] (CVAR-4e) 
 

8.2.8 CVaR for Multiple-Choice Knapsack Problem 

max(1 − 𝜆) 4 𝑞H
H∈U

44𝑝),FH 𝑥),FH

)∈3F∈W"

− 𝜆 ´𝑢 +
1

1 − 𝛼
4 𝑞H𝑣H
H∈U

µ (CVAR-4a) 

𝑣H ≥ −44𝑝),FH 𝑥),FH

)∈3F∈W"

− 𝑢,𝜔 ∈ Ω (CVAR-4b) 

4𝑤),FH𝑥),FH

)∈3

≤ 𝑐H (CVAR-4c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (CVAR-4d) 

4𝑥),FH
W"./

F1/

≥ 4 𝑥)',F
H

W"./

F1/

+ 𝑦),)' − 1	𝑎𝑛𝑑	𝑖 ≠ 𝑖R 
(CVAR-4e) 

4𝑥),FH

F∈W"

= 1 (CVAR-4f) 

𝑥),6H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (CVAR-4g) 
𝑣H ≥ 0,𝜔 ∈ Ω, 𝜆 ∈ [0, 1] (CVAR-4h) 

 
 

9. DISTRIBUTIONALLY ROBUST OPTIMIZATION 
 

9.1 Overview 
In Section 8 we considered a risk-averse approach to capital budgeting by optimizing a weighted sum 

of expected NPV and CVaR, following the left-hand path in Figure 29. We now consider the figure’s right-
hand path, i.e., we consider an approach to risk-averse decision making using DRO [24]. To this end, we 
begin with a nominal stochastic optimization problem: 

max
7∈O

4𝑞J𝑓(𝑠, 𝜉J)
J∈]

 (16) 

 
In our context, the nominal model is a stochastic capital budgeting problem in which we maximize 

expected NPV and, following the notation in Section 10, we could have 𝑓(𝑠, 𝜉J) = 𝑁𝑃𝑉(𝑠, 𝜉J). In this 
context “𝑠	𝜖	𝑆” simply indicates the constraints that a prioritized solution must satisfy, wherein we prioritize 
project selection subject to uncertainty in costs and the NPV of each project as well as uncertainty in 
resource availability. The goal is to prioritize so as to maximize expected NPV, assuming that the nominal 
distribution, specified by the probability mass function 𝑞J, 𝜎𝜖𝛴, is correct. 

We suppose that 𝜉 is a discrete random variable with finite sample space Ω, so that 𝜉H, 𝜔𝜖Ω, enumerate 
all possible realizations. We further suppose that we only have observations of 𝜉J , for 𝜎𝜖𝛴 ⊂ Ω, i.e., 
possibly a strict subset, which may arise in a data-driven setting. In such a data-driven setting we could 
have, for example, probability mass 𝑞J = 1/|𝛴| for all 𝜎𝜖𝛴. 

A DRO variant of this nominal stochastic optimization model is then given by: 
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max
7∈O

min
%∈>

4 𝑝H𝑓(𝑠, 𝜉H)
H∈U

. (17) 

 

Here, we may view this DRO model as playing a “game” against nature. First, we select 𝑠𝜖𝑆, and then 
knowing 𝑠, nature selects a worst-case probability distribution, 𝑝 ∈ 𝑃, to minimize the expected NPV, 
which we seek to maximize. We will make precise what we mean by the Distributional Uncertainty Set 
(DUS), denoted by 𝑃 , below, but for the moment it is enough to think of the set as representing a 
neighborhood of probability distributions centered on the given probability mass function, 𝑞, with the radius 
of the neighborhood specified by parameter 𝜀. If 𝜀	 = 	0 then the DRO model reduces to the nominal model. 
If 𝜀  is very large then nature will select the single worst-case scenario, e.g., the scenario with lowest 
budgets, highest costs, and lowest NPVs. This is too conservative to be useful (i.e. if we are living in this 
world, it is very likely that the plant would be uneconomical no matter what decisions are made). However, 
with moderate values of 𝜀  we obtain solutions that hedge against deviations from 𝑞  without being 
excessively conservative. 

Importantly, we do not view nature as malevolent, despite occasional evidence to the contrary. Rather, 
we use “min

%N>
” to combat over-adapting our solution to a specific assumption about the probability 

distribution. In this sense, DRO plays the role of a “regularizer” to combat over-fitting that is analogous to 
regularizers used in high-dimensional statistics and statistical machine learning. Our approach to DRO 
requires further mathematical and intuitive development before we can analyze solutions to the DRO 
problem and compare them with the CVaR approach.  

 

9.2 Defining a Distributional Uncertainty Set via the Wasserstein 
Distance 

By the constraints denoted by 𝑝	 ∈ 	𝑃 we require that nature select a probability mass function, 𝑝, that 
is “close” to the nominal or empirical data-driven distribution 𝑞. We effect this by defining the DUS:  

𝑃 = Á	𝑝 ∶ 𝐷(𝑝, 𝑞) ≤ 𝜀, 4 𝑝H = 1, 𝑝H ≥ 0,𝜔 ∈ Ω
H∈U

Ã, (18) 

where 𝐷(𝑝, 𝑞) is the distance between nature’s choice, 𝑝, and the nominal data-driven distribution,  𝑞. As 
indicated above, the radius parameter 𝜀 governs the latitude we give nature, which in turn governs the 
degree of conservatism that we face when selecting decision 𝑠 ∈ 𝑆.  

There are multiple ways to measure the “distance”, 𝐷(𝑝, 𝑞), between two probability distributions, 
which include the Kolmogorov-Smirnov distance, Kullback-Leibler divergence, chi-squared distances, 
total variation, and more general φ-divergences. The Wasserstein distance, which is based on the idea of 
optimal transport, is a particularly useful way to measure such a distance in the context of distributionally 
robust optimization. For a distribution with known finite support, the Wasserstein distance, 𝐷(𝑞, 𝑝) , 
between a given distribution, 𝑞J , 𝜎 ∈ 𝛴, and a given candidate robust distribution, 𝑝H , 𝜔 ∈ Ω,  is provided 
by the optimal value of the transportation problem: 

𝐷(𝑞, 𝑝) = min
S

4 𝑑J,H𝑧J,H
J∈],H∈U

 

s.t.				 4 𝑧J,H = 𝑞J , 𝜎 ∈ Σ
H∈U

 
(19) 
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4𝑧J,H = 𝑝H , 𝜔 ∈ Ω	
J∈]

 

𝑧J,H ≥ 0, 𝜎 ∈ Σ,𝜔 ∈ Ω. 

 
The intuition behind this measure concerns the magnitude of probability mass, 𝑞J , that must be 

transported distance 𝑑J,H from vector ξ^ to vector ξ_ via variable 𝑧J,H. At one extreme case, if the two 
sample spaces and probability mass functions coincide, i.e., Ω = Σ	and	𝑝H = 𝑞H, and 𝑑H,H = 0 for all 𝜔 ∈
Ω then 𝐷(𝑞, 𝑝) = 0.  

To fully specify 𝐷(𝑞, 𝑝) we must define 𝑑J,H = 𝑑𝑖𝑠𝑡(𝜉J , 𝜉H), 𝜎 ∈ Σ, 𝜔 ∈ Ω. To do so we can select 
dist(·, ·), for example, to be the two-norm distance, or a more general η-norm distance, between the vectors, 
𝜉J and 𝜉H, i.e., 𝑑𝑖𝑠𝑡(·,·) = ‖𝜉J − 𝜉H‖`. 

With the Wasserstein distance, if we are given distribution, 𝑞, we can then define: 

 

𝑃 = Á𝑝 ∶ 𝐷(𝑝, 𝑞) ≤ 𝜀, 4 𝑝H = 1, 𝑝H ≥ 0,𝜔 ∈ Ω
H∈U

Ã (20) 

 

for a given radius 𝜀. Here, we think of 𝑃 as a ball, or neighborhood, of probability distributions centered on 
𝑞, where the neighborhood has radius 𝜀. With Σ ⊂ Ω, if 𝜀 = 0 then 𝑃 is the singleton {𝑞}, and larger values 
of 𝜀 lead to increasingly large neighborhoods. In the context of robust optimization, if 𝜀 = 0 then we will 
simply be solving the nominal stochastic optimization model, and as 𝜀  grows large we will consider 
increasingly conservative models. 

We can now represent the set 𝑃 via the following so-called extended-variable set of constraints: 

4 𝑑J,H𝑧J,H
J∈],H∈U

≤ 𝜀 (21-a) 

4 𝑧J,H = 𝑞J , 𝜎 ∈ Σ
H∈U

 (21-b) 

4𝑧J,H − 𝑝H = 0,𝜔 ∈ Ω
J∈]

 (21-c) 

𝑧J,H ≥ 0, 𝜎 ∈ Σ,𝜔 ∈ Ω (21-d) 

In other words, we can formalize the DUS via 𝑃 = {	𝑝 ∶ 	 ∃𝑧	satisfying	(21-a) − (21-d)}. 

 

9.3 Towards a Computationally Tractable Reformulation 
Due to the max

7NO
 min
%N>

	construct in the DRO model, the model is not amenable to direct solution via 

optimization software. So, we reformulate the model to facilitate computation. For the moment let 𝑠 ∈ 𝑆 be 
fixed so that 𝑓(𝑠, 𝜉H) is just a known numerical value for each 𝜔𝜖Ω. Then, nature’s problem may be 
written: 
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min
%,S

4 𝑝H𝑓(𝑠, 𝜉H)
H∈U

 (DRO1-a) 

s.t.	 4 𝑑J,H𝑧J,H
J∈],H∈U

≤ 𝜀 ∶ 	 [−𝛾] (DRO1-b)  

4 𝑧J,H = 𝑞J , 𝜎 ∈ Σ ∶ 	 [𝜈J]
H∈U

 (DRO1-c) 

4𝑧J,H − 𝑝H = 0,𝜔 ∈ Ω ∶ 	 [𝛽H]
J∈]

 (DRO1-d) 

𝑧J,H ≥ 0, 𝜎 ∈ Σ,𝜔 ∈ Ω. (DRO1-e) 

                                              
Here, 𝛾, 𝜈J , 𝛽H	denote dual variables. Note that in formulation (19),	𝑞 and	𝑝 are given, and 𝑧 is the only 

free variable. In the DRO1 model (DRO1-a through DRO1-e), 𝑞J  and 𝜉H	∀𝜔 ∈ Ω, 𝜎 ∈ Σ  are given, and 𝑠 
is (temporarily) given, too, and in the model, nature optimizes over 𝑧 and over 𝑝 to select a worst-case 
distribution within radius 𝜀 of 𝑞. 

Taking the dual of the linear program DRO1, and substituting out the dual variable 𝛽H = −𝑓(𝑠, 𝜉H), 
we obtain the following: 

max 		
a,b

−𝛾𝜀 +4𝜈J𝑞J
J∈]

 (DRO2-a) 

s.t. − 𝛾𝑑J,H + 𝜈J ≤ 𝑓(𝑠, 𝜉H), 𝜎 ∈ Σ, 𝜔 ∈ Ω (DRO2-b)  

𝛾 ≥ 0 (DRO2-c) 

 

To gain intuition regarding model (3), consider two extreme cases, 𝜀 = 0 and 𝜀 = ∞. If 𝜀 = 0 then 
there is no penalty in the objective function for allowing 𝛾 to grow large. As 𝛾 grows large, constraint 
(DRO2-b) becomes vacuous for all 𝜎 ≠ 𝜔 ; however, for 𝜎 = 𝜔  we have 𝑑J,J = ‖𝜉J − 𝜉H‖ = 0, and 
hence the constraint reduces to 𝜈J ≤ 𝑓(𝑠, 𝜉J), and coupled with the objective function the optimal value 
reduces to ∑ 𝑞J𝑓(𝑠, 𝜉J)J∈] = ∑ 𝑝H𝑓(𝑠, 𝜉H)H∈U , i.e., it reduces to the objective function value of the 
nominal stochastic optimization model, as it must with 𝜀 = 0.  

In the other extreme, as 𝜀 grows sufficiently large we must have 𝛾 = 0 to avoid a huge penalty in the 
objective function. Thus, for each 𝜎 ∈ Σ, constraint (DRO2-b) reduces to 𝜈J ≤ 𝑓(𝑠, 𝜉H), ∀𝜔 ∈ Ω, i.e., 
𝜈J = min

H∈U
𝑓(𝑠, 𝜉H) so that 𝜈J takes on the lowest NPV for all 𝜎, and the objective function reduces to: 

4min
H∈U

𝑓(𝑠, 𝜉H)𝑞J = min
H∈U

𝑓(𝑠, 𝜉H)4𝑞J = min
H∈U

𝑓(𝑠, 𝜉H)
J∈]J∈]

 (DRO3-a) 

 

Again, this matches what it must: if 𝜀 = ∞ then nature has enough latitude to place probability one on 
the single worst-case scenario. 
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9.4 A Computationally Tractable Reformulation 
In Section 9.3 we fixed the primary decision variables, 𝑠, and took the dual of problem (17). The reason 

for doing so was to overcome the max-min structure in the DRO model. With the inner min reformulated 
as a max we can now formulate a single large maximization problem as follows: 

max 		
a,b

−𝛾𝜀 +4𝜈J𝑞J
J∈]

 (DRO4-a) 

	s.t.						𝑠 ∈ 𝑆 (DRO4-a)  

−𝛾𝑑J,H + 𝜈J ≤ 𝑓(𝑠, 𝜉H), 𝜎 ∈ Σ, 𝜔 ∈ Ω (DRO4-a) 

𝛾 ≥ 0	 (DRO4-a) 

Model (DRO4) provides the general formulation of a distributionally robust optimization model, which 
applies to any stochastic optimization model of our original nominal form. However, often 𝑓(𝑠, 𝜉H) and 
𝑠	 ∈ 	𝑆 are shorthand for constructs in another model, and so in the next section we specify this for the 
stochastic capital budgeting model. 

 

9.5 Tractable Reformulation Specialized to Stochastic Capital 
Budgeting 

Specializing 𝑠 ∈ 𝑆 to be the constraints for prioritization, and specializing 𝑓(𝑠, 𝜉H) to define the NPV 
under scenario 𝜔 ∈ Ω, the DRO variant of the stochastic capital budgeting problem is as follows: 

max
7,#,8,S,a,b

−𝛾𝜀 +4𝜈J𝑞J
J∈]

 (DRO5-a) 

s.t.				 − 𝛾𝑑J,H + 𝜈J ≤44𝑎)FH𝑥)FH , 𝜎 ∈ Σ, 𝜔 ∈ Ω
F∈W")∈X

 (DRO5-b) 

𝑠))' + 𝑠)') ≥ 1, 𝑖 < 𝑖R, 𝑖, 𝑖R ∈ 𝐼 (DRO5-c) 

𝑦)H ≥ 𝑦)'
H + 𝑠))' − 1, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω	 (DRO5-d) 

44		𝑐)FY(H 𝑥)FH 		≤	
F∈W")∈X

𝑏Y(H , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,𝜔 ∈ Ω	 (DRO5-e) 

4		𝑥)FH =	𝑦)H ,										𝑖 ∈ 𝐼, 𝜔 ∈ Ω
F∈W"

	 (DRO5-f) 

𝑦)H = 1, 𝑖 ∈ 𝑀,𝜔 ∈ Ω	 (DRO5-g) 

𝑥)'F'
H 	≤ 		𝑥)FH , (𝑖R, 𝑗R) ∈ 𝐼𝐽)F 	, 𝑗 ∈ 𝐽) , 𝑖 ∈ 𝐼	 (DRO5-h) 

𝑠))'	 + 𝑠)')'' + 𝑠)'') ≤ 2, 𝑖 ≠ 𝑖R, 𝑖R ≠	 𝑖RR, 𝑖RR ≠ 𝑖, 𝑖, 𝑖R, 𝑖RR ∈ 𝐼	 (DRO5-i) 

𝑠))' + 𝑠)') ≤ 1, 𝑖 < 𝑖R, 𝑖, 𝑖R ∈ 𝐼	 (DRO5-j) 
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𝑥)'F
H + 𝑠))'	 − 1 ≤ 4 𝑥)FH	, 𝑖 ≠ 𝑖R	𝑖, 𝑖R ∈ 𝐼, 𝑗 ∈ 𝐽)' , 𝜔 ∈ Ω

F'∈W"
F'[F	

	
(DRO5-k) 

𝑠))' , 𝑥)F
H , 𝑦)H ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝑗 ∈ 𝐽) 	, 𝜔 ∈ Ω	 (DRO5-l) 

𝛾 ≥ 0	 (DRO5-m) 

 

The decision variables and constraints of this model mimic those of the risk-averse NPV-CVaR 
formulation from Section 8.2, and so we do not repeat that discussion here. We note only that the objective 
function and the first constraint replicate their counterparts, (CVaR-a) and (CVaR-c), from the generic 
formulation of the DRO model. 

  

9.6 Analysis of Risk versus Return Optimization using 
Distributionally Robust Optimization 

Table 25 summarizes our results for DRO of the stochastic capital budgeting problem. As the value of 
𝜀 grows from 0 to 1000 we become increasingly risk averse. The results are to be compared with Table 24 
for our analysis using a weighted sum of NPV and CVaR.  

Comparing the optimized prioritized rankings under DRO versus a weighted sum of NPV and CVaR, 
we see remarkable similarities in the results. As was the case for NPV-CVaR, Projects 2 and 3 fall in the 
rankings as risk aversion grows, and Project 15 climbs in prioritization. There are other shifts in the priority 
of individual projects as risk aversion grows, but they are more modest. Importantly we note that there can 
be multiple optimal solutions and thus sometimes small spurious differences arise, both between results 
reported here versus in Section 8 and within Table 25 as 𝜀 is varied parametrically.  

The last eight rows of Table 25 display numerical performance measures. We emphasize that even 
though nature alters the probability distribution in the game-theoretic model, we report all results 
(expectation, standard deviation, and CVaR) with respect to the nominal probability distribution. We do 
this for two reasons. Foremost, as indicated above, we do not view nature as malevolent, and we are 
employing DRO to hedge against uncertainty. Second, reporting with respect to the nominal distribution 
allows for a direct comparison with Table 24. We note that the table reports CVaR results and standard 
deviation results even though the DRO optimization formulation does not model CVaR or standard 
deviation. We use these terms because they are useful summary measures to capture risk. 

As the value of 𝜀 and hence risk aversion grows, the NPV drops in a manner consistent with that for 
the NPV-CVaR results of Table 24 except that the range here is larger; i.e., expected NPV drops from 
$168.9M to $166.6M under NPV-CVaR and from $168.9M to $163.0 under DRO. This larger drop in 
reward is coupled with a larger drop in some measures of risk. For example, the standard deviation of NPV 
values across the 90 scenarios drops by about $4.1M under NPV-CVaR, dropping from about $23M to 
$18.8M, while under DRO the standard deviation drops from $23M to $15.8M.  

When we are risk averse, we wish to avoid low values of NPVs and hence we expect to see CVaR 
values grow with growing values of the radius parameters, 𝜀. The last six rows of the table largely follow 
this trend. While expected NPV drops by about $1M as we move from 𝜀=0  to 𝜀=0.5, the CVaR0.5 , CVaR0.7, 
and CVaR0.8  grow by roughly $2M. The analogous CVaR terms in the more extreme tails of the 10%, 5%, 
and 1% worst scenarios (i.e., CVaR0.9, CVaR0.95 and CVaR0.99) grow by about $4M. While there can be 
further improvements in CVaR at more extreme values of 𝜀, such improvements are modest, less than 
$0.5M. While CVaR tends to grow with 𝜀 there are exceptions, e.g., the anomalous CVaR0.75 term at  𝜀=0.1 
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amongst a trend that otherwise conforms with our expectations. There is an analogous but smaller non-
monotonicity at large values of 𝜀 for CVaR0.5. This decrease of about $0.3M is not surprising because it is 
offset by increases of similar magnitude in CVaR at all large values of 𝛼 = 0.75, 0.80, 0.90, 0.95, and 0.99.  

 

Table 25. Optimal project prioritization from solving the distributionally robust optimization 
model when ε ranges from 0 to 1000. This table can be compared with Table 24 when optimizing a 

weighted sum of NPV and CVaR. 

ID Project name Categor
y Risk 𝜺 =0 𝜺=0.01 𝜺=0.1 𝜺=0.5 𝜺=1 𝜺=10 𝜺=100 𝜺=1000 

1 HP feedwater heater 
upgrade Optional Med 9 9 9 8 8 8 8 8 

2 Pressurizer 
replacement Must do No 4 4 13 12 12 12 12 12 

3 
Improvement to 

emergency diesel 
generators 

Optional Low 7 7 15 15 14 16 14 14 

4 Secondary system 
PHM system Optional No 6 6 7 7 6 6 6 6 

5 Replacement of two 
reactor coolant pumps Must do No 10 10 12 10 10 10 9 9 

6 

Seismic modification, 
requalification, 
reinforcement, 
improvement 

Optional Low 5 5 4 6 7 7 7 7 

7 Fire protection Must do No 11 11 11 9 9 9 10 10 

8 Service water system 
upgrade Optional Med 15 15 8 14 15 14 15 15 

9 Batteries replacement Optional No 3 3 3 3 3 3 3 3 

10 
Replace CCW piping, 

heat exchangers, 
valves 

Must do No 12 12 14 13 13 11 11 11 

11 Reactor vessel 
internals Optional Med 16 16 16 16 16 15 16 16 

12 Reactor vessel upgrade 
(head included) Must do No 1 1 1 1 1 1 1 1 

13 Replace LP turbine Optional Med 8 8 6 5 5 5 5 5 

14 
Replace 

instrumentation and 
control cables 

Must do No 2 2 2 2 2 2 2 2 

15 Condenser retubing Optional Low 13 13 5 4 4 4 4 4 

16 Replace moisture 
separator reheater Optional Med 14 14 10 11 11 13 13 13 

Expected NPV ($M) 168.92 168.92 168.59 167.95 165.84 165.23 165.23 163.00 

Standard Deviation ($M) 23.00 23.00 23.16 20.11 17.75 16.65 15.83 15.83 

CVaR0.5 ($M) 149.83 149.83 150.50 151.82 151.96 151.61 151.61 151.61 

CVaR0.75 ($M) 140.54 140.54 137.66 142.34 142.67 142.91 142.91 142.91 

CVaR0.8 ($M) 139.23 139.23 136.73 141.56 141.72 142.04 142.04 142.04 

CVaR0.9 ($M) 133.95 133.95 133.03 137.94 137.94 138.32 138.32 138.32 

CVaR0.95 ($M) 128.23 128.24 127.30 132.23 132.23 132.61 132.61 132.61 

CVaR0.99 ($M) 128.16 128.16 127.15 132.05 132.05 132.45 132.45 132.45 
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Figure 33 replicates Figure 32 except that it uses the DRO-based prioritization to compute CVaR and 

NPV. Broadly speaking the results under NPV-CVaR and DRO are similar: by moderately increasing the 
value of 𝜀 from zero we can significantly decrease risk with a modest decrement in expected NPV and the 
results across the two approaches are very similar. Subsequent reductions in risk require more extreme 
drops in NPV. We note that the DRO approach has access to a greater range of NPV values on the low end, 
although these yield small reductions in risk, as measured by CVaR. The corresponding reductions in the 
standard deviation of the NPV realizations is more substantial; see Table 25. When examining the NPV-
CVaR efficient frontier, the model of Section 9.1 necessarily produces points that are not dominated in the 
Pareto efficient sense. Because the DRO model does not explicitly consider CVaR, it is not guaranteed to 
produce Pareto-efficient points, and indeed, sometimes it does not (see 𝜀 = 0.1 column of Table 25). That 
said, it appears to do a good job of producing a relatively rich risk-return tradeoff involving risk measures 
CVaR and standard deviation.  

 
 

  
Figure 33. Pareto frontiers for different values of ε when solving the DRO model. The figure is 
analogous to Figure 32 for NPV-CVaR model. Note that this figure has a larger range of NPV 

values, but is otherwise similar to Figure 32. Note that we only include non-dominated solutions 
from Table 25. 

Figure 34 shows histograms of the NPV values for two epsilons, 𝜀 = 0	and	𝜀 = 10. Compare the blue 
(𝜀 = 10) and red (𝜀 = 0) bars. It is evident that the DRO approach trims the tails and tightens the 
distribution. Figure 34 for DRO is the analog of Figure 31 for NPV-CVaR, and comparing the two plots 
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we can visually observe that the DRO approach tightens the distribution to a greater degree than does the 
NPV-CVaR approach. 

 

  
Figure 34. Compares histograms for two values of epsilon, 0 (red) and 10 (blue). 

Table 26 shows the frequencies with which each project is implemented under each of the plans A, B, 
C, and do nothing under the DRO approach for 𝜀 = 0 and 𝜀 = 10. The left-half of the plot is for 𝜀 = 0 and 
repeats the results from Table 22 in which we maximize expected NPV (breaking ties arbitrarily) while the 
right-half of the plot provides the risk-averse counterpart under 𝜀 = 10. 

Figure 35 and Figure 36 show how nature alters probability mass function under the DRO approach. 
As epsilon increases, we become more risk averse and the probability mass moves to scenarios which yield 
lower NPV. Figure 35 shows this for the probability mass function associated with the budget scenarios 
and Figure 36 shows this for the medium-risk projects (low-risk projects behave similarly). 

The discussion above shows the DRO formulation for the prioritization model for stochastic capital 
budgeting. Next we review analogous models for related problems starting with the single knapsack 
problem.  
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Table 26. Frequencies for plans A, B, and C and do nothing under the DRO approach for 𝜺 = 𝟎	and 
𝜺 = 𝟏𝟎. 

ID Project name Category Risk 

𝜀 = 0	 𝜀 = 10	 

Priority Plan 
A 

Plan 
B 

Plan 
C 

Do 
Nothing Priority Plan 

A 
Plan 

B 
Plan 

C 
Do 

Nothing 

1 HP feedwater heater 
upgrade Optional Med 9 27 63 0 0 8 41 49 0 0 

2 Pressurizer replacement Must do No 4 90 0 0 0 12 27 63 0 0 

3 
Improvement to 

emergency diesel 
generators 

Optional Low 8 63 27 0 0 14 23 0 0 67 

4 Secondary system PHM 
system Optional No 6 69 21 0 0 6 88 2 0 0 

5 Replacement of two 
reactor coolant pumps Must do No 10 12 78 0 0 10 8 82 0 0 

6 

Seismic modification, 
requalification, 
reinforcement, 
improvement 

Optional Low 5 90 0 0 0 4 88 2 0 0 

7 Fire protection Must do No 11 6 84 0 0 9 9 81 0 0 

8 Service water system 
upgrade Optional Med 15 48 0 0 42 15 12 0 0 78 

9 Batteries replacement Optional No 3 90 0 0 0 3 90 0 0 0 

10 Replace CCW piping, heat 
exchangers, valves Must do No 12 6 71 13 0 11 7 25 58 0 

11 Reactor vessel internals Optional Med 16 18 0 0 72 16 3 0 0 87 

12 Reactor vessel upgrade 
(head included) Must do No 1 90 0 0 0 1 90 0 0 0 

13 Replace LP turbine Optional Med 7 63 27 0 0 5 88 2 0 0 

14 Replace instrumentation 
and control cables Must do No 2 90 0 0 0 2 90 0 0 0 

15 Condenser retubing Optional Low 13 77 0 0 13 7 88 2 0 0 

16 Replace moisture 
separator reheater Optional Med 14 48 5 0 37 13 27 31 0 32 
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Figure 35. Probability mass functions for budget scenarios as risk aversion grows. 

  
Figure 36. Probability mass functions for medium-risk project scenarios. 

 

9.6.1 DRO for Single Knapsack Problem 
 

max
#,8

max
a,b

?−𝛾𝜀 +4𝜈J𝑞J
J∈]

A (DRO6-a) 

−𝛾𝑑J,H + 𝜈J ≤4𝑝)H𝑥)H

)∈3

 (DRO6-b) 

4𝑤)H𝑥)H

)∈3

≤ 𝑐H (DRO6-c) 
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𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (DRO6-d) 

𝑥)H ≥ 𝑥)'
H + 𝑦),)' − 1	𝑎𝑛𝑑		𝑖 ≠ 𝑖R (DRO6-e) 

	𝑥)H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (DRO6-f) 

𝛾 ≥ 0, 𝜈J ≥ 0, ∀𝜎 ∈ Σ (DRO6-g) 

 
 

9.6.2 DRO for Multi-Dimensional Knapsack Problem 

max
#,8

max
a,b

?−𝛾𝜀 +4𝜈J𝑞J
J∈]

A (DRO7-a) 

−𝛾𝑑J,H + 𝜈J ≤4𝑝)H𝑥)H

)∈3

 (DRO7-b) 

4𝑤),IH 𝑥)H

I∈?

≤ 𝑐IH (DRO7-c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (DRO7-d) 

𝑥)H ≥ 𝑥)'
H + 𝑦),)' − 1	𝑎𝑛𝑑		𝑖 ≠ 𝑖R (DRO7-e) 

𝑥)H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (DRO7-f) 

𝛾 ≥ 0, 𝜈J ≥ 0, ∀𝜎 ∈ Σ (DRO7-g) 
 
 

9.6.3 DRO for Multiple Knapsack Problem 

max
#,8

max
a,b

?−𝛾𝜀 +4𝜈J𝑞J
J∈]

A (DRO8-a) 

−𝛾𝑑J,H + 𝜈J ≤ 4 4𝑝)H𝑥),6H

)∈36∈!

 (DRO8-b) 

4𝑤)H𝑥),6H

)∈3

≤ 𝑐6H  (DRO8-c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑		𝑖 < 𝑖R (DRO8-d) 

4 𝑥),6H

6∈!

≥ 4 𝑥)',6
H

6∈!

+ 𝑦),)' − 1	𝑎𝑛𝑑	𝑖 ≠ 𝑖R (DRO8-e) 

4 𝑥),6H

6∈!

≤ 1 (DRO8-f) 

𝑥),6H , 𝑦))RH , ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (DRO8-g) 

𝛾 ≥ 0, 𝜈J ≥ 0, ∀𝜎 ∈ Σ (DRO8-h) 
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9.6.4 DRO for Multiple-Choice Knapsack Problem 

max
#,8

max
a,b

?−𝛾𝜀 +4𝜈J𝑞J
J∈]

A (DRO9-a) 

−𝛾𝑑J,H + 𝜈J ≤ 44𝑝),FH 𝑥),FH

)∈3F∈W"

 (DRO9-b) 

4𝑤),FH𝑥),FH

)∈3

≤ 𝑐H (DRO9-c) 

𝑦),)' + 𝑦)',) ≥ 1	𝑎𝑛𝑑	𝑖 < 𝑖R (DRO9-d) 

4𝑥),FH
W"./

F1/

≥ 4 𝑥)',F
H

W"./

F1/

+ 𝑦),)' − 1	𝑎𝑛𝑑	𝑖 ≠ 𝑖R (DRO9-e) 

4𝑥),FH

F∈W"

= 1 (DRO9-f) 

𝑥),6H , 𝑦))RH ∈ {0,1}, 𝑖 ≠ 𝑖R, 𝑖, 𝑖R ∈ 𝐼, 𝜔 ∈ Ω (DRO9-g) 

𝛾 ≥ 0, 𝜈J ≥ 0, ∀𝜎 ∈ Σ (DRO9-h) 

 
 

10. LINK WITH PHM PROJECT 
The use case related to development of a RIAM program has significant commonalities to the Use Case 

that is developing a modern, integrated, Risk-Informed Plant System Health (RI-PSH) program. Although 
these two use cases are similar in that they focus on plant equipment and system performance, they possess 
different emphases in objectives and timeframes. This is characterized in Table 27. 

Table 27. Emphases and timeframes for system health and asset management Use Cases. 

Program Primary Timeframe Primary Focus 
PHM Short to Intermediate Term Engineering 
RIAM Intermediate to Long Term Financial 

   
RIAM applies a combination of financial and engineering evaluation methods to apply risk 

management technology to support plant long-term planning and investment. RIAM is intended to provide 
decision makers with both qualitative and quantitative information related to investments in plant assets 
with an objective of optimizing long-term economic value while effectively identifying and controlling 
enterprise risks. As described in the 2019 RI-PSH project report [2], an important set of methods and tools 
to support NPP long-term asset management efforts (in particular, with their application to NPPs that are 
anticipating operation during extended periods of time [i.e., periods of Second License Renewal – SLR]) is 
Integrated Life Cycle Management (ILCM) developed by Electric Power Research Institute (EPRI). The 
ILCM method [12] addresses the management and optimization of large capital projects for the purposes 
of extended plant operation. ILCM methods and accompanying software is available to EPRI member 
utilities; it should be noted that since all US NPP owner operators are EPRI members, ILCM is available 
to all operating US NPPs.  
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In contrast, as described in the 2019 LWRS PHM [2] report and the 2020 PHM [13] report (which is 
being developed in conjunction with this report), NPP ER programs are developed and implemented in 
accordance with the guidance provided in INPO AP-913 [14]. Additionally, regulatory requirements 
provided in the Maintenance Rule [18] as implemented by the industry via guidance provided in NEI 93-
01 [15], focuses, to a large extent, on the reliability and availability of plant structures, systems, and 
components (SSCs). As a result, PHM programs have tended to focus predominantly on the engineering 
aspects related to ER. Additionally, the focus on items such as Maintenance Rule performance, in particular 
addressing performance deficiencies associated with plant SSCs classified as (a)(1), or for SSCs which 
possess small margins as indicated within the Mitigating Systems Performance Index (MSPI) program [16], 
has focused attention of RI-PSH programs on issues requiring resolution within short to intermediate 
timeframes. One indicator of this focus can be seen in the content of industry sponsored research to support 
plant ER programs. Research to address ER related issues typically is sponsored by EPRI under the Plant 
Engineering Program. The results of this research are used by operating NPPs around the world to support 
plant ER programs. To support widespread adoption of the outcomes of this research, EPRI periodically 
publishes a report (which is publicly available) that lists all of the products developed from this research. 
A review of the most recent of these reports [17] indicates a large portion of the research focuses on the 
engineering aspects of plant ER with short and intermediate term timeframes. It is noted that RIAM is most 
closely aligned with the Life Cycle Management (LCM) portion of AP-913 [14] which has a longer-term 
focus than the other portions of that industry guidance document. 

Although the two use cases have different emphases, it is evident that they are closely related. For 
example, development of long-term asset management plans related to plant life extension will be 
dependent upon the effectiveness of the management of the health of plant SSCs achieved by the plant ER 
program. Conversely, anticipated financial restraints related to either current ER programs or for future 
investments can have an impact on decisions related to the reliability and performance of plant SSCs. As a 
result, as the two use cases related to PHM and RIAM progress, the LWRS collaboration is planning to 
continue to engage with industry stakeholders and host utilities to coordinate activities to more fully 
integrate the approaches to the greatest extent practicable. Some key areas where these collaborations are 
anticipated to occur are the following:  

(1) Evaluation of the impact of short to intermediate term investments on long-term system 
performance including potential impacts on plant risk (both safety and economic) and impacts 
on long term capital investment needs 

(2) Evaluation of the impact of long-term investment alternatives on system performance, 
particularly with respect to the impacts of investment limitations and deferrals on both safety 
and economics.    

 

11. PHM-RIAM WORKFLOW 
The objective of this section is to summarize how the ER decision process can be performed using the 

PHM-RIAM tools and methods. The ER decisions that we are targeting are: 

• Which activities should be performed on the system under considerations? 

• When should these activities be performed? 

The process is shows in detail in Table 28 (see also Figure 37). 
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Table 28. List of steps for the combined PHM-RIAM workflow. 

RISA 
project Steps 

PHM 
[13] 

1. Collect and monitor trends from ER data from the system under consideration (e.g., 
operation logs, issue reports, work orders, diagnostics and prognostics data) 

2. The data in Step 1 are then used to update component availability models (in terms of 
probability of failure or margin to failure) 

3. Information contained in component availability models (see Step 2) is then 
propagated to the system level to measure: 

a. System availability (in terms of probability of failure or margin to failure) 

b. Generation risk  

4. Provided the information in Step 3, system engineer can provide a set of candidate 
activities that can be performed to either improve component availability or reduce 
maintenance costs (or both) 

RIAM 

5. Provided candidate activities listed in Step 4, it is now possible to perform a tradeoff 
exploration on how these candidate activities affect system availability/costs and 
generation risk  

6. Using the Pareto frontier analysis, it is possible to select the optimal set of component 
activities that guarantee system operation 

7. Based on budget (capital and/or O&M) funds requirements, the optimal schedule to 
perform the selected activities listed in Step 6 can be developed 

 

 

 
Figure 37. From ER data to decision making using PHM-RIAM models and methods. 
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12. LINKING MAINTENANCE APPROACHES WITH OPTIMIZATION 
METHODS 

In [20] we have presented in detail a modeling description of the main types of maintenance approaches 
and how they can be included in a risk-informed analysis framework: 

o Corrective maintenance 

o Preventive maintenance 

o Condition based maintenance 

o Predictive maintenance 

The approaches listed above can be classified in a 2-dimensional space based on the following 
characteristics: underlying analysis method (data or model based), and type of deployment (on-line or off-
line). In this classification, the analysis methods can be either qualitative or quantitative. In general, the off-
line methods apply qualitative approaches to classify plant SSCs, especially for decisions related to the 
classification of SSCs designated as RTM. 

 

 
Figure 38. Classification scheme for the considered maintenance approaches and the relative 

optimization methods developed in this report and in [2,3]. 

As part of the RIAM project, it is now the moment to link each maintenance approach and its optimal 
choice of optimization method(s). Figure 38 provides a graphical form of this strategy: 

o Preventive maintenance approaches set a fixed maintenance frequency based on reliability 
constraints; by employing continuous optimization model-based methods it is now possible to 
integrate cost constraints into the determination of the optimal maintenance frequency (see 
Section 6.1 and [3]) 

o Condition based and predictive maintenance approaches employ advanced diagnostic and 
prognostic tools that are able to asses component status (condition based maintenance) and 
predict its future reliability behavior. Provided this information, it is possible to determine 
optimal maintenance operations (using the Pareto frontier approach shown in Section 5) and 
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the optimal schedule for such operations based on both economic and cost constraints (using 
methods shown in Sections 6.2, 8.1, 8.2, and 9). 

 

13. CONCLUSIONS 
In this report we have shown the recent development in the RIAM project and how they relate to its 

counterpart, the RI-PSH project. The RIAM project focused on the development of methods designed to 
optimize plant operations (e.g., maintenance and replacement schedule, optimal maintenance posture) 
provided system and component health and cost data. 

A large variety of methods has been developed and are summarized in this report. We focused on both 
model-based and data-based optimization methods. The first ones are designed for very generic applications 
and they directly employ the models developed within the RI-PSH project. These approaches apply both 
continuous and discrete methods. In simple terms, these optimization methods explicitly include reliability 
coupled with cost models to determine optimal plant operational strategy.  

 

 
Figure 39. Overview of the developed optimization methods. 

The second class of methods target more specific use cases (e.g., project schedule optimization) and 
are not based on reliability models directly but they require a specific dataset that can be provided by RI-
PSH analyses (e.g., component failure probability and its economic impact). This class of methods are 
based on the multi-dimensional knapsack problem and they aim to determine the optimal project schedule 
that maximize the overall NPV. In addition, several reformulations of the multi-dimensional knapsack 
problem have been performed during FY-20 which include a distributionally robust form and risk-measure 

Early Planning Late/Execution

Data uncertainties Prioritization type Evaluate “what if” analysis

Simulation-based 
approach

Stochastic 
optimization

Deterministic 
capital budgeting

Plant Asset Management Methods

Pareto frontier
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Risk based 
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Full stochastic 
optimization 

Model based 
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based approach. Depending on the available data or on the specific class of problem, the user can select the 
best methods based on his or her needs. 

This report also presented the development of methods designed to identify optimal maintenance 
posture based on the Pareto frontier analysis. Rather than performing a tradeoff analysis (i.e., identify the 
absolute best posture), we have shown how it is possible to perform a trade space exploration approach 
(i.e., identify value and costs of several postures and let the analysis impose desired value and cost 
constraints). This is performed by identifying maintenance postures that maximize value (e.g., system 
availability) and minimize operational costs, i.e., the Pareto frontier in a value-cost trade space. 

Figure 37 shows in a graphical form the classification of the methods being developed under the RIAM 
project. These methods have been classified into three different classes based on the decision stage (early 
stage, planning stage, or execution stage). 

In FY-21 we are planning to deploy what has been developed during FY-19 and FY-20 in the RIAM 
and PHM project for specific use cases that are of interest to our industry partners. We will focus even more 
on data assimilation and integration with our developed models and methods. 
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