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EXECUTIVE SUMMARY 
 
 

Industry Equipment Reliability (ER) programs are an essential element that 
support safe and economic plant operations. The effectiveness of these programs 
is addressed in several industry-wide and regulatory programs. However, as 
currently implemented, these programs are labor intensive and expensive. There is 
an acute industry need to leverage advanced monitoring technology (including 
pattern recognition, diagnostics, and prognostics) to reduce costs and improve 
engineering effectiveness. Although the use of advanced monitoring has been 
successfully implemented to assess equipment and system performance in a 
number of industries (e.g., commercial and military aviation, transportation, gas 
turbine electrical generation), these technologies have not penetrated extensively 
into the commercial nuclear power sector. As a result, deployment of these 
technologies has the potential to provide significant improvements in the 
performance of critical Structures, Systems and Components (SSCs) (e.g., via 
detection and diagnosis of degraded performance at an incipient stage) and reduce 
costs associated with monitoring and regulatory compliance.  

The objective of this project is to leverage advanced computational capabilities 
to support enhanced system performance and health management. A fundamental 
objective of this effort is to integrate various elements of system health monitoring, 
management, and reporting in a manner that is significantly less labor intensive 
and is at least as technically effective as current programs. This will be 
accomplished by integrating various elements of system health monitoring, 
management, and reporting in a manner that is significantly less labor intensive 
and is at least as technically effective as current programs. The final goal is to 
manage equipment and system performance and its financial risk and reduce costs 
associated with monitoring and regulatory compliance.  

This report summarizes the activities of the Plant Health Management (PHM) 
project which started in October 2018 in response to the need to develop data 
analytics tools coupled with risk-informed methods to manage nuclear power plant 
health. The first application of this project targets the integration of risk-informed 
applications with the plant system health program. The goals are essentially the 
following: 1) apply innovative data analytics methods to assess component/system 
health, and, 2) link the system health program with risk models. These goals are 
designed to target the fact that the U.S. commercial nuclear power industry is 
aggressively pursuing implementation of several risk-informed applications to 
reduce regulatory burden and operating costs. These applications include 
Alternative Treatments (10CFR50.69) and Risk-Managed Technical 
Specifications (TSTF-505). To obtain maximum value from these applications, 
their execution must be strongly integrated with a robust and automated System 
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Health program. While typically plant risk models focus only on the safety aspects 
of the plant, we are extending plant risk models to include the economic plant risk.   

The overall outcome of this work will be a framework that will apply plant 
health data to provide actual risk (both safety and economic) information that can 
support more informed and effective decision-making. Risk-informed applications 
are linked to this analysis framework by identifying their direct impact on plant 
risk models. The foreseen outcomes of this framework are: 1) the reduction of 
nuclear power plant owner resources to manage equipment reliability, and, 2) the 
ability to provide, in real time, assessments of the safety and economical risks 
associated with plant equipment as plant configuration changes.   
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Plant Integral Risk-Informed  
System Health Program 

 

 

1. INTRODUCTION 
Industry Equipment Reliability (ER) programs are an essential element that support the safe and 

economic plant operation of all commercial Nuclear Power Plants (NPPs). The effectiveness of these 
programs is addressed in several industry-wide and regulatory programs. For example, U.S. NPPs have 
implemented the ER process defined in INPO AP-913 “Equipment Reliability Process Description” (see 
Section 2). Additionally, performance of plant Structures, Systems, and Components (SSCs) is monitored 
within a regulatory context within the Maintenance Rule (10 CFR 50.65) and the Mitigating Systems 
Performance Index (MSPI) program. However, as currently implemented, these programs are labor 
intensive and expensive to perform and maintain.  

In management of system health, utilities focus on achieving an optimization between the reliability 
and availability of plant SSCs while simultaneously minimizing costs. Over the 40+ years of commercial 
NPP operation, numerous approaches have been implemented to achieve this balance. The most recent of 
these, Value Based Maintenance (VBM), has been adopted across the industry as a part of the Delivering 
the Nuclear Promise (DNP) initiative (see Section 2). A summary of the approaches used by the industry 
to manage system health, including VBM, will be presented in Section 7 of this report. 

To achieve additional cost reductions and improvements in plant safety and economic performance, 
there is an industry need to leverage advanced methods to reduce costs and improve engineering 
effectiveness. Although the use of advanced monitoring has been successfully implemented to assess 
equipment and system performance in a number of industries (e.g. commercial and military aviation, 
transportation, gas turbine electrical generation), these technologies have not penetrated extensively into 
the commercial nuclear power sector. As a result, deployment of these technologies has the potential to 
provide significant improvements in the performance of critical SSCs (e.g., via detection and diagnosis of 
degraded performance at an incipient stage) and reduce costs associated with monitoring and regulatory 
compliance. 

As part of implementing VBM, the host utility for this research project indicated that they were pursuing 
the use of a modeling and simulation approach to evaluate the entire planned maintenance process. A 
fundamental question that was posed is: could they translate cost information into a metric that is 
representative of SSC health? Such an approach would allow addressing both Operation and Maintenance 
(O&M) costs (by leveraging information infrastructure) to reduce engineering analysis needed to assess 
SSC health impacts and also generate better short-term and long-term cost projections. The host utility also 
indicated that improved user-friendly data analytics are needed as a tool to allow decisions to be made 
without requiring engineering personnel to be involved in each assessment and decision. This was 
considered by the host utility to be crucial to achieving additional cost reductions.  

This research project is intended to provide an initial development and demonstration of a Risk-
Informed Plant System Health (RI-PSH) management process and automation tools that can be integrated 
with an existing plant system health program. The objective is to leverage advanced computational 
capabilities to support enhanced system performance and health management. A fundamental objective of 
this effort is to integrate various elements of system health monitoring, management, and reporting in a 
manner that is significantly less labor intensive and is at least as technically effective as current programs.  

The overall approach (see Figure 1) for this project during Fiscal Year (FY) 19 and FY20 targets the 
following items: 
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1) integration of system health program and risk-informed applications 
2) integration of equipment failure data/models with the existing plant system health program 
3) integration of equipment diagnostics and prognostics to system health 

The overall objective of this effort will be to develop and deploy an integrated plant system health program 
that maximizes automation and advanced data analytics to minimize cost and enhance performance. This 
is accomplished by providing timely high-quality information to decision makers that characterizes all 
aspects of system health, including uncertainties and risks.  

 

 
Figure 1. High level diagram of the RI-PSH program elements. 

 
The research described in this report targets the collaboration with the host utility to conduct initial 

work to target item 1. The objective of this portion of the research is to retrieve equipment performance and 
monitoring data to update existing models and processes to support Risk-Informed Decision-Making 
(RIDM) across the host utility’s operating NPPs. It should be noted that, in the context of the RISA 
approach, RIDM incorporates a broad interpretation of risks to include not only the traditional focus on 
nuclear safety (as evaluated in a plant PRA), but also broader elements of risk such as financial aspects. 

A longer-term objective of this research is to employ equipment performance and monitoring to create 
SSC ageing models. Such models will be employed to predict SSC Remaining Useful Life (RUL). Once 
these models are available, plant economic risk models will be developed with the objective to identify 
plant risks (from an economic perspective). The near-term objective is to develop basic models and validate 
them using plant data provided by the host utility. This will set the stage for initial deployment in one or 
more pilot applications at host utility sites to support real time analysis and decision-making. For this initial 
application, a specific plant pilot system was identified with analysis performed focusing on that system 
while keeping the development generic for future applications on other systems and plants. 

The following specific tasks were performed and are described in this report. 

• Task 1: System identification and characterization. In collaboration with the host utility, pilot 
systems were selected at one of their operating NPPs 

• Task 2: Selection of plant data. Failure, unavailability, and cost data were gathered from the 
selected power plant for the system(s) chosen in Task 1. The operating data were reviewed and 
characterized to support further analysis 
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• Task 3: Identification of system analytics methods and SSC reliability models.  For a specific subset 
of components for the system(s) chosen in Task 1, system analytics methods and SSC reliability 
models were investigated and tested using the processed data from Task 2 

• Task 4: Evaluate outcomes and develop plan for pilot process for integrated system health 
management 

The results from the assessments and evaluations conducted in Tasks 2 and 3 were reviewed with the 
host utility to identify applicable insights and develop an appropriate path forward which will be conducted 
in Fiscal Year 20. 
 

1.1 PHM Project Structure 
In order to proceed with the creation of a comprehensive RI-PSH framework which can assist plant 

owners to identify risk associated to the operating plant, we investigated several components of the scheme 
shown in Figure 1. In the main structure of the report we have reported the highlights of our work while we 
have reported in the appendices the technical details of our development/analysis. Each section and 
appendix of this report is linked to this scheme as shown in Figure 2. Note that we have expanded the 
decision support block of Figure 1 by expanding it into two categories: maintenance and asset management. 
 

 
Figure 2. Structure of the report as function of the RI-PSH functional blocks. 

 

2. PLANT EQUIPMENT RELIABILITY AND HEALTH MANAGEMENT: 
STATE OF PRACTICE  

In the United States, the impact of plant equipment reliability and system health on safety is regulated 
by 10CFR50.65 (the Maintenance Rule) [1]. Implementation of this rule at operating NPPs across the 
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industry follows guidance provided in NEI 93-01 “Industry Guideline for Monitoring the Effectiveness of 
Maintenance at Nuclear Power Plants” [2] which has been endorsed by the Nuclear Regulatory Commission 
(NRC) in Regulatory Guide 1.160 [3] as providing an approach that is acceptable to the NRC for NPPs to 
meet the requirements of the rule. The implementation guidance requires the following activities: 

• Identification of plant SSCs within the scope of the rule 
• Establishing applicable risk and performance criteria  
• Setting appropriate performance goals and monitoring SSC performance 
• Ensuring conduct of an effective preventive maintenance (PM) program 
• Evaluation of the plant risk impacts that result from the performance of maintenance activities 
• Conducting periodic assessments of maintenance effectiveness 

In addition to monitoring the performance of plant SSCs within the scope of the Maintenance Rule, 
additional monitoring also is required as part of the Mitigating Systems Performance Index (MSPI) program 
[4]. As currently implemented, these programs are labor intensive and expensive and there is an acute 
industry need to leverage advanced technologies to reduce costs and improve engineering effectiveness.  

In the management of system health at operating NPPs, the Institute of Nuclear Power Operations 
(INPO) “Equipment Reliability Process Description,” AP-913, provides a common set of requirements and 
bases that are applied to the plant equipment reliability process [5]. This document serves as the primary 
detailed guidance used by the industry in plant Equipment Reliability (ER) programs. However, because 
AP-913 is a proprietary document, the following descriptions of its contents are limited to information that 
can be obtained from publicly available sources. 

The basic elements of a plant ER process described in INPO AP-913 consists of six basic elements [6] 
as shown in Figure 3: 

• Scoping and identification of critical components 
• Performance monitoring 
• Preventive maintenance (PM) implementation 
• Corrective action 
• Continuing equipment reliability improvement 
• Life cycle management (LCM) 

In NPP ER programs, a fundamental activity is the identification of components that are critical to plant 
safety and operations. Over the years, a number of approaches have been taken by the industry to identify 
which plant SSCs are considered to be critical. In the late 1980’s through early 1990’s use of Reliability 
Centered Maintenance (RCM) techniques were widely applied. Initial pilot applications across the industry 
were performed under the sponsorship of the Electric Power Research Institute (EPRI) [7]. Application of 
the complete RCM process (as initially developed and applied in the commercial aviation industry) in these 
pilot plant applications was considered too time consuming, resource intensive, and expensive to perform. 
As a result, industry investigated methods to address these impediments. This lead to the development of 
Streamlined RCM (S-RCM) approaches which were more fully adopted by the industry [8]. The 
development of streamed approaches to identify critical plant SSCs and deploy cost-effective Preventive 
Maintenance (PM) programs has continued to the present time. 
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Figure 3. Nuclear power plant equipment reliability process [6]. 

 
One of the outcomes of the evolution of PM programs in the industry is that the definition of what 

makes a particular SSC critical was, to some extent, a decision made by each plant. Over the past several 
decades, work performed by the industry Equipment Reliability Working Group (ERWG) developed 
additional guidelines for these decisions which were incorporated into AP-913. Recently, as part of the 
Delivering the Nuclear Promise (DNP) initiative, the industry reviewed industry performance and 
developed a revised set of criteria that were to be used by all operating NPPs to specify which SSCs would 
be classified as critical. These criteria were published by the Nuclear Energy Institute (NEI) as an Efficiency 
Bulletin (EB) with operating plants assigned a due date for completion and report back. The criticality 
criteria provided in the EB [9] are as follows: 

• A credible single active component failure that will directly result in any of the following 
consequences: 
- Reactor scram/trip (referred to as a Single Point Vulnerability – SPV) 
- Significant power transient of greater than 20 percent (Operational Loss Event – OLE) 
- MSPI monitored component failure 
- Any single failure that causes a complete loss of any of the following critical safety functions: 

§ Core, reactor coolant system or spent fuel pool heat removal 
§ Containment isolation, temperature, pressure 
§ Reactivity control 
§ Vital AC electrical power 

• A single equipment failure that results in the loss of a Maintenance Rule high-safety-significant 
(HSS) or risk-significant function. 
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The EB directed all U.S. NPPs to revise applicable fleet/station processes and procedures to incorporate the 
new criticality definition and to implement the changes through a dedicated, cross-functional team to 
identify the subset of critical components that can be reclassified as noncritical with a completion date of 
June 2017. Note that AP-913 also was revised to reflect these changes. 

A second element of ensuring high levels of performance (including availability and reliability of plant 
SSCs) is the implementation of a cost-effective PM program. NPP PM programs have evolved over the 
years. During the initial application of RCM techniques, an approach using maintenance templates was 
developed and achieved widespread adoption across the industry [8]. This approach also began a transition 
from traditional time-based PMs (e.g., overhauls) to much more extensive use of condition-based PMs that 
employ various monitoring technologies (e.g., vibration, thermographic, and oil/lubrication analysis) to 
determine when conditions exist that warrant performance of intrusive maintenance activities. In response 
to these evolutions, the EPRI developed the Preventive Maintenance Basis Database (PMBD) software 
application [10] to permit NPPs to more efficiently develop, assess, and modify plant PM programs. This 
software is proprietary and available only to EPRI members. However, a “Quick Start” guide for the PMBD 
that is publicly available has been published by EPRI [11]. This “Quick Start” guide provides an overview 
of the tool’s capabilities and functionality. 

Over time, industry performance has increased substantially, both in terms of safety and operational 
performance (e.g. increased plant capacity factors). This was demonstrated in a recent EPRI study [12] that 
showed an increasing trend in average plant capacity factor (from ~70% in 1992 to 85% to 90% since  
~2005) while displaying a significant improvement in safety as measured by an ~80% reduction in 
calculated Core Damage Frequency (CDF) over this same period of time. Figure 4 (taken from the EPRI 
report [12]) graphically depicts this improvement. However, at the same time that these performance 
improvements were occurring, there has been a commensurate increase in operational and maintenance 
costs. This situation led to the industry developing a Value Based Maintenance (VBM) process to reduce 
costs while simultaneously maintaining current high levels of performance and safety. VBM also was 
disseminated to the industry via an NEI Efficiency Bulletin with operating plants assigned a due date for 
completion and report back [13]. 

VBM has the objective of “changing the industry’s culture of reliability at any cost and more is better 
to one where maintenance is treated as a highly valued and limited resource (that) is key to advancing safety 
and reliability in a cost-effective manner”. The VBM initiative is complementary to the critical component 
definition (described in EB 16-25). The transition to VBM is intended to achieve more cost-effective 
maintenance strategies for those components whose failures do not result in the consequences identified in 
EB 16-25 as indicated above. 

 
Figure 4. Trends in nuclear capacity factors and core damage frequencies (from [12]). 
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VBM provides a maintenance strategy that is intended to optimize safety and reliability while 
aggressively managing the cost of component maintenance. The approach requires evaluation of possible 
adverse costs caused by a resulting increase in failure rates associated with a change in a maintenance 
strategy for a particular SSC. The approach recognizes that simply reducing the number of PMs likely will 
not reduce costs if it results in a corresponding increase in corrective maintenance, reduced plant safety or 
system reliability, or increased regulatory scrutiny. The VBM approach is intended to transition from a 
point of maximum SSC reliability to a point of minimum total maintenance cost as shown in Figure 5. Note 
that the key to this approach is that the emphasis is on implementing a holistic maintenance program that 
minimizes total maintenance costs. 

Another area related to plant ER programs is that related to monitoring and reporting of performance. 
The areas of system and program health reporting are critical for communicating issues related to plant 
system performance and ensuring that appropriate levels of system performance, reliability, and availability 
are maintained. Because this area is critical to decision-making, it has developed into a process at operating 
NPPs which require extensive time and administrative support to accomplish. This situation was identified 
during the DNP effort. As a result, two separate Efficiency Bulletins were developed that have the 
objectives of significantly reducing the cost and administrative burdens associated with system health 
reporting (EB 16-33) [14] and plant program health reporting (EB 16-34) [15]. 

Both of these Efficiency Bulletins provide a graded approach to health reporting. Each prescribes 
decreasing levels of reporting requirements as the functional importance of the system or the impact of the 
program on plant risk/safety/production decreases. The system health reporting Efficiency Bulletin EB 16-
33 [14] characterizes plant systems into three “tiers” based on functional importance. The identified system 
classifications are as follows: 

• Tier 1 systems are the most important to nuclear safety and plant reliability: 
- MSPI systems 
- Scram Vulnerable Systems 

§ Condensate & Feedwater (including main condenser) 
§ Main Turbine (including auxiliary systems) 
§ Main Generator (including auxiliary systems) Electrical Distribution systems. (including 

transformers/switchyard) 
§ Reactor Recirculation/Reactor Coolant 

• Tier 2 systems also are important from a nuclear safety, plant reliability and risk standpoint but do 
not meet the Tier 1 criteria: 
- Systems with critical components as defined in AP-913 Revision 5. 
- Systems with high safety significant/risk significant components/functions that do not meet the 

criteria in Tier 1. 
• Tier 3 systems are those that do not meet the criteria of either Tier 1 or Tier 2. 

A similar classification system is presented for plant programs in the plant health reporting Efficiency 
Bulletin EB 16-34 [15]. The identified system classifications are as follows: 

• Tier 1 typically are complex programs with potential for high consequence failures. These 
programs apply standard industry scorecards with indicators in each of four cornerstones 
(personnel, infrastructure, implementation, and equipment). Each Tier 1 program has an assigned 
owner at each plant (or across the fleet). 

• Tier 2 programs also have assigned program owners. Program health is monitored through a set of 
standard industry Key Performance Indicators (KPIs) that should be reviewed at least annually or 
following each refueling outage. 
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• Tier 3 programs are managed through station procedures but do not always have an assigned 
program owner. Use of KPIs for these programs is at the discretion of the utility.  

Attachment 1 to EB 16-34 provides examples of program health scorecards for several different programs. 

 

 
Figure 5. VBM strategy (from [13]). 

 

3. LINKS BETWEEN RISK-INFORMED APPLICATIONS AND SYSTEM 
HEALTH 

We define System Health here as the integrated assessment of NPP equipment performance and 
condition within the context of system functions. Some of the key objectives of a System Health program 
include: 

• Implementation of a graded approach to equipment reliability 
• Balancing the cost of maintaining equipment with industry and station goals for safety and 

reliability  
• Eliminating critical component failures 
• Maintaining acceptable levels of reliability for noncritical components based on their importance 

to safety, reliability and business objectives. 
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The health of a system can be measured in many ways, but we focus on the following key attributes: 

• Reliability 
• Availability 
• Performance according to plant design and Technical Specifications 
• Aggregated risk and environmental impact 
• Corrective action history and backlog (i.e., a measure of equipment condition and economic 

performance) 
• Operator burdens and operator workarounds for the system  
• Ageing and obsolescence issues. 

Here, aggregated risk and environmental impact refers to the effect that an unreliable but high-importance 
system may have on risk measures such as CDF and Large Early Release Frequency (LERF) because the 
system could be in a state of disrepair when called upon to perform its intended function. Operator burdens 
and workarounds refer to the substitution of operator actions or procedural measures for permanent fixes 
when a SSC is in a degraded state. In Section 3.1 we illustrate the link between ER processes within the 
larger context of System Health and risk-informed applications. 
 

3.1 Links Between Equipment Reliability Processes and Risk-
Informed Applications 

There is a strong link between ER processes and Risk-Informed (RI) applications as illustrated in Figure 
6. The key ER processes are implemented through a series of guidance documents prepared by industry 
organizations including INPO; NEI and its predecessor, the Nuclear Management and Resources Council 
(NUMARC); and EPRI. Many RI applications can be categorized as those that are primarily regulatory-
driven through regulation or NRC programs including the Reactor Oversight Process (ROP). The ROP is 
the NRC’s program to inspect, measure, and assess the safety and security performance of operating 
commercial NPPs, and to respond to any decline in their performance. 

A second category of RI applications is designated as more voluntary in nature. The decision to move 
forward with any of these programs is determined by each individual licensee. Guidance documents are 
provided by the NRC, industry, or a combination of the two to provide consistency in the application and 
implementation of the risk-informed activity. Further discussion is provided below. Appendix B provides 
a summary of the considered RI applications. 

 

3.2 Equipment Reliability Processes 
There are many ER programs and processes to ensure safe and reliable nuclear power generation. 

Central to many of the guidance documents is INPO’s AP-913 [5] that provides a compendium of resources 
for maintaining equipment reliability and performance. The process description in AP-913 reflects the 
experience gained from equipment performance assistance visits to operating plants and benchmarking trips 
to domestic and international utilities. The equipment reliability process was designed with the direct 
participation of the Equipment Reliability Working Group (ERWG) actively involved in improving 
processes. However, because AP-913 is a proprietary document, the descriptions of its contents provided 
there are limited to information that can be obtained from publicly available sources. 

NUMARC 93-01 [16] was developed in the 1990s to assist the industry in implementing the 
Maintenance Rule specified under 10 CFR 50.65 [1] and to build on the significant progress, programs and 
facilities that had been established at operating NPPs to improve maintenance. The guideline provides a 
process for deciding which of the many SSCs that make up a commercial NPP are within the scope of the 
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Maintenance Rule. It then describes the process of establishing plant-specific risk significance and 
performance criteria to be used to decide if goals need to be established for specific SSCs covered by the 
Maintenance Rule when it is determined that they do not meet their specified performance criteria. A 
proposed alternative to the current Maintenance Rule, or Maintenance Rule 2.0 as often referred to, has the 
potential to streamline and better focus plant maintenance but would not fundamentally change the 
importance of the Maintenance Rule [18]. 
 

 
Figure 6. Relationship of RI applications and ER processes to system health. 

 

3.3 Risk-Informed Applications   
 

3.3.1 Regulatory-Driven Risk-Informed Applications 
Regulatory-driven RI applications include regulations enacted in the 1980s and 1990s that were 

formulated largely on the basis of risk insights from early comprehensive risk studies. For example, 10 CFR 
50.62, or the Anticipated Transient Without Scram (ATWS) Rule, was implemented considering reliability 
studies in the 1970s regarding the probability of common cause failures of the reactor trip function and the 
potentially adverse consequences that could result including fuel damage. The urgency of implementing 
the rule was highlighted in February 1983 by the Salem Nuclear Generating Station ATWS events. This 
was the first time a U.S. commercial NPP failed to scram automatically on a valid reactor protection signal. 
Fortunately, the plant was operating at low power levels on both occasions and minimal consequences 
resulted. 
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Similarly, early risk studies identified total loss of Alternating Current (AC) power resulting from loss 
of offsite power initiating events combined with failures of onsite emergency power sources as significant 
contributors to CDF. The Station Blackout (SBO) rule promulgated in the 1980s requires licensees to 
propose and justify an SBO coping duration based on their ability to: (1) maintain highly reliable onsite 
emergency ac electric power supplies; (2) ensure that the plants can cope with an SBO for some period of 
time based on the probability of an SBO at the site and the capability to restore power to the site; (3) develop 
procedures and conduct training to restore offsite and onsite emergency ac power should either become 
unavailable; and (4) if necessary, make modifications necessary to meet the SBO rule requirements.  

Inspection Manual Chapter (IMC) 0305 describes NRC’s Operating Reactor Assessment Program 
(ROP) [19]. The ROP integrates NRC’s inspection, Performance Indicator (PI), assessment, and 
enforcement programs applicable to operating reactors. The ROP evaluates the overall performance of 
operating commercial NPPs and communicates this information to licensee management, members of the 
public, and other stakeholders. The ROP collects information from inspections and PIs to enable the NRC 
to develop objective conclusions about a licensee’s safety performance.  

To measure plant performance, the oversight program focuses on seven specific “cornerstones” which 
support the safety of plant operations in three broad strategic areas. These include such focus areas as 
initiating events, mitigating systems, barrier integrity, and others. Additionally, there are cross-cutting 
elements such as human performance that are evaluated.  

Within each cornerstone, a broad sample of data on which to assess licensee performance in risk-
significant areas is gathered from PI data submitted by licensees and from the NRC’s risk-informed baseline 
inspections. The PIs are not intended to provide complete coverage of every aspect of plant design and 
operation, but they are intended to be indicative of performance within the related cornerstone. 

The three specific RI processes usually associated with the ROP include: 

• The mitigating systems performance index (MSPI) [20, 21] 
• The significance determination process (SDP) for inspection findings [22] 
• Management Directive 8.3, Incident Investigation Program [23] 

The MSPI monitors the performance of selected NPP systems based on their ability to perform risk-
significant functions. It provides a surrogate measure of the change in CDF resulting from departures of 
component unreliabilities and train unavailabilities from established baselines.  

The SDP uses risk insights, where appropriate, to assist NRC staff in determining the safety or security 
significance of inspection findings identified within the seven cornerstones of safety at operating reactors. 
The SDP is a risk-informed process and the resulting safety or security significance of findings, combined 
with the results of the risk-informed performance indicator program, is used to determine a licensee’s level 
of safety performance and the level of NRC engagement with the licensee. 

The NRC defines “incident investigation” under MD 8.3 as a formal process conducted for the purpose 
of accident prevention. The process includes gathering and analyzing information; determining findings 
and conclusions, including the cause(s) of a significant event; and disseminating the investigation results 
for the NRC, industry, and public review. 

While the MSPI is generated by licensees through the auspices of INPO software, both the SDP process 
and MD 8.3 are initiated by NRC staff on a case-by-case basis when a potentially risk-significant event or 
equipment failure occurs. 
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3.3.2 Voluntary Risk-Informed Applications 
Voluntary RI applications, as highlighted in Figure 6, were developed with the intent of enhancing 

safety, improving operational effectiveness, or obtaining burden reduction [24]. Regulatory Guide (RG) 
1.174 [25] describes the key principles and the overall process for risk-informed decision-making. These 
may be augmented by application-specific guidance for other processes such as risk-informed in-service 
inspection (RI-ISI) of piping under RG 1.178 [26] and associated industry documents. Additional voluntary 
RI applications include Risk-Managed Technical Specifications (RMTS) [27], Surveillance Frequency 
Control Program (SFCP) [28], and SSC characterization under 10 CFR 50.69 [29]. Key applications are 
discussed in greater detail in Section 5 of this report.  

For license renewal, a Severe Accident Mitigation Alternative (SAMA) assessment is necessary to 
evaluate the cost-benefit of additional measures such as design changes and operations enhancement. The 
SAMA process is not discussed to any extent here. Likewise, we will not address here the performance-
based standard for Fire Protection of light-water reactors under NFPA 805 [30] and alternate requirements 
for Pressurized Thermal Shock (PTS) of reactor pressure vessels under 10 CFR 50.61a [31]. 

 

3.4 Links to System Health 
Table 1 shows the relationship between RI applications and key functions for nuclear power plant 

operations and sustainability. The regulatory-driven applications such as the ATWS, SBO, and ROP 
programs primarily maintain safe operations. The Maintenance Rule under 10CRF50.65, in addition to 
maintaining safe operations, serves to further improve plant and SSC reliability through the avoidance of 
reactor scrams. 

The voluntary programs manage safe operations but may also support reliable plant operations. 
Furthermore, RI-ISI (of piping) under RG 1.178 (and associated industry guidance documents and Code 
Cases) is an example of an application that manages equipment ageing. Ageing can be managed specifically 
by addressing environmental stressors such as temperature, radiation, and moisture, and by managing 
operating stressors such as SSC cycling and vibration. Characterization and treatment of SSCs under 
10CFR50.69 may provide the additional benefit of managing obsolescence through commercial 
procurement practices for obsolete safety-related equipment.  

If the SSC is part of a monitored system in the MSPI, additional risk-related information may exist. 
Likewise, Maintenance-Rule related information also may be available. Table 1 also identifies how four of 
the most widely implemented voluntary applications relate to System Health, specifically: 

• 10CFR50.69 SSC categorization 
• SFCP per TSTF-425 and NEI 04-10 
• RMTS per TSTF-505 and NEI 06-09 
• RI-ISI per RG 1.178 and associated industry ASME Code Cases 

These applications provide information that can be useful in assessing System Health. 
Table 2 summarizes the key information on SSCs and how they relate to System Health in a broad 

sense. The key safety functions are standard and include such functions as reactivity control and 
containment integrity.  
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Table 1. High-level functions of risk-informed applications. 

Risk-Informed 
Applications 

Manage 
Safe 

Operation 

Manage 
Reliable 

Operation 

Manage Equipment Ageing Manage 
Obsolescence 

(critical 
spares, 

commercial 
procurement) 

Manage 
Environmental 

Stressors               
(temperature, 
rad, moisture, 

etc.) 

Manage 
Operating 
Stressors 
(cycling, 

vibration) 

Regulatory-Driven 
Processes 

     

ATWS, SBO, 
Combustible Gas 
Control 

ü     

50.65 Maintenance 
Rule ü ü    

Reactor Oversight 
Process (MSPI, SDP, 
MD 8.3) 

ü     

      

Voluntary Processes      

RG 1.174 Changes to 
Licensing Basis ü ü    

RG 1.177 Individual 
Tech Spec 
Completion Times 

ü ü    

RG 1.178 Inservice 
Inspection of Piping ü ü ü ü  

License renewal - 
SAMAs ü     

NEI 06-09 Risk-
Managed Tech Specs ü ü    

NEI 04-10 
Surveillance 
Frequency Control 
Program 

ü ü  ü  

50.48(c) – NFPA 805 
Fire Protection ü     

50.61a Alternate 
Requirements for PTS ü  ü ü  

50.69 – NEI 00-04 
SSC Characterization 
& Treatment 

ü  ü ü ü 
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Core damage-related risk metrics include Risk Reduction Worth (RRW) and Risk Achievement Worth 
(RAW). Risk metrics such as RRW and RAW tell one how risk-important is the structure or component 
within a system to situations where the system might be degraded. For example, if the potable water system 
that provides drinking water to the site is degraded, it has no risk impact. If critical systems such as 
emergency ac power with high risk importance (i.e., RRW, RAW) are degraded, then the impact on system 
health can be significant.    

Economic enterprise risk metrics are a relatively new concept and are derived from an economic risk 
model analogous to CDF-derived and LERF-derived Fussell-Vesely (FV) importance measures [32]. The 
metric denotes how much the SSC failures contribute, on a relative basis, to economic damages from reactor 
transients and accidents at NPPs where the accidents do not necessarily progress to a state of core damage. 
The contributions to the economic risk measures include: 

• Lost generation 
• Regulatory impact 
• Equipment damage 

 
Table 2. Key information on SSCs as it relates to system health. 

Category Specific Information Relation to System Health 

Key safety function(s) 
affected 

For example, reactivity control, 
reactor coolant heat removal, 
reactor coolant inventory 
control, and containment 
integrity (isolation, 
pressure/temperature control) 

None, simply identifies the 
function(s) of the SSC. 

Core damage-related and 
LERF-related risk metrics 

For example, RRW and RAW Provide quantitative measures of the 
impact of SSC failures on CDF (or 
LERF) under opposite assumptions 
of perfect reliability or complete 
failure, respectively. Thus, systems 
with generally high RRW and RAW 
risk measures that are in a degraded 
state would have high adverse 
impacts on system health.  

Economic Enterprise 
Risk metrics 

Economic risk FV values that 
account for 

• Lost generation 
• Regulatory impact 
• Equipment damage 

Values derived from an economic 
risk model analogous to CDF and 
LERF-derived FV importance 
measures. The metric denotes how 
much the SSC failures contribute on 
a relative basis to economic damages 
from reactor transients and accidents 
at NPPs where the accidents do not 
necessarily progress to a state of core 
damage.  

MSPI-related information For example, margin available 
for monitored component, 

The MSPI monitors the performance 
of selected NPP systems based on 
their ability to perform risk-
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Category Specific Information Relation to System Health 

historic range of MSPI values, 
past non-green indicators. 

significant functions. It provides a 
surrogate measure of change in CDF 
resulting from departures of 
component unreliabilities and train 
unavailabilities from established 
baselines. Repetitive high values of 
the MSPI may be indicative of poor 
system health for those systems that 
have risk-significance. 

Maintenance Rule-related 
information 

For example, risk-significance 
classification, train 
unavailability, train unreliability, 
number of Maintenance 
Preventable Functional Failures 
(MPFFs), Repeat MPFFs, 
whether the SSC failure can 
potentially scram the reactor, 
SSC (a)(1) status, work backlog, 
temporary modifications, and 
maintenance cost. 

Provides a variety of information 
regarding the historic performance of 
the SSC and its relative risk 
significance.  

50.69 SSC categorization 
and special treatment (if 
applicable) 

For example, risk-informed 
safety classification (RISC) 

Provides perspective on the safety-
importance of the SSC. The SSC 
chosen for special treatment would 
have undergone a rigorous 
categorization process involving the 
Integrated Decision-making Panel 
(IDP).  

TSTF-425, NEI 04-10, 
SFCP (if applicable) 

For example, surveillance test 
intervals (STIs) that have been 
adjusted 

The STI chosen for adjustment along 
with the associated SSCs would have 
received rigorous consideration by 
the IDP. 

TSTF-505, NEI 06-09, 
RMTS (if applicable)  

For example, whether the system 
is within scope of RMTS 

The system chosen for RMTS along 
with the associated SSCs would have 
received rigorous considerations. For 
example, technical adequacy of the 
PRA, compensatory actions to retain 
defense in depth, maintaining safety 
margins, and monitoring using 
performance measurement strategies 
are key elements of risk-informed 
decision-making. 

RG 1.178 RI-ISI of 
Piping (if applicable) 

For example, identification of 
degradation mechanisms and 
potential for pipe rupture, 

Provides a risk-informed means of 
prioritizing ASME-required piping 
inspections to enhance safety. The 
RI-ISI programs can enhance overall 
safety by focusing inspections of 
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Category Specific Information Relation to System Health 

categorization of consequences 
by system or piping class 

piping at risk-significant locations 
and locations where failure 
mechanisms are likely to be present, 
and by improving the effectiveness 
of inspection of components by 
focusing on personnel qualifications, 
inspection for cause, and the use of 
multidiscipline plant review teams. 

 

3.5 Pilot Systems for Characterization 
Three pilot systems are proposed for characterization of System Health. These systems were chosen in 

consultation with the utility host and represent both safety related and power production systems at one of 
the host utility’s Boiling Water Reactor (BWR) NPPs. The systems chosen were the following: two plant 
safety systems – Reactor Core Isolation Cooling (RCIC) and High Pressure Coolant Injection (HPCI), and 
one power production system – Electro-Hydraulic Control (EHC) of the main steam turbine. These systems 
were chosen based on a number of considerations which included: 

• System size – each of the selected systems is relatively small so that assessments could be 
performed within the timeframe and budget of the project. 

• System importance – each of the selected systems provides important functions to either plant 
safety or power production with potentially significant consequences to plant economics if system 
performance would be degraded. 

• Availability of utility resources – the ability of site and corporate personnel responsible for each of 
the selected systems was considered to ensure utility input and participation. 

The RCIC system is designed to provide makeup to the reactor vessel during accidents or transients 
where the reactor vessel pressure remains high. RCIC allows reactor vessel coolant inventory and pressure 
control until the reactor is depressurized to a point where low pressure systems are capable of providing 
adequate makeup. The system is sized to provide adequate Reactor Pressure Vessel (RPV) makeup during 
events in which the plant is shutdown (i.e. removal of decay heat) where main heat sink (i.e., the main 
condenser) is not available (i.e., the RPV is isolated). The RCIC system operating pressure overlaps that of 
the low-pressure Emergency Core Cooling Systems (ECCS). The level control function of RCIC, operated 
from the main control room, is modeled in the plant PRA. The pressure control function of RCIC is not 
modeled (note that the same situation exists for HPCI). 

The RCIC system consists of a steam turbine-driven pump designed for 38 kg/s (600 gpm) between 
reactor pressures of 1138 and 7688 kPa (150 and 1100 psig), with associated system piping, valves, 
controls, and instrumentation. Suction piping comes from both the Condensate Storage Tank (CST) and the 
Suppression Pool (SP). Initially, water from the CST is used until either an automatic swap-over occurs on 
low CST level or high SP level, or it is manually transferred. The steam supply for the RCIC turbine is from 
a main steam line inboard of the Main Steam Isolation Valves (MSIV’s). Exhaust steam from the RCIC 
turbine is discharged to the suppression pool. 

HPCI is designed to provide makeup to the reactor vessel during accidents where the vessel pressure 
remains high. HPCI allows reactor vessel coolant inventory and pressure control until the reactor is 
depressurized. In contrast to RCIC, the HPCI system is sized to provide adequate reactor pressure vessel 
(RPV) makeup during events in which the plant is shutdown (i.e., removal of decay heat) and for which 
coolant inventory may be lost due to a break in small to intermediate sized piping. As a result, the HPCI 
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system is substantially larger than RCIC (on the order of a factor of 10). The HPCI system operating 
pressure also overlaps that of the low pressure ECCS systems. 

The HPCI system consists of a steam turbine-driven pump, associated system piping, valves, controls, 
and instrumentation. Suction piping comes from both the CST and the SP. Water is injected into the reactor 
vessel through a core spray loop and a feedwater line. The steam supply for the HPCI turbine is from a 
main steam line inboard of the MSIV’s. Exhaust steam from the HPCI turbine is discharged to the SP. 

The primary functions of the EHC system are to: 

• Provide normal reactor pressure control by controlling steam flow consistent with reactor power 
• Control reactor pressure during startup, heatup, and cooldown evolutions 
• Control the speed and electrical load on the turbine generator 
• Provide protection for the main turbine, main generator and main condenser 

The EHC system has both electronic and hydraulic parts. In addition to normal pressure control, the 
EHC system also contains the electronic and hydraulic components necessary for positioning of the 
intercept (control valve) portion of the Combined Intermediate Valves (CIVs) and trip control of the 
Turbine Control Calves (TCVs), the intercept portion of the CIVs, Turbine Stop Valves (TSVs), and the 
stop valve portion of the CIVs.  

The EHC system is typically not modeled in the PRA except as a potential contributor to turbine trip 
frequency as an initiating event and perhaps some aspects of steam dump to the condenser via the turbine 
Bypass Valves (BPVs). 

Appendix A summarizes the key functions of RCIC, HPCI and EHC as well as: 

• How the three systems interface with risk-informed applications 
• How the systems may impact electrical generation and, hence, plant economics 
• How the systems may be impacted by or contribute to off-normal transients and accidents 
• How adverse system performance may have regulatory impacts. 

 

3.6 Plant Economic Impact Vectors 
Economic Enterprise Risk (EER) modeling employs conventional risk assessment techniques but 

applies those methods to reactor transients and accidents at NPPs where the accidents do not necessarily 
progress to a state of core damage [32]. EER encompasses those efforts to recover from the transient or 
accident including:  

• Repair cost 
• Lost power production (or replacement power cost) 
• Regulatory impact 

These three components of economic costs are not independent. In some instances, as for many full-
power internal events (non-flood), the physical damage may be minimal while the lost generation, at costs 
of many hundreds of thousands of dollars per day, dominates the overall economic impact of the event. In 
other instances, particularly for internal flooding and fire events, the physical damage can be significant, in 
the tens of millions of dollars. To the extent that the physical damage results in an extended forced shutdown 
to repair or replace damaged equipment, costs can add up substantially. 

Regulatory Impact relates to the response of local, state, and federal officials and regulatory bodies to 
the event. In particular, enhanced reactive inspection under NRC’s Management Directive 8.3 [23] could 
result in a Special Inspection Team (SIT), or the dispatching of an Augmented Inspection Team (AIT), or 
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even an Incident Investigation Team (IIT) depending on the safety impact of the event.  Other enforcement 
actions could result as well, depending on the consequences from the event.   

Appendix C shows a consolidated set of casualty events along with their generalized plant impact states 
(identified as C0 through C13). Cost data from a casualty database as discussed in Reference [32] are used 
as anchor points to map each event to an impact state. Lost generation from a plant outage is factored into 
the overall cost consideration and usually dominates the total cost. Some of the data used to develop these 
plant impact state vectors were obtained from publicly available casualty claims in annual reports of 
Nuclear Electric Insurance Limited (NEIL), but no relationship to NEIL claim categories is made. It is 
recognized that because cost data are not available for all the events listed, some degree of judgment is 
necessary to assign each event to an impact state. In these cases, pairwise comparison is made to fit the 
event between given anchor points which have reasonably defined outage durations and costs. 

Generic plant impact states with associated costs are also shown in Appendix C. Generally, the impact 
states for non-core damage events reflect a factor of 3 in cost from one value to the next. The exception is 
C10 because of the large absolute dollar gap between C9 and C11, and because a number of data points had 
costs in this range. Because of uncertainty in the economic consequences of various events, the uncertainty 
of costs in Appendix C typically spans three cost bins based on judgment. These cost estimates could be 
better refined with the collection of plant-specific NPP outage and repair cost data, if available.  

The cost data in Appendix C go beyond what are normally considered in Generation Risk Assessment 
(GRA) studies [33]. The GRA studies attempt to predict the risk of generation loss during future operation 
by estimating the probability and duration of plant trip or de-rate due to degradation or failure of equipment. 
The primary reason for implementing GRA is to support the performance of applications that impact plant 
operations and economic performance by improving reliability, reducing maintenance costs, or reducing 
future lost generation. The data evaluated here include the potential for Regulatory impact from a spectrum 
of casualty events up to and including core damage events and radiological release.  

On the other hand, Risk-Informed Asset Management (RIAM) [34] consists of a decision-analysis, risk-
based, plant-level asset and project evaluator methods and tools that are appropriate for use in a market-
driven industry. RIAM is intended to provide plant operators with project prioritization and life cycle 
management planning methods and tools for making long-term maintenance plans, guiding plant budgeting, 
and determining the sensitivity of a plant’s economic risk to the reliability and availability of SSCs, as well 
as other technical and economic parameters. As described in Section 11 of this report, there exists 
substantial interfaces between system health and RIAM approaches such that the perspective of both 
viewpoints is important in plant operations, maintenance, and investment decision-making. 

 

3.7 Considerations on System Health 
In this section we have defined System Health as the integrated assessment of NPP equipment 

performance and condition within the context of system functions. Some key objectives of a System Health 
program are provided. Links between equipment reliability processes and risk-informed applications are 
illustrated. Many risk-informed applications can be categorized as those that are primarily regulatory-driven 
through regulation or NRC programs including the ROP.  

A second category of risk-informed applications is designated as more voluntary in nature. The decision 
to move forward with any of these programs is determined by each individual licensee. Guidance 
documents are provided by the NRC, industry, or a combination of the two to provide consistency in the 
application and implementation of the risk-informed activity. Central to many of the guidance documents 
on equipment reliability is INPO’s AP-913 [5] that provides a compendium of resources for maintaining 
equipment reliability and performance.   



 

 19 

The relationship between risk-informed applications and key functions for nuclear power plant 
operations and sustainability is shown in Table 1. The regulatory-driven applications such as the ATWS, 
SBO, and ROP programs primarily maintain safe operations. The Maintenance Rule under 10 CFR 50.65, 
in addition to maintaining safe operations, serves to further improve plant and SSC reliability through the 
avoidance of reactor scrams. 

Three pilot systems are proposed for characterization of System Health – RCIC, HPCI, and EHC. 
Appendix A summarizes the key functions of RCIC, HPCI, and EHC as well as: 

• How the three systems interface with risk-informed applications 
• How the systems may impact electrical generation and hence plant economics 
• How the systems may be impacted by or contribute to off-normal transients and accidents 
• How adverse system performance may have Regulatory impacts 
• What are the key input and output data for each system to optimize overall performance 

Some results from initial evaluations of data from these pilot systems at the host NPP are provided in 
Section 5 of this report.   

Finally, EER modeling is discussed. EER employs conventional risk assessment techniques but applies 
those methods to reactor transients and accidents at NPPs where the accidents do not necessarily progress 
to a state of core damage. A generic plant economic impact vector corresponding to a spectrum of casualty 
events is provided. The data include the potential for Regulatory impact resulting from off-normal transients 
and accidents up to and including core damage and radiological release. 

 

4. FRAMEWORK FOR AN INTEGRATED SYSTEM HEALTH 
PROGRAM  

This section summarizes potential approaches for the application of reliability theory to the operating 
experience data provided by the nuclear utility host plant in this project. First, principles of reliability 
concepts are described; however, a full discussion of reliability theory is beyond the scope of this report. 
We have identified two models for potential use to support optimization of plant maintenance and 
surveillance activities within a risk-informed system health program. The Standby Failure Model (see 
Appendix D) is used extensively in PRAs but has limitations when it comes to testing and maintenance cost 
optimization. Markov Methods (see Appendix E) have even greater potential for application; however, they 
require additional investment of effort to derive rates of degradation and failure. Repair rates should be 
readily available from plant data sources. Grouping of the performance data may be a means to reduce the 
analysis effort.   

In PRA, only a few failure rates are used to represent a complex piece of machinery such as a turbine-
driven RCIC pump or an emergency diesel generator (e.g., fail to start, fail to run for 4 hours, etc.). This 
works well for the purpose of the PRA; but for optimizing testing and maintenance it is necessary to 
represent more degradation and failure mechanisms. On the other hand, there are practical limits as to the 
number of such mechanisms for which there are meaningful data and for which the reliability models can 
be solved. 

A possible approach is to group the predominant failure mechanisms according to a few attributes such 
as degradation/failure rate, Mean Time To Repair (MTTR), and PM or repair cost. 

Plant data would seem to support a repair time categorization for most mechanical components 
according to the following breakdown (binning): 

• < 8 hr 
• 8 – 24 hr 
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• 24 – 72 hr 
• > 72 hr. 

Failure rates could possibly be grouped into discrete values by decades such as 10-7 to 10-6 hr-1, 10-6 to 10-5 
hr-1, and so on. Likewise, repair costs could be grouped by the decade from $1000 to greater than $1 million.  

For example, a small electrical motor may show signs of degradation at a nominal 10-5 /hr to 10-4 /hr 
rate, require between $10k and $100k in labor and materials repair cost and result in 60 hours of SSC 
unavailability (24 to 72 hr category). Simple examples of these data are reflected in Table 33 along with 
other representative repairs. This characterization and grouping of degradation and failure mechanisms 
clearly identifies the items that are good candidates for a “run to maintenance” strategy because of low 
frequency of occurrence, low impact on system unavailability, and low cost of repaira. Populating a table 
similar to Table 3 can also allow focus on those components and failure mechanisms that most impact 
system test and maintenance costs. 

 
Table 3. Simplified representation of grouping of SSC performance data. 

Repair Time 
or 

Unavailability 
(hr) 

Degradation/Failure Rate (/hr) 

10-7 to 10-6 10-6 to 10-5 10-5 to 10-4 

Repair Cost Repair Cost Repair Cost 

$ 103–104 $ 104-105 $ 103–104 $ 104-105 $ 103–104 $ 104-105 

< 8 Hand 
switch      

8 - 24   Pump large 
oil leak    

24 - 72      Small motor 
replacement 

> 72       
 

4.1 Effectiveness of STs and PMs 
The models and plant-specific SSC performance data discussed above can provide most of the 

framework for maintenance cost optimization. One additional useful metric relates to the effectiveness of 
existing STs and PMs. For example, a particular test or series of tests that rarely if ever identified 
degradation or failure mechanisms through decades of service raises the question whether such testing could 
be terminated, or in the least, the surveillance test interval extended. This is consistent with the SFCP 
discussed in Section 5.  

An important metric that could provide additional insights as to the effectiveness of STs and PMs is the 
conditional probability that the inspection or testing resulted in an Issue Report (IR) with follow-up Work 
Order(s). For example, monthly or quarterly valve stroke testing or pump flow testing may result 20% of 
the time in an IR being generated. The frequency of the ST or PM, combined with the conditional 

 
a Note that the term “run to maintenance” is the current terminology for SSCs that are determined not to have specified PM 
activities. Previously this strategy was termed “run to failure”. 
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probability of degradation, can allow for the determination of parameters used in reliability modeling (i.e.  
λd, λf,  and to a lesser extent λdf ) as defined in Appendix E. 
 

5. RI-PSH APPLICATIONS  
5.1 Maintenance Rule – 10 CFR 50.65 

The U.S. Nuclear Regulatory Commission’s (NRC) Maintenance Rule, 10 CFR 50.65, became 
effective in July 1996 [1]. Detailed industry guidance for implementing the Maintenance Rule is found in 
NUMARC 93-01 [18]. This guidance provides a process for deciding which of the many SSCs that make 
up a commercial NPP are within the scope of the Maintenance Rule. It then describes the process of 
establishing plant-specific risk significance and performance criteria to be used to decide if goals need to 
be established for specific structures, systems, trains and components covered by the Maintenance Rule that 
do not meet their specified performance criteria. 

The major steps of the guidance in NUMARC 93-01 include:  

1) Selecting the SSCs within the scope of the Maintenance Rule 
2) Establishing and applying risk significant criteria 
3) Establishing and applying performance criteria 
4) Goal setting and monitoring of applicable SSCs to ensure plant and system functions are reliably 

maintained and to demonstrate the effectiveness of maintenance activities 
5) Assessing and managing the risk resulting from the performance of maintenance activities 
6) Performing the periodic assessment of performance 
7) Documenting the information needed to support implementation of the Maintenance Rule 

Selection of SSCs in step 1 is prescribed in detail in the guidance. Step 2 is linked to the plant-specific 
Probabilistic Risk Assessment (PRA) model and risk metrics that are derived from the quantification of the 
PRA. Performance criteria under step 3 are established to provide a basis for determining satisfactory 
performance and the need for goal setting. The actual performance criteria used should be SSC availability, 
reliability, or condition. Goals are established to bring about the necessary improvements in performance. 
When establishing goals, a licensee is to consider various goal setting criteria such as existing industry 
indicators, industry codes and standards, failure rates, duty cycles, and performance related data.  

As described in NUMARC 93-01, monitoring consists of periodically gathering, trending, and 
evaluating information pertinent to the performance, and/or availability of the SSCs and comparing the 
results with the established goals and performance criteria to verify that the goals are being met. Assessing 
the risk means using a risk-informed process to evaluate the overall contribution to risk of the planned 
maintenance activities. Managing the risk means providing plant personnel with proper awareness of the 
risk and taking actions as appropriate to control the risk. Periodic assessments are performed to establish 
the effectiveness of maintenance actions. These assessments consider, where practical, industrywide 
operating experience. Finally, all aspects of the process are documented as appropriate. 

 

5.2 Surveillance Frequency Control Program  
NEI 04-10 [28] describes the technical methodology to support risk-informed Technical Specifications 

initiative 5b, which provides a risk-informed method for licensee control of surveillance frequencies. 
Existing specific surveillance frequencies are removed from plant Technical Specifications for the affected 
specifications and placed under licensee control pursuant to this methodology. A paragraph is added to the 
Administrative Controls section of the plant Technical Specifications referencing this methodology 
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document, as approved by NRC, for control of surveillance frequencies. The surveillance test requirements 
(test methods) are not changed and remain in the Technical Specifications.  

The methodology of NEI 04-10 [28] uses a risk-informed, performance-based approach for 
establishment of surveillance frequencies, consistent with the philosophy of NRC Regulatory Guide (RG) 
1.174 [35]. PRA methods are used to determine the risk impact of the revised intervals. Sensitivity studies 
are performed on important PRA parameters. A multi-disciplinary plant decision-making panel (IDP) is 
utilized to evaluate determinations of revised surveillance frequencies, based on operating experience, test 
history, manufacturers’ recommendations, codes and standards, and other factors, in conjunction with the 
risk insights from the PRA. Results and bases for the decision must be documented. 

The effect of the proposed changes to surveillance frequencies, aggregate risk impact of the single 
revised surveillance frequency for all PRA events, and the cumulative risk impact for all surveillance 
frequency changes are compared to NRC risk acceptance guidelines per RG 1.174. Feedback and periodic 
re-evaluation of the surveillance frequencies are conducted for SSCs. As noted in NEI 04-10, two important 
aspects of performance monitoring are whether the test surveillance frequency is sufficient to provide 
meaningful data and whether the testing methods, procedures, and analysis are adequately developed to 
ensure that performance degradation is detected. Component failure rates should not be allowed to rise to 
unacceptable levels (e.g., significantly higher than the failure rates used to support the change) before 
detection and corrective action take place. 

 

5.3 Risk-Managed Technical Specifications  
NEI 06-09 [27] provides guidance for implementation of a generic Technical Specifications 

improvement that establishes a risk management approach for voluntary extensions of completion times for 
certain Limiting Conditions for Operation (LCOs). The methodology uses a risk-informed approach for 
establishment of extended completion times and is consistent with the philosophy of RG 1.174 [35]. PRA 
methods are used to determine the risk impact of the revised completion times.  

The extension of completion time for a plant SSC that is inoperable per the plant Technical 
Specifications must consider the configuration-specific risk and is an extension of the methods used to 
comply with paragraph (a)(4) of the Maintenance Rule, 10 CFR 50.65. Plants implementing this initiative 
are expected to use the same PRA analyses to support their Maintenance Rule (a)(4) programs. A 
deterministic 30-day backstop value is imposed to limit the completion time extension regardless of low 
risk impact. Results of implementation are monitored, and cumulative risk impacts are compared to specific 
risk criteria. Corrective actions are implemented should these criteria be exceeded. 

An important element of the RMTS is the programmatic requirement to manage risk and to implement 
reasonable compensatory measures to reduce risk. As noted in NEI 06-09, compensatory measures may 
include but are not limited to the following: 

• Reduce the duration of risk sensitive activities. 
• Remove risk sensitive activities from the planned work scope. 
• Reschedule work activities to avoid high risk-sensitive equipment outages or maintenance states 

that result in high-risk plant configurations. 
• Accelerate the restoration of out-of-service equipment. 
• Determine and establish the safest plant configuration. 

In order to implement RMTS, a process must be in place to monitor plant modifications and other 
changes which may impact the PRA model to assure that the configuration risk management program 
(CRMP) correctly reflects the as-built, as-operated plant. The CRMP must be governed by plant procedures, 
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and any deficiencies of the CRMP tool must be addressed and dispositioned in accordance with the 
requirements and time limits of the licensee’s corrective action program. 

 

5.4 SSC Characterization and Special Treatment – 10 CFR 50.69  
NEI 00-04 [29] provides detailed guidance on categorizing SSCs for licensees that choose to adopt 10 

CFR 50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for 
Nuclear Power Reactors. There are two steps associated with the implementation of 10 CFR 50.69: (1) the 
categorization of SSCs and (2) the substitution of alternative treatments as replacements for NRC specified 
special treatment requirements that are consistent with the safety significance of the equipment categorized 
in the first step. A licensee wishing to implement 10 CFR 50.69 makes a submittal to the NRC for review 
and approval.  

The 10 CFR 50.69 SSC categorization process is an integrated decision-making process. This process 
blends risk insights, new technical information and operational feedback through the involvement of a 
group of experienced licensee-designated professionals. This group, known as the Integrated Decision-
making Panel (IDP), is supported by additional working level groups of licensee-designated personnel. 10 
CFR 50.69 does not replace the existing “safety-related” and “non-safety-related” categorizations. Rather, 
10 CFR 50.69 divides these categories into two subcategories based on High or Low Safety Significance 
(HSS or LSS respectively). This is depicted schematically in Figure 7. 

 
Figure 7. 10 CFR 50.69 classifications.  

Special treatment requirements are current NRC requirements imposed on SSCs that go beyond 
industry-established (industrial) controls and measures for equipment classified as commercial grade and 
are intended to provide reasonable assurance that the equipment is capable of meeting its design bases 
functional requirements under design basis conditions. These additional special treatment requirements 
include design considerations, qualification, change control, documentation, reporting, maintenance, 
testing, surveillance, and quality assurance requirements.    

As described in NEI 00-04, from a safety perspective, the benefits of implementing 10 CFR 50.69 are 
associated with better licensee and NRC focus of attention and resources on matters that have higher levels 
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of safety significance. A risk-informed SSC categorization scheme should result in an increased awareness 
on that set of equipment and activities that could impact safety, and hence provide an overall improvement 
in safety with the potential to reduce costs. 

 

5.5 Characterization of Plant Data 
This section summarizes the review and characterization of the operating experience data provided by 

the nuclear utility host plant for this project. The set of requested data that was provided was complete. The 
initial review of the data was limited to a single NPP site as a pilot effort. While the HPCI, RCIC and EHC 
systems are all within scope for this task, emphasis was placed initially on characterization of the RCIC 
system and to a lesser extent on HPCI.  

The sources of plant operational data can be categorized as (a) source data and (b) reviewed, vetted and 
consolidated data. 

 

5.5.1 Source data 
The primary sources of source data include: 

• Operations Logs 
• Issue Reports (IRs) 
• Work Orders (WOs). 

Operation Logs are most useful because they clearly state when Technical Specifications action 
statements were entered and exited, and for particular surveillances (e.g., RCIC valve stroke testing), the 
exact time that the system was Out-Of-Service (OOS).  

IRs provide useful information regarding the origination date, system, severity, operability, and 
functionality associated with plant SSCs and events. However, the file that was provided did not include a 
cross-reference to WO number which limited the scalability for this project in linking the work performed 
following an SSC Issue Report. 

WOs provide a description of the task, start and completion dates/times, system/component, type of 
work (e.g., preventive maintenance) and labor hours. The labor hours are particularly useful to permit 
assessment of cost and economic impact. The data provided did not have a data field that cross-referenced 
the IR number (if that was the initial reason for the WO), making it less efficient to link the two for the 
purpose of this project. It is clear that one could not use the WO start and completion times as a measure of 
system unavailability since a comparison to Operations Logs indicated they did not often correlate.   

 

5.5.2 Vetted data 
Vetted data sources use the above source data that have been reviewed, assessed for applicability, and 

consolidated for a particular purpose. Examples include: 

• 10 CFR 50.69 characterization report 
• SFCP documentation 
• Maintenance Rule, System Unavailability/Mitigating Systems Performance Index (MSPI), and 

PRA component failure rate compilations. 

The vetted data are directly useful. For example, the System Unavailability data provide a concise 
tabulation of the event, date and times, unavailable hours, and whether the unavailability was planned or 
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unplanned. The data are input to the MSPI. If the maintenance performed was unplanned, there is a strong 
possibility the event was due to a functional failure. These entries can be confirmed with a review of the 
historical MSPI trend plots available on NRC’s public web site.  

 

5.6 Use of the Plant Data 
The plant performance data for RCIC, HPCI, and EHC provide the minimum set of information for the 

project. An overview of the use of the plant operational experience data is described below. 
Presume that a Surveillance Test (ST) or PM activity detects a degrading condition on a component of 

a system such as RCIC. Subsequently, an IR and associated WO would be generated. The WO would also 
generate a number of tasks. Given the date, Operations Logs would indicate the time the system was 
declared to be INOPERABLE and when it was restored to OPERABLE. The on-line risk monitor would 
show the calculated change in plant risk level (e.g., from GREEN to YELLOW). The unavailability 
eventually would be noted in the System Unavailability compilation file. PRA data from a number of 
sources could be obtained for the RAW for the component/system in question. When combined with the 
hours of unavailability, the Incremental Conditional Core Damage Probability (ICCDP) and Incremental 
Increase in Large Early Release Probability (ICLERP) can be quantified. These can be translated to 
economic risk costs consistent with the economic risk assessment for the pilot plant.  

If the event of concern was a functional failure, the potential regulatory implications in terms of 
increased NRC oversight (White, Yellow, or Red in MSPI or SDP) can also be quantified.  

The WO would provide the labor hours which could be translated to calculate the repair costs. If the 
degradation on a system necessary for plant generation was the issue (e.g., EHC), one could directly relate 
the incident with the potential for lost electricity generation and the associated lost revenues. 

In summary, the available data would directly provide the economic costs of the repair/maintenance 
activity as well as certain externalities such as Regulatory impact. 

The benefit side of the Cost-Benefit equation is more challenging to ascertain. Clearly, if a key 
component is degrading and PM was not performed, an incipient failure condition would go undetected. 
The system (e.g., RCIC) would eventually be declared INOPERABLE, leading to the possibility of a plant 
shutdown and lost generation if the failure were catastrophic and repair time exceeded the Allowed Outage 
Time (AOT) in the plant Technical Specifications (TS).  

Because there have been so few functional failures of HPCI and RCIC in recent years at the host plant, 
it is not possible to correlate degradation mechanisms with conditional probability of equipment failure to 
any degree of accuracy. Certainly, manual review of IRs and WOs alone could not generate correlations 
between certain PMs and ST intervals (STIs), and the probability of eventual equipment failure. Ultimately, 
advanced data analytics may be applied to act as a screening tool; however, the final determination will 
always lay with cognizant plant staff.  

In the absence of advanced analytics, reliability models may need to be used. For example, Standby 
Failure Models (1/2 λT) or Markov Methods as described in Appendices D and E, respectively, may be 
applied. From these models, estimates of the potential for degradation to lead to functional failures may be 
generated. The benefits of changing the interval of a PM or ST in terms of labor hours saved (extension of 
interval) or reduced potential for failure (shortened interval) may be estimated but there likely would be 
large uncertainties in the resulting Cost-Benefit estimates. 

A more detailed analysis of plant data is reported in Appendix F. 
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5.7 Consideration of Data Analysis 
A number of risk-informed applications have been identified that directly make use of plant-specific 

operations data. All of the programs listed here, and other plant processes not described in any great detail 
in this report, use the data to improve SSC reliability and availability, and thereby maintain or improve 
plant safety.   

Processes such as 10 CFR 50.69 are associated with better licensee and NRC focus of attention and 
resources on matters that are safety significant. They also aim to reduce procurement and maintenance costs 
by allowing for the application of NRC special treatment requirements consistent with the safety 
significance of the equipment categorized.  

Applications such as RMTS allow for greater flexibility in the scheduling of equipment outages while 
monitoring and maintaining plant safety.  

SFCP also allows for flexibility in plant operations and maintenance by allowing extensions of routine 
surveillances when appropriate. Performance monitoring ensures that performance degradation of SSCs 
subject to the program are readily detected. 

Plant performance data have been characterized as source data, i.e. unprocessed data from logs and 
maintenance records, and vetted data that have been reviewed and provide big-picture snapshots of overall 
SSC performance. These data, whether source or vetted, meet the needs of supporting effective risk-
informed decision-making.  

By way of three examples as provided in Appendix F, it is shown that key information such as the costs 
for SSC surveillance, PM, and repair can be derived. System Unavailabilities can be combined with PRA 
risk metrics to assess the reactor risk and economic risk impacts of equipment outages.  

While the costs in the Cost-Benefit equation can be readily derived, the benefits of activities such as 
surveillance test extensions and deferred PM are more challenging to evaluate. In the short term, reliability 
modeling may be necessary to estimate how SSCs are impacted by various degradation mechanisms. In the 
long term, advanced data analytics may be developed and applied to make the process more scalable to 
more than a few plant systems. 

 

6. RELIABILITY MODELS  
6.1 Component Failure Models 

Due to the stochastic nature of component failures, the assessment of the ability of a component to 
perform a specific function is typically defined probabilistically. The starting point is the definition of the 
probability 𝐹(𝑇) that at component will not be able to perform a specific function in the [0, 𝑇] interval:  

𝐹(𝑇) = 𝑃𝑟(𝑡 ≤ 𝑇) = 8𝑓(𝜏)𝑑𝜏
<

=

							provided						𝑡 > 0 (1) 

where 𝑓(𝜏)𝑑𝜏 represents the probability distribution function that the component fails in the [𝜏, 𝜏 + 𝑑𝜏] 
interval. From here, it is possible to define the probability that the component will correctly perform its 
function in the [0, 𝑇] interval:  

𝑅(𝑇) = 𝑃𝑟(𝑡 > 𝑇) = 1 − 𝐹(𝑇) = 8 𝑓(𝜏)𝑑𝜏
B

<

							provided						𝑡 > 0 (2) 

The next step is definition of the failure rate function which is defined as: 
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𝜆(𝑇) = lim
GH→=

𝑃𝑟(𝑇, 𝑇 + 𝑑𝑡|𝑡 > 𝑇)
𝑑𝑡 =

𝑓(𝑡)
𝑅(𝑡) (3) 

where 𝑃𝑟(𝑇, 𝑇 + 𝑑𝑡|𝑡 > 𝑇) is the probability that a component will fail in the [𝑇, 𝑇 + 𝑑𝑡] interval assuming 
the component is functioning at time 𝑡. 

The objective of the PHM data analysis method is to integrate component data such as failure reports, 
maintenance data, monitoring data to determine the temporal profile of the component failure rate. 
 

6.2 Integration of Maintenance and SSC Ageing  
Component ageing/degradation and component maintenance are correlated variables and, therefore, 

this coupling needs to be considered in the analysis. Maintenance can be included in component reliability 
models in several approaches: 

1. Basic event in the system Fault-Tree  
2. Element in the component unavailability model  
3. Markov or Semi-Markov model 

In the first approach the maintenance-ageing coupling is poorly considered but it has the advantage that it 
can be quickly included in existing PRA models.  

The second approach, which has been used in Section 8, includes maintenance and ageing in the same 
component unavailability model. In this model, maintenance is included in the component unavailability 
model in term of maintenance downtime and maintenance-induced failure. The advantage of this model is 
that it is possible to inform these models from plant maintenance data. 

 

 
Figure 8. SSC reliability models which integrates maintenance and SSC ageing [64].  

 
The third approach creates a tighter coupling between component ageing and maintenance in a Markov 

model. Markov models (or Markov chains) are often employed to determine reliability/availability of 
systems characterized by multiple states, i.e., not only failed or operating states. These models consist of 𝑁 
mutually exclusive states which describe a specific status of the system (e.g., system operating, system 
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under repair, system failed). Transitions among states are stochastic in nature and are described by a set of 
probability transition rates 𝑀M,N (𝑝, 𝑞 = 1,… ,𝑁). Mathematically, a Markov model can be described as: 

𝑑𝑷(𝑡)
𝑑𝑡 = 𝑴 ∙ 𝑷(𝑡) (4) 

where each element 𝑃U(𝑡) (𝑖 = 1,… ,𝑁) of the vector 𝑷(𝑡) = [𝑃V(𝑡), … , 𝑃W(𝑡)] represents the probability 
of being in state 𝑖 at time t while 𝑴 = X𝑀M,NY contains all possible transition rates from state 𝑝 to state 𝑞 
(𝑝, 𝑞 = 1,… ,𝑁). In order to include maintenance and component ageing/degradation into a single model, 
reference [64] proposes a four state Markov model as shown in Figure 8. 

 

7. RISK-INFORMED NET PRESENT VALUE OF SYSTEM OPERATION 
The scope of this section is to provide an economic model designed to determine the Net Present Value 

(NPV) of a system which includes the value of its operation, its related Operation and Maintenance (O&M) 
costs and the risk associated with its failure. This document is based on [36] which creates a direct link 
between reliability and NPV for a given system in order to determine the “value of reliability”. With the 
goal to develop a risk-informed economic model for the system health program, i.e., a System Operation 
NPV, we have extended the work presented in [36] by including: 

• The risk associated with the failure of both components and system  
• Time dependent failure rates/probabilities 
• Component ageing and degradation 
• Effectiveness of maintenance and testing  

 
As shown in [36] we have assumed the following: 

1. A single system 𝑠𝑦𝑠 is analyzed 
2. The considered system is composed of a set of 𝑁 components 
3. System failure can be uniquely determined from the logical status of its components (e.g., by 

employing a Fault-Tree logic structure) 
4. Time horizon is fixed (i.e., [0, 𝑇\]^]) and it is discretized into 𝑇 time intervals having identical 

length ∆𝑡 (i.e., 𝑇\]^ = 𝑇 ∙ ∆𝑡) 
 

In the following section we follow this notation: 

• 𝑝H(. ) probability within time interval 𝑡 
• 𝑅H(. ) reliability within time interval 𝑡 
• 𝑖𝑟  interest rate 

 
In the System Operation NPV model we want to capture in a single economic model the value, the 

costs, and the risk/reliability associated with a SSC which is an integral part of a more complex system. 
These three terms are described and modeled in Sections 7.1, 7.2 and 7.3. 

 

7.1 System Operation Value 
The Present Value associated to system operation 𝑃𝑉aMbc]HUad can be evaluated in each time interval 

(with length ∆𝑡) as follows: 
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𝑃𝑉aMbc]HUad =e𝑅HfV(𝑠𝑦𝑠)
g1 − 𝑝H(𝑠𝑦𝑠)h ∙ 𝑉H

(1 + 𝑖𝑟)H

<

HiV

 (5) 

where: 

• 𝑅HfV(𝑠𝑦𝑠): reliability of the considered system 𝑠𝑦𝑠 within time interval 𝑡 − 1 
• 𝑝H(𝑠𝑦𝑠): probability of failure of the considered system 𝑠𝑦𝑠 within time interval 𝑡 
• 𝑉H: economic production value (e.g., power generation) due to the correct operation of the system 

within time interval 𝑡 

 
7.2 System Life-Cycle Value 

The Present Value associated to system operation and maintenance can be determined by first 
evaluating such present value for a single component. This Present Value associated operation and 
maintenance for a single component 𝑛 is: 

𝑃𝑉d
kUlb = 𝐶d

Mcan +e
𝐶H,do\

(1 + 𝑖𝑟)H

<

HiV

 (6) 

 
where: 

• 𝐶d
Mcan: procurement costs of component 𝑛 (note that here more complex supply chain models can 

be added) 
• 𝐶H,do\: O&M costs for component 𝑛 within time interval 𝑡 
From 𝑃𝑉d

kUlb it is then possible to determine the Present Value associated to operation and maintenance 
for the considered system 𝑃𝑉kUlb as: 

𝑃𝑉kUlb = e𝑃𝑉d
kUlb

W

diV

= e𝐶d
Mcan

W

diV

+ee
𝐶H,do\

(1 + 𝑖𝑟)H

<

HiV

W

diV

 (7) 

 

7.3 System Failure Value 
The last term that needs to be included in the system Health Program economic model is the Present 

Value 𝑃𝑉l]Ukpcbassociated to system failure. This can be determined as: 

𝑃𝑉l]Ukpcb =e𝑅HfV(𝑠𝑦𝑠)
𝐶H
l]Ukpcb

(1 + 𝑖𝑟)H

<

HiV

 (8) 

where: 

• 𝐶H
l]Ukpcb: expected cost due to system failure  

• 𝑅HfV(𝑠𝑦𝑠): reliability of the considered system 𝑠𝑦𝑠 within time interval 𝑡 − 1 
The term 𝐶H

l]Ukpcb can be defined as 

𝐶H
l]Ukpcb = e𝑝H(𝑛)

W

diV

∙ 𝑝H(𝑠𝑦𝑠|𝑛) ∙ 𝐶H,d
l]Ukpcb (9) 
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where: 

• 𝑝H(𝑛): probability of failure of component 𝑛 within time interval 𝑡 
• 𝑝H(𝑠𝑦𝑠|𝑛): probability of failure of the considered system 𝑠𝑦𝑠 within time interval 𝑡 given that 

component 𝑛 has failed  
• 𝐶H,d

l]Ukpcb: cost associated to system failure caused by failure of component 𝑛 (e.g., loss of 
production, replacement costs, regulatory burden) within time interval 𝑡 
 

7.4 System Operation NPV  
Finally, the Net Present Value of system operation 𝑁𝑃𝑉aMbc]HUad can be defined as the algebraic sum 

of the three terms defined in Sections 7.1, 7.2 and 7.3 as follows: 

𝑁𝑃𝑉aMbc]HUad = 𝑃𝑉aMbc]HUad − 𝑃𝑉kUlb − 𝑃𝑉l]Ukpcb = 

=e𝑅HfV(𝑠𝑦𝑠)
g1 − 𝑝H(𝑠𝑦𝑠)h ∙ 𝑉H

(1 + 𝑖𝑟)H

<

HiV

+ 

+e𝐶d
Mcan

W

diV

+ee
𝐶H,do\

(1 + 𝑖𝑟)H

<

HiV

W

diV

+ 

+e𝑅HfV(𝑠𝑦𝑠)
∑ 𝑝H(𝑛)W
diV ∙ 𝑝H(𝑠𝑦𝑠|𝑛) ∙ 𝐶H,d

l]Ukpcb

(1 + 𝑖𝑟)H

<

HiV

 

 

(10) 

 

7.5 System Reliability Model 
The major obstacle in Equation (10) is the determination of the reliability models for both components 

and system; i.e., the determination of the variables 𝑝H(𝑠𝑦𝑠), 𝑝H(𝑠𝑦𝑠|𝑠), 𝑅H(𝑠𝑦𝑠) and 𝑝H(𝑠). Provided the 
definition of 𝑝H(𝑠𝑦𝑠) and 𝑅H(𝑠𝑦𝑠), it is possible to note that: 

𝑅H(𝑠𝑦𝑠) = 1 −e𝑝H̅(𝑠𝑦𝑠)
H

H̅iV

 (11) 

The system reliability model 𝑝H(𝑠𝑦𝑠) is designed to create the link between system failure and 
component failure. For safety systems, this is already performed by plant owners which maintain their PRA 
models. These models are mainly based on Fault-Trees (FTs) and Event-Trees (ETs). 

In our applications, since we are looking at the system level, we will mainly employ existing FTs if we 
are considering safety systems (see Section 8). If we are considering systems outside the regulatory 
jurisdiction, then new FT models for these systems might be required (see Section 9). 

ETs and FTs link a set of 𝐾 elemental events, i.e., basic events 𝐵𝐸u (𝑘 = 1,… , 𝐾), to plant condition 
(e.g., Core Damage – CD – condition or Large Early Release): 

𝑝H(𝑠𝑦𝑠) = 𝛹(𝐵𝐸V,… , 𝐵𝐸x) (12) 

Each basic event 𝐵𝐸u depicts a specific elemental event (i.e., failure or recovery events) of basic 
components. For each basic event 𝐵𝐸u, a probability value 𝑝H(𝐵𝐸u) is assigned.  
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In our applications 𝑝H(𝐵𝐸u) is not constant, but it changes with time since ageing and degradation alter 
the state of the component: 

𝑝H(𝐵𝐸u) = 𝛷(𝑎𝑔𝑒𝑖𝑛𝑔, 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛, 𝑂&𝑀) (13) 

The function 𝛷 is obviously a non-linear function and it also depends on previous history of the component 
(i.e., O&M: operational condition, preventive maintenance history).  

For the scope of this project, instead of reasoning in terms of failure rates and probability associated to 
each basic event, it is more convenient to probabilistically describe the basic events that have a time-
dependent behavior (see equation above) in terms of unavailability. Section 8 presents in more detail a 
practical example of SSC unavailability models (see equation above) applied to maintenance optimization. 
 

7.6 Incorporating SSC Ageing and Degradation into Reliability 
Models 

Usually a failure rate or a probability value is associated to each basic event and these values are not 
time dependent. In our application, we envision that the incorporation of SSC ageing and degradation into 
Reliability models can be performed by: 

1. Adding new basic events which model the effect of ageing (e.g., piping accelerated corrosion) of 
both passive and active components 

2. Creating reliability models to determine temporal evolution of failure rates or failure probabilities 
associated to a specific set of basic events 

3. Including the effect of maintenance and testing on SSC ageing and degradation 
4. Including data generated from PHM methods 

 
 

7.7 Mode of Operation for Decision Making 
The NPV model of Section 7.4 is designed to be employed as a decision-making tool to compare and 

rank investment options against initial system configuration, i.e.: 

𝑁𝑃𝑉UdUHU]k
aMbc]HUad	v.s. 𝑁𝑃𝑉Ud�b�H�bdH

aMbc]HUad  

In particular, the ranking criteria would be based on the relative NPV change: 

𝛿 =
𝑁𝑃𝑉Ud�b�H�bdH

aMbc]HUad − 𝑁𝑃𝑉UdUHU]k
aMbc]HUad

𝑁𝑃𝑉UdUHU]k
aMbc]HUad  (14) 

Note that the criteria described in Equation (14) merges system/component reliability into NPV. From a 
decision-making perspective this would be too stringent. An alternative has been offered by [36], where 
system/component reliability and NPV are kept separate, i.e., we are comparing: 

�𝑁𝑃𝑉aMbc]HUad, 𝑅(𝑠𝑦𝑠)�
UdUHU]k

	v.s. �𝑁𝑃𝑉aMbc]HUad, 𝑅(𝑠𝑦𝑠)�
Ud�b�H�bdH

 

An important factor to consider is that some elements in Equation (11) might not be certain but they 
might be affected by uncertainties. Thus, it is required to propagate uncertainties throughout the model. 
Graphically this can be plotted in a 2-dimentional graph (see Figure 9) where each dimension corresponds 
to the incremental 𝑁𝑃𝑉aMbc]HUad and incremental 𝑅(𝑠𝑦𝑠). Note that these two dimensions are correlated 
since 𝑁𝑃𝑉aMbc]HUad is also function of 𝑅(𝑠𝑦𝑠). Another important feature about propagating uncertainties 
is that it is possible to evaluate the sensitivity of   𝑁𝑃𝑉aMbc]HUad and 𝑅(𝑠𝑦𝑠) to a variation of each uncertain 
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parameter. This sensitivity analysis might prove to be useful to rank the most relevant uncertain parameters 
from a decision-making standpoint.  

 
Figure 9. Reliability vs. NPV plot for evaluation of candidate projects. 

 

8. RISK-INFORMED MAINTENANCE OPTIMIZATION 
The objective of this section is to show a methodology and an example of a risk-informed maintenance 

optimization process which balances cost and risk in a unified optimization framework. 
The starting point for this work is the concept of VBM as developed by NEI [13] as part of the DNP 

initiative. The VBM approach has the objective to change “the industry’s culture of reliability at any cost 
and more is better to one where maintenance is treated as a highly valued and limited resource is key to 
advancing safety and reliability in a cost-effective manner”.  

Figure 5 shows, in a graphical form, how maintenance cost changes as a function of the number of PM 
tasks performed on a specific component. Maintenance cost is measured as the sum of the costs associated 
with both PM and Corrective Maintenance (CM) activities. PM tasks are designed to compensate for the 
ageing of the component and avoid component failure. CM tasks are uniquely performed to replace/repair 
such SSC as soon as practicable after its failure. 

The question that arises from Figure 5 is: what is the optimal number of PM activities/tasks to perform 
on a SSC? The initial considerations before answering this question are the following: 

• If PM activities are performed infrequently, PM costs would decrease but component ageing might 
increase the probability of component failure (with potential economic loss due to such failure: not 
only CM costs but also component unavailability related costs) 

• Too frequent PM activities will increase PM costs, reduce component ageing and ageing-induced 
SSC failure; however, maintenance-induced component failure will increase (with potential 
economic loss due to such failure: not only CM costs but also component unavailability related 
costs) 
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Thus, the problem cannot be viewed and solved only in a 1-dimentional space (PM + CM costs) but it 
requires a second dimension: component unavailability. We are not only considering component failure 
probability (in terms of mean time between failure, MTBF) but we are considering also The Mean Down 
Time (MDT). Component unavailability is measured as the probability that the component is not operating 
at a specific time instant. This concept is shown in Figure 10 where the calculations of MDT and MTBF 
are obtained by averaging over the population of maintenance events that were performed on the particular 
SSC.  

 
Figure 10. Grahical representation of MDT and MTBF. 

An important consideration is that the balance between cost and unavailability cannot be performed 
solely at the component level but needs to be integrated at the system level. The goal is to balance system 
maintenance costs (PM and CM for all components of the system) and system availability. Instead of 
focusing on the number of PM tasks shown in Figure 11 we will focus on the time interval 𝑇�\ between 
two PM activities. Graphically this is shown in Figure 11: 

• Small 𝑇�\, i.e., high number of PM tasks  
o Maintenance costs are dominated by PM costs since it is less likely to observe component 

failure. PM costs grow as a higher number of PM tasks are performed while CM costs 
decrease since PM tasks are greatly reducing the likelihood of component failure. 

o Component unavailability is dominated by maintenance induced unavailability (e.g., 
human error of omission to restore component functions). 

• Large 𝑇�\, i.e., low number of PM tasks 
o Maintenance costs are dominated by CM costs since it is more likely to observe component 

failure. 
o Component unavailability is dominated by component failure due to ageing/degradation. 

 
Note that in Figure 11 it is evident that the points of minimum total maintenance costs and maximum 

system reliability do not necessarily coincide. Therefore, judgment will be required to determine which of 
the two objectives should have greater importance when optimizing the plant system health / equipment 
reliability program. It also should be noted that this balancing of importance will likely lead to different 
outcomes for different systems that are dependent on factors such as the system’s importance to plant safety 
or power production, system costs, previous system operating experience, etc.  

 

t

SSC status

Operating

Failed

MDT MTBF



 

 34 

  
(a)          (b) 

Figure 11. Maintenance costs (a) and component unvailability (b) as function of TPM. 

 

8.1 Generic Use Case  
We consider a generic system as an ensemble of components. For each component (e.g. valves and 

pumps) we consider a set of PM activities designed to decrease the SSC ageing effect and improve 
component reliability. Each PM is characterized by: 

• PM cost 
• Probability of SSC unavailability due to maintenance  
• Reduction of SSC ageing (i.e., measure of PM effectiveness) 

The objective is to determine the optimal combination of PM interval 𝑇�\ for all components that maintains 
system unavailability below a pre-defined value and minimizes overall maintenance costs. It is here 
assumed that after a PM activity is performed, the component returns into operation in as good as new 
condition. 

 

8.2 Mathematical Formulation 
We define a system 𝑆 as an ensemble of 𝑁 components 𝐶U, 𝑆 = {𝐶V, … , 𝐶W}, where each component 𝐶U 

is characterized by: 

• Cost of PM: 𝐶𝑜𝑠𝑡U�\ 
• Cost of CM: 𝐶𝑜𝑠𝑡U�\ 
• Failure rate: 𝜆U 
• PM interval: 𝑇U�\ 
• PM downtime: 𝑇U�< 
• Human error of omission (probability to fail to return to service after PM):	𝑝U�\ 

The mathematical formulation of risk-informed maintenance is to: 

Determine:    𝑇U�\ for 𝑖 = 1,… ,𝑁 

Objective:      𝑚𝑖𝑛[𝐶𝑜𝑠𝑡���] 

such that:  						𝑈��� < 𝑢�  

(15) 
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where: 

• 𝑈��� is system unavailability 
• 𝐶𝑜𝑠𝑡��� is the complete maintenance related costs 
• 𝐶𝑜𝑠𝑡U\ represents the maintenance costs associated to each component 𝐶U. This variable is a 

function of: 
𝐶𝑜𝑠𝑡U\ = 𝐶𝑜𝑠𝑡U\g𝐶𝑜𝑠𝑡U�\, 𝑢�U, 𝐶𝑜𝑠𝑡U�\h (16) 

The last line in Equation (15) is imposing the constraint that 𝑈��� must be kept below a pre-defined value 
𝑢� . It should be noted that imposition of such a constraint is in accordance with standard industry practice 
and regulatory expectations (e.g., Maintenance Rule). At this point, provided the data listed above for each 
component, it is needed to determine: 

• 𝑢�U: component unavailability (see Section 8.2.1) 
• 𝐶𝑜𝑠𝑡U\: costs due component maintenance (see Section 8.2.2) 
• 𝑈���: system unavailability (see Section 8.2.3) 
• 𝐶𝑜𝑠𝑡���: system maintenance costs (see Section 8.2.4) 

and proceed to solve the optimization problem. 

 

8.2.1 Component Unavailability Model 
For the scope of this analysis we create a “first generation” unavailability model which can be written 

as the sum of the following terms: 

• Component unavailability due to PM error of omission: 𝑝U�\ 
• Component unavailability due to PM operation: <�

��

<�
�� 

• Component unavailability due to component failure: 𝑃� 
Thus,  𝑢�U can be written as [37]: 

𝑢�U = 𝑝U�\ +
𝑇U�<

𝑇U�\
+ 𝑃� (17) 

where 𝑃�is the probability of failure of a component in X0, 𝑇U�\Y. 

In order to include component ageing in this analysis, the component failure rate 𝜆U is not constant but 
can change with time, i.e., 𝜆U = 𝜆U(𝑡). The most common model that employs time-dependent failure rates 
is the Weibull model; for the scope of this report we will employ a simple failure model where the failure 
rate grows linearly in time: 

𝜆U = 𝜆U(𝑡) = 𝜆U,= + 𝑎U ∙ 𝑡 (18) 

The reason behind this choice is that we envision that, in the near future, plant health data will be employed 
to determine component failure probability. In this respect, it is preferable to translate plant health data into 
time dependent failure rates rather than fitting such data into a pre-defined model (e.g., Weibull model). 
Once 𝜆U(𝑡) is determined, we can then determine the probability of failure of a component in X0, 𝑇U�\Y [39]: 

𝑃� = 8 𝜆U(𝑡) ∙ 𝑒∫ ��(�)	G�
�
� 	𝑑𝑡

<�
��

=

 (19) 
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8.2.2 Component Cost Model 
The component cost model includes the CM and PM costs. PM costs can be considered as hard costs 

(i.e., real costs to the plant owners). Also CM costs are hard costs when they occur; however, because 
failures represent random events, these costs need to be weighted by the probability of failure. For the scope 
of this report we are defining 𝐶𝑜𝑠𝑡U\ as: 

𝐶𝑜𝑠𝑡U\ = 𝐶𝑜𝑠𝑡U�\ + 𝑃� ∙ 𝐶𝑜𝑠𝑡U�\ (20) 

As of now, in the term 𝐶𝑜𝑠𝑡U�\ we have included only procurement and installation cost. In the future, 
this term can be expanded to include supply-chain models and other failure-related costs (e.g., regulatory 
cost). 

In our applications, if we want to compare maintenance strategies, it is more convenient to evaluate 
the costs due to maintenance (PM and CM) per unit time 𝐶𝑜𝑠𝑡������U\]UdHsince we want to measure the 
normalized change of 𝐶𝑜𝑠𝑡U\ over a change of 𝑇U�\ [38]: 

𝐶𝑜𝑠𝑡������U\]UdH =
𝐶𝑜𝑠𝑡U\

𝑇U�\
=
𝐶𝑜𝑠𝑡U�\ + 𝑃� ∙ 𝐶𝑜𝑠𝑡U�\

𝑇U�\
 (21) 

 

8.2.3 System Unavailability Model 
System unavailability models can be constructed using several methods. For our applications, the goal 

is to minimize industry efforts to construct/maintain these models and, thus, classical PRA models can be 
employed (Fault-Trees for example). If safety systems are considered, these models already exist and can 
be easily re-used for this kind of application. Fault-Trees can be easily evaluated by PRA codes like 
CAFTA, RiskSpectrum and SAPHIRE [158] when reliability data (failure rates, failure probabilities, 
unavailability values) are provided as input. Output data consists of overall system unavailability. The 
advantage of employing existing PRA codes is that uncertainties in input data can be propagated up to the 
output variables. 

Thus, in our applications: 

𝑈��� = 𝐹𝑇(𝑢�V, … , 𝑢�W) (22) 

 

8.2.4 System Costs Model 
Given that a system 𝑆 is an ensemble of 𝑁 components 𝐶U, 𝑆 = {𝐶V, … , 𝐶W}, the maintenance costs at 

the system level are equal to: 

𝐶𝑜𝑠𝑡��� =e𝐶𝑜𝑠𝑡������U\]UdH
W

UiV

 (23) 

Note that here we have not included the costs associated with system failure; in such a case, we should 
expand Equation (9) as follows: 

𝐶𝑜𝑠𝑡��� =e𝐶𝑜𝑠𝑡������U\]UdH
W

UiV

+ 𝑈��� ∙ 𝐶𝑜𝑠𝑡l]Ukpcb (24) 

where 𝐶𝑜𝑠𝑡l]Ukpcb represents the cost associated with system failure; this term might include costs related 
to loss of power generation, regulatory costs, etc. 
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8.3 Balancing Unavailability and Costs 
From Equations (17) and (21) note that component unavailability and maintenance costs are correlated 

variables, i.e., we cannot consider them separately when performing any type of decision. In addition, each 
component is part of a system which imposes its own reliability requirements. Hence, we can move from 
Figure 5 to a more complete set of figures which depict, at the component level, costs and unavailability as 
a function of frequency of PM activities (see Figure 12). 

 

 
(a)       (b) 

Figure 12. Two possible scenarios for component mainetance cost and component unvailability as function of TPM. 

Note that two possible scenarios can exist depending on the locations of the costs and unavailability minima 
(see Figure 12): 

1. Cost minima located prior to unavailability minima (see Figure 12 - a): moving away from the 
optimal unavailability point for higher 𝑇�\ values will negatively affect both costs and component 
unavailability. For this case, PMs should not be reduced since doing so will result in both degraded 
performance and higher costs; therefore, no further optimization is possible. 

2. Cost minima located after unavailability minima (see Figure 12 - b): moving away from the optimal 
unavailability point for higher 𝑇�\ values will negatively affect component unavailability but will 
reduce maintenance costs. For this case, judgement will be required as optimization of one element 
(e.g., cost) can only occur at the expense of the other variable of interest (e.g., SSC unavailability).  

 

Thus, in a mathematical form the objective to risk-informed maintenance optimization is as follows: 

min
<���,…,<�

��
			e𝐶𝑜𝑠𝑡������U\]UdH

W

UiV

							with	𝑇U�\ > 0		for	𝑖 = 1,… ,𝑁 

 

		

𝑠. 𝑡. 𝐹𝑇(𝑢�V, … , 𝑢�W) < 𝑢�

𝐶𝑜𝑠𝑡������U\]UdH =
𝐶𝑜𝑠𝑡U�\ + 𝑃� ∙ 𝐶𝑜𝑠𝑡U�\

𝑇U�\

𝑢�U = 𝑝U�\ +
𝑇U�<

𝑇U�\
+ 𝑃�

 

 

(25) 
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8.4 Single Component Example 
An example of costs and unavailability plots are shown in Figure 14 for a component having reliability 

and cost data indicated in Table 44. Provided the reliability values in Table 44, probability of failure for the 
considered component as a function of time by employing Equations 18 and 19 is plotted in Figure 13. 

 
Table 4. Data for the single component analysis example. 

𝜆U,= 1.0 E-8 h-1 
𝑎U 1.0 E-9 h-2 
𝑝U�\ 5.0 E-3 
𝑇U�< 48 h 

𝐶𝑜𝑠𝑡U�\ 400 $ 
𝐶𝑜𝑠𝑡U�\ 30,000 $ 

 

 
Figure 13. Component probability of failure as function of PM interval TPM. 

 
Figure 14. Cost and unavailability plot for the single component analysis example as function of PM interval TPM. 
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In this case, note how, a change of 𝑇�\ from 4,000 h to 8,000 h causes a change in maintenance related 
costs and unavailability as shown in Table 55.  

 
Table 5. Change in component maintenance cost and unavailability for provided data listed in Table 44. 

𝑻𝑷𝑴 [hr] Cost [$/h] Unavailability 
4,000 7.58 2.5 E-2 
8,000 3.88 4.31 E-2 

 

In this specific example, the overall saving of maintenance costs for such a single component, considering 
a 10 year cost planning period, can be calculated as: 

𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 10 ∙ 8760 ∙ (7.58 − 3.88) = 324,000	$ (26) 

The question now would be: is a component unavailability increase from 2.5 E-2 to 4.31 E-2 considered 
significant (such as evaluated by its impact in the existing plant PRA model)? The process of risk-informing 
plant maintenance would evaluate the overall impact of this proposed PM change on plant safety to provide 
information to decision-makers on the relative benefits associated with the tradeoff between cost reduction 
and likely increase in component availability. In achieving the objective of minimizing total maintenance 
costs, the additional anticipated CM costs associated with the expected increase in component unavailability 
needs to be evaluated and compared to the expected saving obtained from the extension in PM task 
frequency over the projected planning period. 

 

8.5 Optimization Approach 
The optimization problem described in Equation (11) can be numerically solved by employing gradient 

based optimization algorithms. Gradient based algorithms are first-order iterative optimization algorithms 
and they are ideal for this kind of application. The objective is to find the minimum of a function 𝐹(𝒙): 
starting from an initial point 𝒙=, this is performed by determining at each iteration 𝑟 the gradient of 𝐹(𝒙), 
∇𝐹(𝒙), and moving to a next point in the direction of the gradient of the function at the current point. 

From a point 𝒙cdetermined at iteration 𝑟, the point 𝒙cªV at iteration 𝑟 + 1 is calculated as: 

𝒙cªV = 𝒙c − 𝜸 ∙ 𝛁𝑭(𝑥) (27) 

The sequence: 

(𝒙=, 𝑭(𝒙=)) ⟶ g𝒙V, 𝑭(𝒙V)h ⟶ g𝒙°, 𝑭(𝒙°)h ⟶ ⋯  

converges to a local minima of 𝑭(𝒙). 

Note that the solution of Equation (1) lies in an 𝑁 dimensional input space (𝑇U�\ for 𝑖 = 1,… ,𝑁) while 
the output space is a two-dimensional space (system unavailability and system costs). In this framework 
the variable “system costs” is the variable to be minimized while the variable “system unavailability” 
imposes a constraint. For the optimization problem described in Equation (1), this constraint can be included 
in the gradient based optimization algorithm by adding a penalty term on the “system costs” output variable 
when the condition on the “system unavailability” output variable (i.e., 𝑈��� < 𝑢�) is not satisfied.  
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8.6 Optimization Tool 
The optimization problem described in Equations (1) and (11) has been solved using the RAVEN code 

(see Appendix J) which was developed and currently is maintained by Idaho National Laboratory (INL). 
This choice has been driven by two factors: 

1. Availability of gradient based optimization algorithms that can be applied to any type of model 
2. Construction of complex models that include system reliability, component cost, and component 

unavailability models 
Regarding the second factor, we have created the required models considered for the framework described 
in this report that can be applied to the example problem described here: 

• Components 
o Unavailability model (see Equation 3) 
o Costs model (see Equation 7) 

• System 
o Unavailability model (see Equation 8) 
o Costs model (see Equation 9) 

We have then employed the EnsembleModel feature of RAVEN (see Appendix J) to link all these models 
together in a single model as shown in Figure 15. 

 

 
Figure 15. Graphical representation of the RAVEN EnsembleModel for a generic system maintenance scheduling 

optimization problem. 

 

8.7 Analysis Example 
For this research, a proof of concept use case use case was developed that considers a Pressurized Water 

Reactor (PWR) High Pressure Injection (HPI) system [40-41]. As shown in Figure 16, the HPI system 
consists of a set of valves and pumps that are required to maintain redundancy and increase system 
availability. For this case, we employed the data shown in Table 66. 
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Figure 16. Graphical representation of the considered PWR HPI system. 

 
Table 6. Reliability and cost data for the components of the HPI system of Figure 16. 

 Valves Pumps 
𝜆U,= 2.08 E-7 h-1 6.05 E-8 h-1 
𝑎U 1.0 E-9 h-2 1.0 E-9 h-2 
𝑝U�\ 1.0 E-3 1.0 E-2 
𝑇U�< 24 h 48 h 

𝐶𝑜𝑠𝑡U�\ 400 $ 3,000$ 
𝐶𝑜𝑠𝑡U�\ 30,000 $ 60,000 $ 

 

The goal is to determine 𝑇²�
�\ (𝑖 = 1,… ,7) and 𝑇�³

�\ (𝑗 = 1,… ,3), provided the constraint: 

𝑃(𝐻𝑃𝐼) = 1.0	𝐸 − 3 (28) 

Appendix G provides more details about the reliability modeling of the HPI system. 

With the data provided in Table 66 and the constraint shown in Equation (14) we were able to generate 
the optimal PM intervals for valves and pumps indicated in Table 77. As also indicated in past maintenance 
optimization methods [40], components with identical reliability and cost data have identical 𝑇�\: valves 
have a PM interval of 6523 h while this value for pumps have been determined to 8242 h. These values 
minimize maintenance costs while maintaining system unavailability below a fixed threshold. For the 
calculated values for 𝑇�\, the resulting system unavailability is 9.98 E-4. 
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Table 7. Optimal PM maintenance schedule for the components of the HPI system shown in Figure 30. 

Component ID 𝑇�\ [h] 
P1 8242 
P2 8242 
P3 8242 
V1 6523 
V2 6523 
V3 6523 
V4 6523 
V5 6523 
V6 6523 
V7 6523 

 

8.8 Maintenance Optimization Under Uncertainty 
The input data listed in Table 66 are point values while in real applications these values might be 

affected by uncertainties. In particular, this is valid for the set of SSC reliability parameters. In this situation 
a question may arise: how is it possible to solve this optimization problem when data are affected by 
uncertainties? To complete the analysis shown in Section 8.7, we have conducted an additional analysis 
which focuses on the propagation of uncertainties in the optimization model.  

We have associated uncertainties to the parameters 𝑎U of valves and pumps in the form of probabilistic 
distributions. For simplicity we have chosen an identical distributionb for the parameters 𝑎U~𝑈[5. 𝐸 −
10,1. 𝐸 − 9]. Note that these distributions are independent even thought they are identical. 

In this respect we have employed again the RAVEN code (see Appendix J) and, in particular, we 
leveraged the RAVEN capability to run itself in a master-slave configuration: 

• The RAVEN-master portion performs the stochastic sampling of the variables 𝑎U through a Monte-
Carlo sampling 

• The RAVEN-slave portion performs the identical optimization shown in Section 8.7 using the 
values sampled by the RAVEN-master portion 

When performing this Monte-Carlo sampling of an optimization process a distribution of 𝑇²�
�\ (𝑖 =

1,… ,7) and 𝑇�³
�\ (𝑗 = 1,… ,3) is obtained instead of point values (as shown in Table 77). Note that such 

distributions are correlated to each other. 
Provided the set of distribution we have performed such analysis by generating 1000 Monte-Carlo 

samples of {𝑎U} and obtained the same number of values for ·𝑇²�
�\, 𝑇�³

�\¸. Since we have associated a 
distribution to 𝑎U, then instead of having a single unavailability line as shown in Figure 14 (left) we have a 
distribution of unavailability. Figure 17 shows a distribution for component unavailability, see Equation 
(17), for pump 𝑃V (see Table 66) generated by sampling 𝑎��~𝑈[5. 𝐸 − 10,1. 𝐸 − 9] using Monte-Carlo 
sampling. 

 
b We use the notation 𝑎U~𝑈[𝑎, 𝑏] which indicates that 𝑎U is a stochastic variable which is uniformly distributed between the values 
𝑎 and 𝑏. 
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Figure 17. Density distribution for pump unavailability with 𝑎U~𝑈[5. 𝐸 − 10,1. 𝐸 − 9]. 

The obtained results are shown in Figure 18. Similar to the analysis of Section 8.7, the obtained 
distributions are identical among 𝑇²�

�\ and 𝑇�³
�\. Figure 18 shows the correlation between the distributions 

of 𝑇²�
�\ and 𝑇��

�\ by plotting the full distribution in the 𝑇²�
�\ − 𝑇��

�\ space and the marginal distributions for 
𝑇²�
�\ and 𝑇��

�\ (top and left histograms). 

 

 
Figure 18. Density plot for TV1 and TP1. 
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8.9 Model Improvements 
As indicated in the previous sections, the presented optimization method employs the minimum amount 

of information required to perform risk-informed maintenance optimization. An important advantage of 
this method is that the required information can be easily retrieved by existing plant databases. In the near 
future we are planning to improve the presented optimization method by adding the following items: 

1. Link PHM data to reliability parameters. Parameters such as 𝜆U,= and 𝑎U can be automatically 
calculated by existing PHM databases. This automatic link could allow plant owners to update 
maintenance schedules when new maintenance and failure reports (at the plant but also at the fleet 
level) are generated and updated in plant PHM databases. 

2. PM activities efficiency (i.e., not as good as new). In this work we have assumed that, once a PM 
activity is performed, the component is considered as good as new. This may be not the case for 
some specific components. Depending on data availability, this assumption can be relaxed in order 
to get a more realistic optimal preventive maintenance solution. 

3. Adaptive (i.e., time dependent) generation of 𝑻𝒊𝑷𝑴. The proposed methodology has 𝑇U�\ 
characterized by a fixed length. This is in particular relevant when items 1 and 2 are both considered 
in the analysis. In this case,  𝑇U�\ might change in time; i.e., large 𝑇U�\ when ageing effects are 
negligible and smaller 𝑇U�\ when component ageing is largely affecting component unavailability. 
Such an adaptive approach may be useful to optimize required ageing management plans for NPPs 
that are operating in periods of extended operation un license renewal (or second license renewal).  

4. Include supply chain models. The term 	𝐶𝑜𝑠𝑡U�\ only includes procurement and installation costs. 
A more detailed model could include the ability to procure the component or its associated 
subcomponents on the open market.  This could be accomplished by developing more detailed 
supply chain models that could generate more realistic  	𝐶𝑜𝑠𝑡U�\ values. 

5. Costs model for system failure event. The term 𝐶𝑜𝑠𝑡��� should include the costs associated with 
system failure; this term might contain costs related to loss of power generation, regulatory costs, 
etc. 

6. Propagation of uncertainties. As of now we have included point values for both component costs 
and unavailability data. In reality, these data might be affected by uncertainties that would change 
the optimal maintenance schedule. In the near future we will include the analysis of uncertainties 
on input data and how they propagate to the output variables. 

7. Sensitivity analysis of obtained solution in respect to input parameters. This item is linked to 
the previous one. Even though data are affected by uncertainties, the sensitivity of the optimal 
maintenance schedule with respect to the input variables might change from variable to variable. 
Hence, a ranking of the most relevant input variables might provide guidance to the plant owner on 
which variable would require an uncertainty reduction to achieve improved optimizations.  

8. Extend maintenance schedule optimization from the system to the plant level. The 
methodology presented in this work has focused on only a single system. However, a power plant 
is a network of systems and plant safety parameters such as CDF or LERF are strongly affected by 
unavailability of all these systems. This can be solved by linking together the full plant PRA, 
component unavailability models to PRA basic events, and component-system-plant cost models. 

 

9. GENERATION RISK MODELS 
The Generation Risk Assessment (GRA) model presented here centers on the main feedwater system 

of a generic 4-loop PWR. The development of the model supports the PHM initiative. The risk to a generic 
NPP associated with the Main Feed Water (MFW) system is assessed from an economic perspective. The 
most vulnerable aspects of the system are quantified in terms of economic loss due to equipment failure 
and unavailability. 
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NPP owner / operators are economically vulnerable due to equipment failure and unavailability. Power 
plants need an effective tool to evaluate these economic risks. Plants are well versed in the use of PRA to 
evaluate plant safety risks [51]. PRA methods can be utilized to evaluate economic loss imposed on power 
plants via GRA [60]. GRA is the process of predicting the risk of generation loss by estimating the 
probability and duration of a power plant trip or derate due to equipment unavailability. 

In GRA, like PRA, the risk is defined as the product of equipment failure frequency and the associated 
consequence. The equipment failure frequency and the associated consequences can be derived using 
generic plant data in conjunction with plant response models. A GRA model is comprised of a collection 
of top logic representing combinations of key components whose failure can result in a plant trip or derate. 
The development of GRA models is similar to the development of PRA models; however, rather than 
estimating things like core damage frequency, the output of a GRA model is lost generation for a defined 
time period. The lost generation is expressed in terms of electrical megawatt hours per year not produced 
due to plant trips and derates. The value of megawatt hours per year can be expressed in dollars per year 
using an average dollar price per megawatt hour [63]. 

GRA modeling can provide insights to power plant health management by identifying components, 
trains (combinations of components), and systems (combinations of trains) susceptible to failure. The model 
presented in this report identifies the vulnerable equipment of a generic 4-loop pressurized water reactor’s 
main feedwater system [56]. 

 

9.1 Generic MFW System 
The MFW system provides water flow from the feedwater pumps to the steam generators in a PWR (of 

which there are four, on per loop, in our generic example NPP). The system consists of the piping, valves, 
pumps, heat exchangers, controls, instrumentation, and associated equipment that supply the steam 
generators with heated feedwater in a closed steam cycle using regenerative feedwater heating. Figure 19 
shows a typical PWR arrangement with a dotted line outlining the feedwater system.  
 

 
Figure 19. PWR NPP plant overview. 

Figure 20 shows the simplified feedwater pathway in the system during normal operation. There are 
three feedwater pumps with common suction and discharge headers. Each feedwater pump provides 
sufficient flow to support 50% of the reactor’s rated power. Two high-pressure feedwater heaters and a 
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heater bypass are used to control feedwater temperature during normal plant operation. Each heater provides 
sufficient heating to support 50% of the reactor’s rated power. Feedwater flow is delivered to four steam 
generators. Each steam generator supports 25% of the rated power. 

 

 
Figure 20. Feedwater system flow diagram. 

 
The generic PWR unit we are considering is capable of an electrical output of 1000 megawatts. The 

preceding description provides the template for the generic feedwater system and power generating plant 
evaluated in this study. The model was genericized through the implementation of generic failure data, as 
well as generic NPP operating characteristics. The GRA model results are thus interpreted as averages over 
all PWR power plants in the U.S..  

 

9.2 Modeling the Main Feedwater System 
System availability models, generic feedwater schematics, Failure Modes and Effects Analyses 

(FMEAs), and data from the Equipment Performance and Information Exchange (EPIX) and the North 
American Electric Reliability Corporation Generating Availability Data System (NERC-GADS) were used 
to develop the model and identify contributors to lost generation. The system availability model was 
evaluated based on the successful transport of water from the feedwater pumps to the steam generator inlets. 

An availability block diagram was created to break the modeling process into logical blocks, i.e. trains 
of the system, to reflect the different derate levels that could occur within the system. Figure 21 shows the 
availability block diagram for the feedwater system to support 100% power.  

After analysis of the availability block diagram was completed, the trains of the system were broken 
down into the comprising components. FMEAs were conducted to identify components necessary for power 
generation. Each component modeled was given a conventional naming scheme for organizational purposes 
and a list of all the component names, the location of the components, and the purpose of the components 
was created. Components whose unavailability could cause plant derating were identified as key 
components [53]. 

Once the key components were found in the MFW system, the component failure modes were 
incorporated into fault trees. The top logic was defined by the ability of the feedwater system to support 
more than 0%, 50%, and 75% power. The fault trees were modeled in the SAPHIRE [158] software package 
using a combination of “OR” and “AND” logic gates to represent how component unavailability affects the 
top logic. Repair and recovery times were integrated into the model to determine the effective full power 
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hours of lost generation due to the basic events in the fault trees. A list of minimum cut sets was generated 
along with the percentage of contribution to the resultant loss of generation due to the cut set. 

 

 
Figure 21. Feedwater system availability block diagram for 100% power. 

FV and RAW importance measures were generated for each basic event evaluated in the study to obtain 
a four-quadrant plot comparing risk reduction and risk increase potential. Test and maintenance 
unavailability were not considered due to variations from plant to plant. However, human errors, random 
failures, common cause failures, repair times, and recovery times were accounted for in the modeling 
process. 

The data sources were the EPIX and the NERC-GADS pc-GAR database. EPIX provides an industry 
average component failure distribution [59]. A majority of the failure information was found in the 2015 
update of the Summary of SPAR Component Unreliability Data and Results spreadsheet; the source for 
developing the spreadsheet was EPIX for the years 1998 - 2015. The pc-GAR database for the years 1985 
- 1990 was used for MTTR data and failure data absent from the EPIX spreadsheet [60-61]. The NERC 
database provides a consistent data retrieval method for a majority of the NPPs in Canada and the U.S. . 
The use of all of the nuclear power generating units reporting to NERC provides an average set of repair 
and failure data. Further details of modeling the main feedwater system are given in the appendices. 

Appendices H and I provide more details about the reliability modeling of the MFW system and the 
obtained results which are summarized in Section 9.3. 

 

9.3 MFW GRA Results 
The results obtained through SAPHIRE identified the main contributors to economic loss in the MFW 

system. The GRA model determined the piping, valves, pumps, and heaters are the main contributors to 
lost generation in the feedwater system. Table 8 displays the estimated contribution to the lost generation. 
In Table 8, the “Count” column is the number of components evaluated in the study for the category. For 
example, 69 sections of piping were evaluated throughout the feedwater system. 

The numerical results are somewhat difficult to fully gauge whether they are typical to industry 
experience due to the uniqueness of the model. Exclusion of testing, maintenance, and repair costs likely 
have led to lower than the industry average values. Nonetheless, component contributions relative to each 
other correlate well with previously conducted GRA results. GRA models, such as Cooper Nuclear 
Station’s model on the main feedwater/condensate system, also imply the contribution to lost generation 
from high-pressure heaters for the generic model is relatively low. 

 

 



 

 48 

Table 8. Component and system costs due to failures. 

Category Count Lost Generation (per year) 
Pipes 69 $28,000 800 MWh 

Valves 65 $110,000 3000 MWh 
Pumps 3 $150,000 4000 MWh 
Heaters 2 $28,000 800 MWh 

Feedwater System 1 $340,000 10,000 MWh 
  

It is worthwhile to note how a key assumption made in the development of this generic GRA model 
differs from the Cooper model [49]. The generic power plant model here assumes an on-line maintenance 
capability when the failure of one heater occurs. To see how the assumption affects the results, the 100% 
derate model was modified to see how the contribution to lost generation would change. Figure 22 shows 
the total lost generation comparison when the capability of online repair to either heater is modified. 

 

 
Figure 22. High-pressure heater repair assumption lost generation comparison. 

When the capability of online maintenance is removed from consideration, the impact on lost 
generation due to the high-pressure heaters increases by a factor of five. Further financial analysis on this 
finding may be considered for power plants without the online repair capability of high-pressure feedwater 
heaters [54]. Alternatively, even for NPPs with such capability, these results indicate it may be beneficial 
to perform PM activities on the heater isolation valves to ensure the capability of isolating a heater if 
necessary. If it is determined not to perform such PMs on the isolation valves, if a failure of the respective 
heater should occur, the plant may no longer be capable of performing the necessary corrective maintenance 
while the NPP is operating, necessitating a plant shutdown, and the additional incurred costs (including lost 
generation costs) that would ensure. 

Plotting risk increase potential and risk reduction potential importance measures for basic events 
supports plant health management by assisting in identifying targets for improvement. The four-quadrant 
plot highlights categories of basic events with the highest risk reduction and risk increase potential 
importance measures. The measures for each basic event category for this example are shown on a log-log 
plot in Figure 23. 
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Figure 23. Feedwater system four-quadrant plot. 

 

Plotting the two importance measures for each basic event category on a four-quadrant plot provides 
valuable insights for managing generation risk. The thresholds in the plot should be viewed as large bands 
of grey due to the current application. Threshold lines in four-quadrant plots are used to weigh cost-benefit 
risk-mitigating decisions for proposed component modifications [58]. The relationships of the components 
with one another is useful for analysis. The events furthermost to the right contribute significantly to risk. 
The lower the events the less additional impact on the risk the events would have if they were to degrade. 
Thus, components rightmost and lowest, such as the feedwater pumps, may be candidates for design 
modification or replacement decisions, particularly in the context of long-term asset management associated 
with plant life extension decisions. The location of the component failure categories for the feedwater 
system is comparable to the results obtained from other GRA models. A more detailed discussion of this 
finding is found in the appendices. 

The uncertainty distributions for the component failure rates were given on the EPIX spreadsheet. The 
uncertainty for the rates was based on a gamma distribution. Any basic event failure rate not obtained from 
the EPIX spreadsheet was assigned a conservative uncertainty value. Table 9 shows data from the 
spreadsheet and how the uncertainty distribution was given. 

SAPHIRE utilized the Monte Carlo evaluation method to obtain the uncertainty in the top event. The 
uncertainty evaluation was based on the probability of a plant trip or derate occurring per 24 hours due to 
the unavailability of equipment. Therefore, the failure rate and the mean time to repair values of the 
components were taken into consideration. The probability density functions, as well as a more detailed 
discussion, are provided in the appendices. 

Appendix N provides an alternative approach to analyze GRA models by considering success path 
instead of Minimal Cut Sets. 
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Table 9. SPAR component unreliability data. 

Description Failure rate [hr-1] Distribution α 
Turbine-driven pump external leakage (small) 5.38E-07 Gamma 15.5 
Motor operated valve fails to remain open 3.24E-08 Gamma 0.593 
Hydraulic valve fail to control 4.57E-07 Gamma 42.5 

 

 

9.4 GRA Modeling Considerations 
A generic 4-loop PWR MFW system centered GRA has been performed. The GRA was performed to 

evaluate the utility of GRA applied to PHM. The GRA results provide an effective mechanism for justifiable 
identification of leading contributors to generation risks. The GRA results also provide the complementary 
benefit of identifying low worth contributors to generation risks. While the GRA model described here 
provides useful insight, several additional features can be implemented which will magnify the benefit. Key 
among these additional features are accommodation of degradation, testing and maintenance, and the 
integration of supporting and preliminary systems. 

NPPs have severe environmental and operating conditions leading to a variety of degradation 
mechanisms [42]. Active degradation mechanisms affect GRA models through the addition of time-
dependent failures [57]. Evaluating how a component failure or unavailability increases over time becomes 
a valuable tool in the long-term planning of a NPP. The integration of degradation to the GRA model in 
this report can be done through the use of time-dependent software compatible with SAPHIRE (or other 
similar. 

Testing and maintenance also have influence on lost generation in NPPs. Degradation results in 
increased costs due to increased testing and maintenance requirements. Evaluating the costs associated with 
these time-dependent and non-time dependent activities is important in economic evaluations. The costs 
associated with testing and maintenance of components of the generic feedwater system can be incorporated 
into the GRA model developed.  

Supporting systems to the generic feedwater system must be operable for the feedwater flow to be 
successfully transported to the steam generator inlets. Although supporting systems are subject to an 
entirely new degradation model in themselves, the results can provide helpful insights. Incorporating 
supporting system GRA models with the model in this report highlights the interdependencies of 
components at a larger power plant level. Important economic decisions may be based on the findings of 
the interdependencies and the values of generation loss. 

The feedwater system has preliminary processes that must occur to effectively deliver heated water to 
the steam generators. The condensate system must successfully perform its design functions for the 
feedwater system to operate correctly. The addition of the condensate system in the generic plant evaluated 
in this study can also be incorporated directly into the GRA model. Economic decisions are often made on 
the main feedwater and condensate systems collectively. Evaluation of the condensate system in 
conjunction with the feedwater system would provide insights into additional plant health management 
decisions. 

It is noted here that, to date, although the technology to develop and apply GRA models is 
straightforward; the technology has not been widely applied at NPPs. This is predominantly due to the costs 
(or perceived costs) associated with developing GRA models. Industry experience has shown that PRA-
type models are labor intensive and expensive to develop and maintain. As a result, if the GRA techniques 
described in this section are to achieve widespread adoption to support system health management 
programs, techniques will need to be developed to substantially reduce these costs. Since all U.S. NPPs 
have full plant PRA models, one such option is to modify these models so as to permit them to evaluate the 



 

 51 

impact on plant production and economics related to system health and asset management decisions. 
Development of such methods (and supporting tools) represents an area for research.   
 

10. SSC MAINTENANCE AND MONITORING 
As a result of intense global competition, companies are considering novel approaches to enhance the 

operational efficiency of their products. For some products, high in-service reliability can be a means to 
ensure customer satisfaction. For other products, increased warranties, or at least reduced warranty costs, 
and a reduction in liability due to product failures, are incentives for manufacturers to improve field 
reliability and operational availability. 

PHM is a multi-faceted discipline for the assessment of product degradation and reliability. The purpose 
is to protect the integrity of the product and avoid unanticipated operational problems leading to mission 
performance deficiencies, degradation, and adverse effects on mission safety. More specifically, 
prognostics is the process of predicting a system’s Remaining Useful Life (RUL) by estimating the 
progression of a fault given the current degree of degradation, the load history, and the anticipated future 
operational and environmental conditions. Health management is the process of decision-making and 
implementing actions based on the estimate of the state of health derived from health monitoring and 
expected future use of the product.  

In general, PHM consists of sensing, anomaly detection, diagnostics, prognostics, and decision support, 
as shown in Figure 24. The objective of sensing is to collect a history of time-dependent operation of a 
product, the degradation of materials, and / or the environmental loads on the components of a product or 
the total product.  

The primary purpose of anomaly detection is to identify strange or unusual or unexpected (anomalous) 
behavior of the product by identifying deviations from nominally healthy behavior of the product. The 
results from anomaly detection can provide advanced warnings of failure, often referred to as failure 
precursors. Note that anomalies do not necessarily indicate a failure because changes in operating and 
environmental conditions can influence sensor data to show anomalous behavior. However, even this type 
of anomaly information is valuable to product health management, because it can indicate an unexpected 
use.  

Diagnostics enables the extraction of fault-related information, such as failure modes, failure 
mechanisms, quantify of damage, and so forth, from sensor data caused by anomalies in the products health. 
This is a key piece of information that feeds into maintenance planning and logistics.  

Prognostics refers to predicting a product’s RUL within appropriate confidence intervals, which often 
requires additional information not traditionally provided by sensors, such as maintenance history, past and 
future operating profiles, and environmental factors. Based on predictions, the goal is to inform decision 
makers of potential cost avoidance activities, and to ensure safe operation. That is, the aspects of PHM are 
to effect appropriate decision making; to prevent system’s catastrophic failures; to increase system 
availability by reducing downtime; to expend maintenance cycles; to execute timely repair actions; to lower 
life-cycle costs from reductions in inspection and repair; and to improve system qualification, design, and 
logistical support. In Appendix L we summarize in more details the most advanced PHM methods that are 
currently available. In Appendix K we provide a summary of methods for supply-chain surveillance for 
PHM systems. In Appendix O we provide a summary of condition assessment approaches for both active 
and passive components.  
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Figure 24. Framework for prognostics and health management. 

 

11. LINK WITH RIAM PROJECT  
The Use Case related to development of a modern, integrated, risk-informed system health program 

has significant commonalities to the Use Case that is developing a RIAM program. Although these two Use 
Cases are similar in that they focus on plant equipment and system performance, they possess different 
emphases in objectives and timeframes. This is characterized in Table 10. 

 
Table 10. Emphases and timeframes for system health and asset management Use Cases. 

Program Primary Timeframe Primary Focus 
System Health Short to Intermediate Term Engineering 

Asset Management Intermediate to Long Term Financial 
 

As described in Section 7 of this report, the conduct of NPP ER programs are developed and 
implemented in accordance with INPO AP-913 [5]. Additionally, as described in Section 7 of this report, 
regulatory focus via the Maintenance Rule as implemented by the industry in NEI 93-01 [2] focuses, to a 
large extent, on the reliability and availability of plant SSCs [2]. As a result, plant system health programs 
have tended to focus predominantly on the engineering aspects related to ER. Additionally, focus on items 
such as Maintenance Rule performance, in particular addressing performance deficiencies associated with 
plant SSCs classified as (a)(1) or for SSCs which possess small amounts of margin for the MSPI program 
[4], has focused attention on issues that are short to intermediate term in nature. One indicator of this focus 
can be seen in the content of industry sponsored research to support plant ER programs. This research 
typically is sponsored by the EPRI under the Plant Engineering Program. The results of this research are 
used by operating NPPs around the world to support plant ER programs. To support widespread adoption 
of the outcomes of this research EPRI periodically publishes a report (which is publicly available) that lists 
all of the products developed from this research. A review of the most recent of these reports [42] indicates 
a large portion of the research focuses on the engineering aspects of plant ER and also focuses on the short 
and intermediate term needs of the operating NPPs.   
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In contrast, RIAM applies a combination of financial and engineering evaluation methods to apply risk 
management technology to support plant long-term planning and investment. RIAM is intended to provide 
decision makers with both qualitative and quantitative information related to investments in asset 
management with an objective of optimizing long-term economic value while effectively identifying and 
controlling enterprise risks. As a result, RIAM is most closely aligned with the Life Cycle Management 
(LCM) portion of AP-913 which has a longer-term focus than the other portions of that industry guidance 
document. 

An important set of methods and tools to support NPP LCM efforts and, in particular, their application 
to NPPs that are anticipating operating during extended periods of operation (i.e., periods of license 
renewal) is Integrated Life Cycle Management (ILCM) developed by EPRI. The ILCM method [43] 
addresses the management and optimization of large capital projects for the purposes of extended plant 
operation. The ILCM approach is an evaluation method that consists of a sequence of structured 
evaluations. ILCM methods and accompanying software are available to EPRI member utilities; it should 
be noted that since all U.S. NPP owner / operators are EPRI members, ILCM is available to all operating 
U.S. NPPs. Important elements of ILCM are described in the LWRS RIAM Use Case report that is being 
published simultaneously with this report [44].  

Although the two Use Cases have different emphases, it is evident that they are closely related. For 
example, development of long-term asset management plans related to plant life extension will be 
dependent upon the effectiveness of the management of the health of plant SSCs achieved by the plant ER 
program. Conversely, anticipated financial restraints related to either current ER programs or for future 
investments can have an impact on decisions related to the reliability and performance of plant SSCs. As a 
result, as the two Use Cases related to system health and risk-informed asset management progress, the 
LWRS collaboration is planning to work with both host utilities to coordinate activities to more fully 
integrate the approaches to the greatest extent practicable. Some key areas where these collaborations are 
anticipated to occur are the following: 

• Evaluation of the impact of short to intermediate term investments on long-term system 
performance including potential impacts on plant risk (both safety and economic) and impacts on 
long term capital investment needs. 

• Evaluation of the impact of long-term investment alternatives system performance, particularly 
with respect to the impacts of investment limitations and deferrals on plant risk (both safety and 
economic). 

 

12. ARCHITECTURE FOR RI-PSH  
The objective of this section is to present an architecture to manage and control plant risk, efficiency 

and operations. The material presented here looks more in the near future when the PHM project and the 
RIAM project will converge on the same tracks. This will happen when we will integrate PHM data and 
models to inform and update RIAM models for optimization of plant resources. In addition, we are planning 
to integrate several other plant structures such as supply chain and plant safety to permit achieving an 
integrated framework to address both short and long-term asset management decisions. 

The idea behind the term “architecture” is that several plant activities are strictly/loosely depending on 
each other and on external factors (e.g., power demand and energy price). In addition, these plant activities 
are also heterogenous in nature, i.e., they control different aspects of the plant (e.g., plant operation, plant 
finance, plant risk, etc.). 

In a NPP these activity dependencies are more or less considered and controlled by “passing data” from 
one activity to the other. This process of “passing data” is not always automatized and plant benefits likely 
would emerge from the creation of this automatization. As an example, the PHM project has focused during 
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this past year on the integration of risk-informed applications with plant health management. An application 
is the optimization on plant maintenance schedules based on plant heath data and system risk models. 
Another example is the RIAM project were plant resources and plant health data are employed to identify 
an optimal schedule for replacement/refurbishment of capital component, with particular emphasis to 
support plant life extension activities (including second license renewal).  

Note that for both of these examples, there is a direct connection between plant operations, economics 
and safety. The objective of this architecture is to create these automatized links between these entities, and 
we will employ a Model Based System Engineering (MBSE) approach to create such automatized linking. 

MBSE is an emerging approach in the discipline of System Engineering (SE) which can be described 
as “the formalized application of modeling principles, methods, languages and tools to the entire lifecycle 
of large complex, interdisciplinary, sociotechnical systems” [151]. Compared to classical SE approaches 
which are based on the system-as-machine paradigm, MBSE is based on system-as-organism paradigm. In 
other words, MBSE evolves SE approaches to explicitly consider large highly complex, adaptive and 
human-interactive systems. The artifact generated by a MBSE approach is a system model developed in a 
pre-defined modeling language and appropriate tools.  

The main computational languages currently employed for MBSE practices are the: Unified Modeling 
Language (UML) and the System Modeling Language (SysML). Both of these are highly object-oriented 
graphical modeling languages designed to support SE activities. SysML evolved from UML to supplement 
UML with additional capabilities: requirements and parametric modeling. 

While these approaches and languages have been employed in SE applications for the design and 
analysis of complex systems, in recent years MBSE has been employed to perform safety analysis [152]. 
Such a modeling approach contrasts with the currently employed safety and PRA approaches which are 
based on much simpler graphical languages such as Event-Trees, Fault-Trees and Reliability Block 
Diagrams. The advantage of employing a MBSE approach is the higher level of abstraction and detail that 
can be reached when performing system modeling.  

When looking at NPP activities we observe several entities (e.g., equipment reliability, PRA) that are 
coupled to each other (with different degree of coupling). This coupling can be synthesized by the passage 
of shared models (e.g., reliability models) and data (e.g., maintenance reports). In this report, we have 
focused on the development of a risk-informed system health program (see Section 4) which links 
equipment reliability with risk-informed applications. We have shown how these entities are linked to other 
plant activities (e.g., supply chain and long-term panning); from here, the following inquiries are suggested: 
can we extend MBSE modeling and languages approaches to integrate into a single analysis framework all 
plant activities? In other terms, can we automatize as much as possible the interactions among plant 
activities? 

We are proposing a MBSE approach to answer these questions, i.e., we aim to extend capabilities to 
system design, system safety, and system operation.  Figure 25 represents in graphical form how the 
proposed MBSE-based architecture could be used to support engineering, science, operations and 
management activities of a NPP. Each plant activity is composed of models, requirements, functions and 
organization structures which can be translated into MBSE models and then linked to the MBSE models of 
other plant activities. The objective is to monitor continuously: risk (economic and safety related), costs 
and efficiency. 

These MBSE models will be integrated with risk and reliability models of SSCs which will be 
continuously updated once new data (e.g., maintenance report or failure data) is generated. Once the MBSE 
models have been created and linked, the internal analysis engines will: 

1. Employ system dynamics models (e.g., economic models, structural models, thermal-hydraulic 
models, ageing/degradation models) to perform time dependent analysis to forecast future trends 

2. Propagate data uncertainties and perform sensitivity analyses 
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3. Include data analytics methods to identify and analyze patterns 
 

  
Figure 25. Functionalities of a RI-PSH architecture. 

 
In a graphical form we are aiming to transform plant operation and management from the paradigm 

shown in Figure 26(a) to that in Figure 26(b). Figure 26(a) depicts the current current state of practice 
typical for most existing NPPs where several plant activities (i.e., finance, engineering, operations) 
continuously pass data in different formats across different organizations. This passing of data is not always 
automatized, and the structure of the data may vary depending on the requested activity or function. Again, 
the issue is not related to passing data, the issue we are aiming to solve is: can we structure this “passing 
data interaction” in a more structured, automatized, efficient,, timely, and effective manner?  

 

  
(a)             (b) 

Figure 26. Comparison between currently and proposed RI-PSH architecture. 
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We envision to answer this question by proposing a MBSE approach as shown in Figure 26 (b) where 
each plant activity provides to the plant MBSE architecture not only data and models but also its structure 
and behavior, its interfaces and dependencies with other activities, and its requirements. The advantage of 
such an approach is that the interactions between plant activities are well defined and bounded which allow 
a well-structured automation. Appendix M shows in more detail how the initial design of the RI-PSH 
architecture has been performed using MBSE tools. 

 

13. CONCLUSIONS AND NEXT STEPS 
This report has summarized the research activities conducted during FY19 for the PHM Use Case 

project. With the goal to start the development of a RI-PSH program we have begun by 1) identifying its 
major components and 2) by evaluating which and how risk-informed applications are linked to it. We have 
identified how plant information can be employed to evaluate safety and economic risk of a NPP. We then 
applied such information for two types of applications: maintenance optimization and GRA. By doing this 
we were able to provide an initial set of tools to better support risk-informed decisions. 

As shown in Figure 2, in this report we touched upon the main structural elements of an envisioned RI-
PSH framework and proposed a possible architecture framework which would greatly automatize data and 
model sharing among plant organizational structures by including: 

1. Data generated that provides information related to the performance and health of plant SSCs 

2. Models and data pre-processing functions 

3. Algorithms which employs data and models to provide services. 
 

 
Figure 27. RI-PSH from a decision-making perspective. 

 

These services are shown in Figure 27: from plant data, the RI-PSH framework will provide risk-informed 
information from the safety, regulatory, and economical perspectives. In addition, it will provide a set of 
suggested actions such as optimal PM/surveillance frequency and replacement/procurement scheduling. 

As a result of the work performed during this first year and in accordance with our industry partner, we 
have identified the initial stage of the RI-PSH framework as target for the R&D work for the next fiscal 
year. For FY20, we are the process of planning to extensively develop data analytics methods to quantify 
component degradation. The goal is to identify situations within the ER system of a chosen operating plant 
(in collaboration with the utility partner) that would benefit the deployment of methods/algorithms to more 
accurately determine SSC condition and predict SSC remaining useful life. In particular, we are focusing 
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on the three directions shown in Table 11 where for each of them we have the corresponding impact time 
scale.  

 
Table 11. RI-PSH research directions for FY20. 

Research directions Impact time scale 

Analysis of temporal events such as failure and 
events reports, maintenance history, SSC 
conditions 

Short 

Integration of SSC online data with physical 
models (e.g., codes) Medium 

Progress on the development of a MBSE 
architecture for the RI-PSH Long 

 
 

 

 
  



 

 58 

REFERENCES 
 

 
[1] United States Nuclear Regulatory Commission (NRC), “10CFR 50.65 Requirements for monitoring 

the effectiveness of maintenance at nuclear power plants,” Washington, DC. 
[https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html]. 

[2] Nuclear Energy Institute (NEI), “Industry Guideline for Monitoring the Effectiveness of Maintenance 
at Nuclear Power Plants, Revision 4b”, NEI Report NEI 93-01, Washington, DC (2015). 

[3] United States Nuclear Regulatory Commission (NRC), “Regulatory Guide 1.160 - Monitoring the 
Effectiveness of Maintenance at Nuclear Power Plants, Revision 4,” Washington, DC (2018). 
[https://www.federalregister.gov/documents/2018/09/26/2018-20864/monitoring-the-effectiveness-
of-maintenance-at-nuclear-power-plants]. 

[4] Nuclear Energy Institute (NEI), “Regulatory Assessment Performance Indicator Guideline, Revision 
7,” NEI Report 99-02 Washington, DC (2013). 
[https://www.nrc.gov/docs/ML1326/ML13261A116.pdf]. 

[5] Institute of Nuclear Power Operations (INPO), “AP-913 - Equipment Reliability Process Description, 
Revision 6,” Washington, DC (2018) (limited distribution). 

[6] M. Gluhak, “Equipment Reliability Process in Krško NPP,” Journal of Energy, 65 , no. 3-4 (2016).  
[http://journalofenergy.com/index.php/joe/issue/view/95/88 Accessed 6 August 2019]. 

[7] Electric Power Research Institute (EPRI), “Demonstration of Reliability Centered Maintenance,” 
EPRI Report EPRI-NP-6152 vol.2, Palo Alto, CA (1991). 

[8] Electric Power Research Institute (EPRI), “Comprehensive Low-Cost Reliability Centered 
Maintenance,” EPRI Report EPRI-TR-105365, Palo Alto, CA (1995). 

[9] Nuclear Energy Institute (NEI), “Efficiency Bulletin 16-25; Critical Component Reduction,” 
Washington, DC (2016). 

[10] Electric Power Research Institute (EPRI), EPRI Preventive Maintenance Basis Database (PMBD), 
Palo Alto, CA (2015). 

[11] Electric Power Research Institute (EPRI), “Preventive Maintenance Basis Database (PMBD): Quick 
Reference Guide,” Palo Alto, CA (2018). 

[12] Electric Power Research Institute (EPRI), “Insights on Risk Margins at Nuclear Power Plants: A 
Technical Evaluation of Margins in Relation to Quantitative Health Objectives and Subsidiary Risk 
Goals in the United States,” Palo Alto, CA (2018). [https://rtoinsider.com/wp-
content/uploads/Insights-on-Risk-Margins-at-Nuclear-Power-Plants-EPRI-document-
3002012967.pdf]. 

[13] Nuclear Energy Institute (NEI), “Efficiency Bulletin 17-03a; Value Based Maintenance,” 
Washington, DC (2017). 

[14] Nuclear Energy Institute (NEI), “Efficiency Bulletin 16-33; System Health Reporting Efficiencies,” 
Washington, DC (2016). 

[15] Nuclear Energy Institute (NEI), “Efficiency Bulletin 16-34; Streamline Program Health Reporting,” 
Washington, DC (2016). 

[16] Nuclear Energy Institute (NEI), “Industry Guideline for Monitoring the Effectiveness of Maintenance 
at Nuclear Power Plants,” NEI Report NUMARC 93-01, Rev. 4F, Washington, DC (2018). 



 

 59 

[17] D. Blanchard and R. Youngblood, “Risk Informed Safety Margin Characterization Case Study: 
Selection of Electrical Equipment to Be Subjected to Environmental Qualification,” INL Technical 
Report INL/EXT-11-23479 (2011). 

[18] Nuclear Energy Institute (NEI), “An Alternate Approach to NUMARC 93-01,” Washington, DC, 
June 20, 2018. [Draft Publication– available to NEI members]. 

[19] United States Nuclear Regulatory Commission (NRC), Inspection Manual Chapter (IMC) 0305, 
“Operating Reactor Assessment Program,” (2018).  

[20] United States Nuclear Regulatory Commission (NRC), “Independent Verification of the Mitigating 
Systems Performance Index (MSPI) Results for the Pilot Plants,” NUREG-1816, Washington, DC 
(2005). 

[21] Nuclear Energy Institute (NEI), “Regulatory Assessment Performance Indicator Program,” NEI 
Report 99-02, Revision 7, Washington, DC (2013). 

[22] United States Nuclear Regulatory Commission (NRC), Inspection Manual Chapters 0609, 
“Significance Determination Process,” Washington, DC (2015). 

[23] United States Nuclear Regulatory Commission (NRC), Management Directive 8.3, “NRC Incident 
Investigation Program,” Washington, DC (2014). 

[24] D. E. True, “The Value of Risk-Informed Regulation – Safety and Economic Perspective,” Asia 
Nuclear Business Platform (2016).  

[25] United States Nuclear Regulatory Commission (NRC), “An Approach for Using Probabilistic Risk 
Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,” 
Regulatory Guide 1.174, Revision 3, Washington, DC (2018). 

[26] United States Nuclear Regulatory Commission (NRC), “An Approach for Plant-Specific Risk-
Informed Decision making for Inservice Inspection of Piping,” Regulatory Guide 1.178, Revision 1, 
Washington, DC (2003). 

[27] Nuclear Energy Institute (NEI), “Risk-Informed Technical Specifications Initiative 4b, Risk-
Managed Technical Specifications (RMTS) Guidelines,” NEI Report 06-09, Revision 0 - A, 
Washington, DC (2006). 

[28] Nuclear Energy Institute (NEI), “Risk-Informed Technical Specifications Initiative 5b, Risk-
Informed Method for Control of Surveillance Frequencies,” NEI Report 04-10, Revision 1, 
Washington, DC (2007). 

[29] Nuclear Energy Institute (NEI), “10 CFR 50.69 SSC Categorization Guideline,” NEI Report 00-04, 
Revision 0, Washington, DC (2005). 

[30] National Fire Protection Association, “Performance-Based Standard for Fire Protection for Light 
Water Reactor Electric Generating Plants,” NFPA 805 (2015). 

[31] United States Nuclear Regulatory Commission (NRC), “10 CFR 50.61a Alternate Fracture 
Toughness Requirements for Protection Against Pressurized Thermal Shock Events,” 75 FR 23 
(2010), as amended.  

[32] D. A. Dube et al., “Exelon Economic Enterprise Risk Modeling of a BWR,” Proceeding of PSA 2017, 
Pittsburgh, PA (2017). 

[33] Electric Power Research Institute (EPRI), “Generation Risk Assessment (GRA) Plant 
Implementation Guide,” EPRI Report 1008121, Palo Alto, CA (2004). 

[34] Electric Power Research Institute (EPRI), “Risk-Informed Asset Management (RIAM) Development 
Plan,” EPRI Report 1006268, Palo Alto, CA (2002). 



 

 60 

[35] United States Nuclear Regulatory Commission (NRC), “An Approach for Using Probabilistic Risk 
Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,” 
Regulatory Guide 1.174, Revision 3, Washington, DC (2018). 

[36] J. H. Saleh, K. Marais, “Reliability: How much is it worth? Beyond its estimation or prediction, the 
(net) present value of reliability,” Reliability Engineering & System Safety, 91, no. 6, pp. 665-673 
(2006). 

[37] J. K. Vaurio, “Optimization of Test and Maintenance Intervals Based on Risk and Cost,” Reliability 
Engineering & System Safety, 49, no. 1, pp. 23-36 (1995). 

[38] T. Teresa, I. Singh, E. Popova, E. J. Kee, “Risk-Informed Preventive Maintenance Optimization,” in 
Proceedings of Annual Reliability and Maintainability Symposium (2012). 

[39] J. Lee and N. McCormick, Risk and Safety Analysis of Nuclear Systems, John Wiley and Sons (2011). 
[40] I. Martón, P. Martorell, R. Mullor, A.I. Sánchez, S. Martorell, “Optimization of Test and Maintenance 

of Ageing Components Consisting of Multiple Items and Addressing Effectiveness,” Reliability 
Engineering & System Safety, 153, pp. 151-158 (2016). 

[41] M. Harunuzzaman, T. Aldemir, “Optimization of Standby Safety System Maintenance Schedules in 
Nuclear Power Plants,” Nuclear Technology, 113, pp. 354-367 (1996). 

[42] Electric Power Research Institute (EPRI), “Plant Engineering: 2018 Complete Product List,” EPRI 
Report 3002007859 Palo Alto, CA (2019). 

[43] Electric Power Research Institute (EPRI), “Integrated Life Cycle Management: Status Report,” EPRI 
Report 1021188 Palo Alto, CA (2010). 

[44] D. Mandelli, C. Wang, D. Morton, I. Popova, S. Hess, S. St Germain, “Combined Data Analytics and 
Risk Analysis Tool for Long Term Capital SSC Refurbishment and Replacement,” INL Technical 
Report (2019). 

[45] United States Nuclear Regulatory Commission (NRC), “Glossary of Risk-Related Terms in Support 
of Risk- Informed Decision Making,” NUREG-2122, Washington, DC (2013). 

[46] United States Nuclear Regulatory Commission (NRC), “Fault Tree Handbook,” NUREG-0492, 
Washington, DC (1981). 

[47] J. C. Lee, N. J. McCormick, Risk and Safety Analysis of Nuclear Systems, Wiley Publishing 
Company, Hoboken, NJ (2011). 

[48] G. Sliter, “Generation Risk Assessment (GRA) Plant Implementation Guide,” EPRI Report 1008121, 
Palo Alto, CA (2004). 

[49] G. Sliter, “Generation Risk Assessment (GRA) at Cooper Nuclear Station,” EPRI Report 1011924, 
Palo Alto, CA (2005). 

[50] G. Sliter, “Introduction to Simplified Generation Risk Assessment Modeling,” EPRI Report 1007386, 
Palo Alto, CA (2004). 

[51] R. J. Breeding, T. J. Leahy, J. Young, W. R. Cramond, “Probabilistic Risk Assessment Course 
Documentation,” U.S. Nuclear Regulatory Commission, NUREG/CR-4350 (1985). 

[52] M. I. Jyrkama, M. D. Pandey, S. M. Hess, “Integration of Degradation Models into Generation Risk 
Assessment: Challenges and Modeling Approaches,” Journal of Engineering for Gas Turbines and 
Power, 132 (2010). 

[53] N. Wilmshurst, “Critical Component Identification Process – Licensee Examples,” EPRI Report 
1007935, Palo Alto, CA (2003). 



 

 61 

[54] D. Dube, G. Parry, S. Lewis, D. True, F. Ferrante, J. Chapman, “Enhanced Guidance on Integrated 
Risk-Informed Decision-Making,” Proceedings of Probability Safety Assessment Conference (PSA) 
Pittsburgh, PA (2017). 

[55] D. Dube, B. Albinson, R. Wolfgang, M. Saunders, G. Krueger, “Exelon Economic Enterprise Risk 
Modeling of a BWR,” Exelon Generation, Kenneth Square, PA. 

[56] D. Blanchard, W. Brinsfield, P. Szetu, G. Sliter, “Power Plant Generation Risk Assessment (GRA),” 
Applied Reliability Engineering, Inc. 

[57] D. Sanzo, P. Kvam, G. Apostolakis, J. Wu, T. Milici, N. Ghoniem, S. Guarro, “Survey and Evaluation 
of Ageing Risk Assessment Methods and Applications,” Los Alamos National Laboratory (1994). 

[58] B. Fischhoff, “The Realities of Risk-Cost-Benefit Analysis,” Science, 350, no. 6260 (2015). 

[59] S. A. Eide, T. E. Wierman, C. D. Gentillon, D. M. Rasmuson, C. L. Atwood, “Industry-Average 
Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants,” U.S. 
Nuclear Regulatory Commission, NUREG/CR-6928 (2007). 

[60] North American Electric Reliability Council (NERC), “pc-GAR for Windows,” Demo Release 4.1.15 
(2008). 

[61] Summary of SPAR Component Unreliability Data and Results, 2015 Parameter Estimation Update. 
[62] U.S. Atomic Energy Commission, “Reactor Safety Study, An Assessment of Accident Risks in U.S. 

Commercial Nuclear Power Plants,” NUREG-75/014 (WASH-1400) (1974). 
[63] Nuclear Energy Institute (NEI), “Nuclear Costs in Context,” NEI (2018). 

[https://www.nei.org/resources/reports-briefs/nuclear-costs-in-context]. 

[64] A. Jayakumar, S. Asgarpoor, “A Markov Method for the Optimum Preventive Maintenance of a 
Component,” Proceedings of the IASTED International Conference Power and Energy Systems, 
Palm Springs, CA (2003). 

[65] D. Yaga, P. Mell, N. Roby and K. Scarfone, “Blockchain Technology Overview,” Gaithersburg, MD, 
(2018). 

[66] P. Soni, “Why Blockchain for the Supply Chain,” EBN, 25 June 2018. 
[https://www.ebnonline.com/why-blockchain-for-the-supply-chain/]. 

[67] R. Narasimhan, S. Talluri, D. Méndez, “Supplier Evaluation and Rationalization via Data 
Envelopment Analysis: An Empirical Examination,” Journal of Supply Chain Management, 37, no.2, 
pp. 28-37 (2006). 

[68] A. Azadeh, S. M. Alem, “A Flexible Deterministic, Stochastic and Fuzzy Data Envelopment Analysis 
Approach for Supply Chain Risk and Vendor Selection Problem: Simulation Analysis,” Expert 
Systems with Applications, 37, no. 12, pp. 7438-7448 (2010).  

[69] “Social Accountability International | SA8000® Standard,” Social Accountability International, 
[http://www.sa-intl.org/index.cfm?fuseaction=Page.ViewPage&PageID=1689]. 

[70] M. Burkhart, “5 Different types of audits to evaluate your supplier,” China Quality Focus, (2019). 
[https://www.intouch-quality.com/blog/the-3-most-common-types-of-factory-audits].  

[71] S. Tiku, M. Pecht, J. E. Strutt, “Organizational Reliability Capability,” IEEE Transactions on 
Components and Packageing Technologies, 29, no. 2, pp. 425 - 428 (2006). 

[72] S. Tiku, M. Pecht, “Reliability Capability Assessment Methodology,” in Proceedings of Canadian 
Reliability and Maintainability Symposium,Ottawa, ON, Canada (2003). 



 

 62 

[73] S. Tiku, M. Azarian,  M. Pecht, “Using a Reliability Capability Maturity Model to Benchmark 
Electronics Companies,” International Journal of Quality and Reliability Management, 24, no. 5, pp. 
547-563 (2007).  

[74] T. Working Group, “IECEE Operational Document TRF-Development, Maintenance and Use IEC 
System of Conformity Assessment Schemes for Electrotechnical Equipment and Components 
(IECEE System),” 2020. 

[75] J. Niggl, “How to Verify Critical Components with a Construction Data Form,” China Quality Focus, 
(2019). [https://www.intouch-quality.com/blog/always-verify-cdf.]. 

[76] B. Sood, D. Das, M. Pecht, “Screening for Counterfeit Electronic Parts,” Journal of Materials 
Science: Materials in Electronics, 22, no. 10, pp. 1511-1522 (2011).  

[77] A. Shrivastava, M. H. Azarian, C. Morillo, B. Sood,  M. Pecht, “Detection and Reliability Risks of 
Counterfeit Electrolytic Capacitors,” IEEE Transactions on Reliability, 63, no. 2, pp. 468-479 (2014).  

[78] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor,  Y. Makris, “Counterfeit Integrated 
Circuits: a Rising Threat in the Global Semiconductor Supply Chain,” Proceedings of the IEEE, 102, 
no. 8, pp. 1207-1228 (2014).  

[79] K. Chatterjee, D. Das, M. Pecht, C. Ricci, P. Suorsa, “Solving the Counterfeit Electronics Problem,” 
SMTA Pan Pacific Conference (2007). 

[80] M. Partridge, R. A. Calvo, “Fast Dimensionality Reduction and Simple PCA,” Intelligent Data 
Analysis, 2, no. 3, pp. 203–214 (1998). 

[81] B. Scholkopf, A. Smola, K.-R. Muller, “Kernel Principal Component Analysis,” in Artificial 
Networks, Springer, Berlin, Germany (1997). 

[82] J. Yang, J.-Y. Yang, “Why can LDA be Performed in PCA Transformed Space?” Pattern 
Recognition, 36, no. 2, pp. 563–566 (2003). 

[83] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, “An Introduction to Kernel-Based 
Learning Algorithm,” IEEE Transactions on Neural Networks, 12, no. 2, pp. 181–201 (2001). 

[84] G. Baudat, F. Anouar, “Generalized Discriminant Analysis Using a Kernel Approach,” Neural 
Computation, 12, no. 10, pp. 2385–2404 (2000). 

[85] P. Comon, “Independent Component Analysis, a New Concept?” Signal Processing, 36, no. 3, pp. 
287–314 (1994). 

[86] L. Van der Maaten, G. Hinton, “Visualizing Data Using t-SNE,” Journal of Machine Learning 
Research, 9, pp. 2579–2605 (2008). 

[87] R. Schumacker, S. Tomek, “Chi-Square Test,” Understanding Statistics Using R, pp. 169–175 
(2012). 

[88] J. T. Kent, “Information Gain and A General Measure of Correlation,” Biometrika, 70, no. 1, pp. 
163–173 (1983). 

[89] J. L. Rodgers, and W. A. Nicewander, “Thirteen Ways to Look at The Correlation Coefficient,” The 
American Statistician, 42, no. 1, pp. 59–66 (1988). 

[90] C. Furlanello, M. Serafini, S. Merler, G. Jurman, “An Accelerated Procedure for Recursive Feature 
Ranking on Microarray Data,” Neural Networks, 16, no. 5, pp. 641–648 (2003). 

[91] V. Roth, “The Generalized LASSO,” IEEE Transactions on Neural Networks, 15, no. 1, pp. 16–28 
(2004). 

[92] Q. Li, N. Lin, “The Bayesian Elastic Net,” Bayesian Analysis, 15, no. 1, pp. 151–170 (2010). 



 

 63 

[93] S. Le Cessie, J. C. Van Houwelingen, “Ridge Estimators in Logistic Regression,” Journal of the 
Royal Statistical Society, 41, no. 1, pp. 191–201(1992). 

[94] W. Yan, L. Yu, “On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep 
Learning Approach,” Proceedings of Annual Conference of the Prognostics and Health Management 
Society, Coronado, CA, USA (2015). 

[95] M. Zhao, M. Kang, B. Tang, M. Pecht, “Deep Residual Networks with Dynamically Weighted 
Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes,” IEEE Transactions on Industrial 
Electronics, 65, no. 5, pp. 4290–4300 (2018). 

[96] H. Shao, H. Jiang, H. Zhang, T. Liang, “Electric Locomotive Bearing Fault Diagnosis Using a Novel 
Convolutional Deep Belief Network,” IEEE Transactions on Industrial Electronics, 65, no. 3, pp. 
2727–2736 (2018). 

[97] Z. Liu, Z. Jia, C.-M. Vong, S. Bu, J. Han, X. Tang, “Capturing High-Discriminative Fault Features 
for Electronics-Rich Analog System Via Deep Learning,” IEEE Transactions on Industrial 
Informatics, 13, no. 3, pp. 1213–1226 (2017). 

[98] J. Tian, C. Morillo, M. H. Azarian, M. Pecht, “Motor Bearing Fault Detection Using Spectral 
Kurtosis-Based Feature Extraction Coupled with K-Nearest Neighbor Distance Analysis,” IEEE 
Transactions on Industrial Electronics, 63, no. 3, pp. 1793–1803 (2016). 

[99] M. Kang, G. Krishnan Ramaswami, M. Hodkiewicz, E. Cripps, J.-M. Kim, M. Pecht, “A 
Sequential K-Nearest Neighbor Classification Approach for Data-Driven Fault Diagnosis Using 
Distance- and Density-Based Affinity Measures,” in Data Mining and Big Data, Springer (2016). 

[100] M. Kang, J. Kim, J. -M. Kim, A. C. C. Tan, E. Y. Kim, B.-K. Choi, “Reliable Fault Diagnosis for 
Low-Speed Bearings Using Individually Trained Support Vector Machines with Kernel 
Discriminative Feature Analysis,” IEEE Transactions on Power Electronics, 30, no. 5, pp. 2786–
2797 (2015). 

[101] A. S. Vasan, B. Long, M. Pecht, “Experimental Validation of LS-SVM Based Fault Identification in 
Analog Circuits Using Frequency Features,” Proceedings of the World Congress on Engineering 
Asset Management, Cincinnati, OH, USA (2011). 

[102] Y. Cui, J. Shi, Z. Wang, “Analog Circuit Fault Diagnosis Based On Quantum Clustering Based Multi-
Valued Quantum Fuzzification Decision Tree (QC-MQFDT),” Measurement, 93, pp. 421–434 
(2016). 

[103] F. Ye, Z. Zhang, K. Chakrabarty, X. Gu, “Adaptive Diagnosis Using Decision Trees (DT),” 
Knowledge-Driven Board-Level Functional Fault Diagnosis, pp. 61–78 (2016). 

[104] A. Zou, R. Deng, Q. Mei, L. Zou, “Fault Diagnosis of a Transformer Based on Polynomial Neural 
Networks,” Cluster Computing, 1–9 (2017). 

[105] L. Wen, X. Li, L. Gao, Y.  Zhang, “A New Convolutional Neural Network-Based Data-Driven Fault 
Diagnosis Method,” IEEE Transactions on Industrial Electronics, (2018). 
[https://dx.doi.org/10.1109/TIE.2017.2774777]. 

[106] H. Hu, B. Tang, X. Gong, W. Wei, H. Wang, “Intelligent Fault Diagnosis of The High-Speed Train 
with Big Data Based on Deep Neural Networks,” IEEE Transactions on Industrial Informatics, 13, 
no. 4, pp. 2106–2116 (2017). 

[107] J. Tian, M. Azarian, M. Pecht, G. Niu, C. Li, “An Ensemble Learning-Based Fault Diagnosis Method 
for Rotating Machinery,” Proceedings of the 2017 Prognostics and System Health Management 
Conference, Harbin, China (2017). 



 

 64 

[108] R. Xiong, Y. Zhang, H. He, X. Zhou, M. Pecht, “A Double-Scale, Particle-Filtering, Energy State 
Prediction Algorithm for Lithium-Ion Batteries,” IEEE Transitions on Industrial Electronics, 65, no. 
2, pp. 1526–1538 (2018). 

[109] M. -H. Chang, M. Kang, M. Pecht, “Prognostics-Based LED Qualification Using Similarity-Based 
Statistical Measure with RVM Regression Model,” IEEE Transactions on Industrial Electronics, 64, 
no. 7, pp. 5667–5677 (2017). 

[110] N. Montgomery, D. Banjevic, A. K. S. Jardine, “Minor Maintenance Actions and Their Impact on 
Diagnostic and Prognostic CBM Models,” Journal of Intelligent Manufacturing, 23, no. 2, pp. 303-
311 (2012). 

[111] M. Pecht, T. Shibutani, M. Kang, M. Hodkiewicz, E. Cripps, “A Fusion Prognostics-Based 
Qualification Test Methodology for Microelectronic Products,” Microelectronics Reliability, 63, pp. 
320–324 (2016). 

[112] S. Kumar, N. Vichare, E.  Dolev, M. Pecht, “A Health Indicator Method for Degradation Detection 
of Electronic Products,” Microelectronics Reliability, 52, pp. 439–445 (2012). 

[113] S. Cheng, M. Pecht, “Using Cross-Validation for Model Parameter Selection of Sequential 
Probability Ratio Test,” Expert Systems with Applications, 39, pp. 8467–8473 (2012). 

[114] J. Tian, M. H. Azarian, M. Pecht, “Anomaly Detection Using Self-Organizing Maps-Based K-
Nearest Neighbor Algorithm,” Proceedings of the European Conference of the Prognostics and 
Health Management Society, (2014). 

[115] Q. Jiang, X. Yan, W. Zhao, “Fault Detection and Diagnosis In Chemical Processes Using Sensitive 
Principal Component Analysis,” Industrial & Engineering Chemistry Research, 52 (4), pp. 1635–
1644 (2013). 

[116] X. Jin, W. M. Ma, L. L. Cheng, M. Pecht, “Health Monitoring of Cooling Fans Based On 
Mahalanobis Distance With Mrmr Feature Selection,” IEEE Transactions on Instrumentation and 
Measurement, 61, no. 8, pp. 2222–2229 (2012). 

[117] J. Qu, “Support-Vector-Machine-Based Diagnostics and Prognostics for Rotating Systems,” Ph.D. 
dissertation, University of Alberta, Canada (2013). 

[118] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,” Journal of Machine 
Learning Research, 1, pp. 211–244 (2001). 

[119] W. Wang, and M. Carr, “A Stochastic Filtering Based Data Driven Approach for Residual Life 
Prediction and Condition Based Maintenance Decision Making Support,” Proceedings of 2010 
Prognostics and Health Management Conference, Macao, China (2010). 

[120] P. Baraldi, F. Mangili, E. Zio, “A Kalman Filter-Based Ensemble Approach with Application to 
Turbine Creep Prognostics,” IEEE Transactions on Reliability, 61, no. 4, pp. 966–977 (2012). 

[121] J. Fan, K.-C. Yung, M. Pecht, “Predicting Long-Term Lumen Maintenance Life of LED Light 
Sources Using a Particle Filter-Based Prognostic Approach,” Expert Systems with Applications, 42, 
no. 5, pp. 2411–2420 (2015).  

[122] S. Cheng, M. Pecht, “A Fusion Prognostics Method for Remaining Useful Life Prediction of 
Electronic Products,” Proceedings of IEEE International Conference on Automation Science and 
Engineering, Bangalore, India (2009). 

[123] J. Xu, L. Xu, “Health Management Based on Fusion Prognostics for Avionics Systems,” Journal of 
Systems Engineering and Electronics, 22, pp. 428–436 (2011). 



 

 65 

[124] N. Patil, D. Das, C. Yin, C. Bailey, M. Pecht, “A Fusion Approach to IGBT Power Module 
Prognostics,” Proceedings of the 10th International Conference on Thermal, Mechanical and Multi-
Physics Simulation and Experiments in Microelectronics and Microsystems, Delft, Netherlands, 
(2009). 

[125] M. Chookah, M. Nuhi, M. Modarres, “A probabilistic physics-of-failure model for prognostic health 
management of structures subject to pitting and corrosion-fatigue,” Reliability Engineering & System 
Safety, 96, pp. 1601–1610 (2011). 

[126] M. Pecht, R. Radojcic, G. Rao, Guidebook for Manageing Silicon Chip Reliability, CRC Press, Boca 
Raton, FL, USA (1999). 

[127] M. E. Porter, J. E. Heppelmann, “How smart, connected products are transforming companies,” 
Harvard Business Review, 93, pp. 97–114 (2015). 

[128] R. Drath, A. Horch, “Industrie 4.0: Hit or hype?”, IEEE Industrial Electronics Magazine, 8, no. 2, 
pp. 56–58 (2014). 

[129] J. Bruner, The Machines are Talking, O’Reilly Media, Sebastopol, CA, USA (2013). 

[130] F. Farber, N. May, W. Lehner, P. Grobe, I. Muller, H. Rauhe, J. Dees, “The SAP HANA Database – 
an Architecture Overview,” IEEE Data Engineering Bulletin, 35, no. 1, pp. 28–33 (2012). 

[131] Energy Agency, Key World Energy Statistics (2015). 

[132] D. S. Markovic, D. Zivkovic, I. Branovic, R. Popovic, D. Cvetkovic, “Smart Power Grid and Cloud 
Computing,” Renewable and Sustainable Energy Reviews, 24, pp. 566–577 (2013). 

[133] W. Zhixin, J. Chuanwen, A. Qian, W. Chengmin, “The Key Technology of Offshore Wind Farm and 
Its New Development in China,” Renewable and Sustainable Energy Reviews, 13, no. 1, pp. 216–
222 (2009). 

[134] G. Cros, “Industry Trends Maintenance Cost,” Proceedings of the IATA 3rd Airline Cost Conference, 
Geneva, Switzerland (2015). 

[135] Z. Williams, “Benefits of IVHM: An Analytical Approach,” Proceedings of 2006 IEEE Aerospace 
Conference, Big Sky, MT, USA (2006). 

[136] P. Smith, D. Campbell, “Practical Implementation of BICs for Safety-Critical Applications,” 
Proceedings of 2000 IEEE International Workshop on Defect Based Testing, Montreal, Quebec, 
Canada (2000). 

[137] I. Pecuh, M. Margala, V. Stopjakova, “1.5 volts Iddq/Iddt Current Monitor,” Proceedings of 1999 
IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alberta, Canada 
(1999). 

[138]  B. Xue, D. Walker, “Built-In Current Sensor for IDDQ Test,” Proceedings of 2004 IEEE 
International Workshop on Current and Defect Based Testing, Napa Valley, CA, USA (2004). 

[139] R. Wright, L. Kirkland, “Nano-Scaled Electrical Sensor Devices for Integrated Circuit Diagnostics,” 
Proceedings of 2003 IEEE Aerospace Conference, Big Sky, MT, USA (2003). 

[140] R. Wright, M. Zgol, D. Adebimpe, L. Kirkland, “Functional Circuit Board Testing Using Nanoscale 
Sensors,” Proceedings of IEEE Systems Readiness Technology Conference, Anaheim, CA, USA 
(2003). 

[141] R. Wright, M. Zgol, S. Keeton, L. Kirkland, “Nanotechnology-Based Molecular Test Equipment 
(MTE),” IEEE Aerospace and Electronic Systems Magazine, 16, no. 6, pp. 15–19 (2001). 



 

 66 

[142] M Kanniche, M. Mamat-Ibrahim, “Wavelet Based Fuzzy Algorithm for Condition Monitoring Of 
Voltage Source Inverters,” Electronic Letters, 40, no. 4, pp. 1–2 (2004). 

[143] G. Hughes, J. Murray, K. Kreutz-Delgado, C. Elkan, “Improved Disk-Drive Failure Warnings,” IEEE 
Transactions on Reliability, 51, no. 3, pp. 350–357 (2002). 

[144] K. Whisnant, K. Gross, N. Lingurovska, “Proactive Fault Monitoring in Enterprise Servers,” 
Proceedings of the 2005 IEEE International Multiconference in Computer Science & Computer 
Engineering, Las Vegas, NV, USA (2005). 

[145] K. Mishra, K. Gross, “Dynamic Stimulation Tool for Improved Performance Modeling and Resource 
Provisioning of Enterprise Servers,” Proceedings of the 14th IEEE International Symposium on 
Software Reliability Engineering, Denver, CO, USA (2003). 

[146] K. Cassiday, K. Gross, A. Malekpour, “Advanced Pattern Recognition for Detection of Complex 
Software Ageing Phenomena in Online Transaction Processing Servers,” Proceedings of the 
International Performance and Dependability Symposium, Washington, D.C., USA (2002). 

[147] K. Vaidyanathan, K. Gross, “MSET Performance Optimization for Detection of Software Ageing,” 
Proceedings of the 14th IEEE International Symposium on Software Reliability Engineering, Denver, 
CO, USA (2003). 

[148] D. W. Brown, P. W. Kalgren, C. S. Byington, M. J. Roemer, “Electronic Prognostics – A Case Study 
Using Global Positioning System (GPS),” Microelectronics Reliability, 47, no. 12, pp. 1874–1881 
(2005). 

[149] M. H. Azarian, D. Kwon, M. Pecht, “Use of The Skin Effect For Detection Of Interconnect 
Degradation,” in IMAPS 42nd International Symposium on Microelectronics (2009). 

[150] N. J. Jameson, M. H. Azarian, M. Pecht, “Impedance-Based Health Monitoring of Electromagnetic 
Coil Insulation Subjected to Corrosive Deterioration,” In Proceedings of the Annual Conference of 
the Prognostics and Health Management Society 2016 (2016). 

[151] A. Ramos, J. Ferreira, J. Barcelo, “Model-Based Systems Engineering: An Emerging Approach for 
Modern Systems,” IEEE Transactions on Systems Man and Cybernetics, 42, no. 1, pp. 101-111 
(2011). 

[152] A. B. Rauzy, C. Haskins, “Foundations for Model‐Based Systems Engineering and Model‐Based 
Safety Assessment,” System Engineering, 22, no. 2, pp.146-155 (2019). 

[153] M. Hause, “The SysML Modelling Language,” Fifteenth European Systems Engineering Conference 
(2006). [http://www.omgsysml.org/The_SysML_Modelling_Language.pdf]. 

[154] C. L. Smith, V. N. Shah, T. Kao, G. Apostolakis, “Incorporating Ageing Effects into Probabilistic 
Risk Assessment - A Feasibility Study Utilizing Reliability Physics Models,” U.S. Nuclear 
Regulatory Commission NUREG/CR-5632 (2001).  

[155] T. Dumargue, J.-R. Pougeon, and J.-R. Massé, “An Approach to Designing PHM Systems with 
Systems Engineering,” in Proceedings of Third European Conference of the Prognostics and Health 
Management Society 2016 (2016). 

[156] E. Borgonovo, G. E. Apostolakis, “A New Importance Measure for Risk-Informed Decision 
Making,” Reliability Engineering & System Safety, 72, no. 2, pp. 193-212 (2001). 

[157] Electric Power Research Institute (EPRI), “Introduction to Simplified Generation Risk Assessment 
Modeling,” EPRI Report 1007386 Palo Alto, CA (2004). 

[158] C. L. Smith, S.T. Wood, D. O’Neal, “Systems Analysis Programs for Hands-On Integrated Reliability 
Evaluations (SAPHIRE) Version 8,” NUREG/CR-7039, vol. 3 (2011). 



 

 67 

[159] R. C. Kryter, H. D. Haynes, Condition monitoring of machinery using motor current signature 
analysis,” No. CONF-890555-3, Oak Ridge National Laboratory (1989). 

[160] W.T. Thomson, M. Fenger, “Current Signature Analysis to Detect Induction Motor Faults,” IEEE 
Industry Applications Magazine, 7, no. 4, pp. 26–34 (2001). 

[161] W. T. Thomson, R. J. Gilmore, “Motor Current Signature Analysis To Detect Faults in Induction 
Motor Drives-Fundamentals, Data Interpretation, and Industrial Case Histories,” in Proceedings of 
the 32nd turbomachinery Symposium, Texas A&M University Turbomachinery Laboratories (2003). 

[162] K. M. Siddiqui, K. Sahay, and V. K. Giri, “Health Monitoring and Fault Diagnosis in Induction Motor 
- A Review,” International Journal of Advanced Research in Electrical, Electronics and 
Instrumentation Engineering, 3, no. 1, pp. 6549-6565 (2014). 

[163] D. Z. Li, W. Wang, F. Ismail, “A Spectrum Synch Technique for Induction Motor Health Condition 
Monitoring,” IEEE Transactions on Energy Conversion, 30, no. 4, pp. 1348-1355 (2015). 

[164] D. Z. Li, W. Wang, F. Ismail, W. Wang, “An Enhanced Bispectrum Technique with Auxiliary 
Frequency Injection for Induction Motor Health Condition Monitoring,” IEEE Transactions on 
Instrumentation and Measurement, 64, no. 10, pp. 2679-2687 (2015). 

[165] C.-Y., Eduardo, et al., “Real-Time Condition Monitoring on VSD-Fed Induction Motors Through 
Statistical Analysis and Synchronous Speed Observation,” International Transactions on Electrical 
Energy Systems, 25, no. 8, pp. 1657-1672 (2015). 

[166] J. P. Peck, J. Burrows, “On-Line Condition Monitoring of Rotating Equipment Using Neural 
Networks,” ISA Transactions, 33, no. 2, pp. 159-164 (1994). 

[167] D. K. Martin, J. VanDyke, “Integrating Vibration, Motor Current, And Wear Particle Analysis with 
Machine Operating State for On-Line Machinery Prognostics/Diagnostics Systems (MPROS),” 
Proceedings of the 1997 ASME International Mechanical Engineering Congress and Exposition, 
Dallas, Texas, vol. 7, (1997). 

[168] Y. Zhongming, W. Bin, “A Review on Induction Motor Online Fault Diagnosis,” in Proceedings 
IPEMC 2000, Third International Power Electronics and Motion Control Conference (IEEE Cat. 
No. 00EX435), vol. 3, IEEE (2000). 

[169] R. Yan, R. X. Gao, “Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring,” 
Mechanical Systems and Signal Processing, 21, no. 2, pp. 824-839 (2007). 

[170] H. Zhao, et al., “A New Feature Extraction Method Based on EEMD and Multi-Scale Fuzzy Entropy 
for Motor Bearing,” Entropy, 19, no. 1 (2016). 

[171] D. Casada, Using the Motor to Monitor Pump Conditions, NUREG/CP-0152; CONF-9607103-. 
American Society of Mechanical Engineers, New York, NY (1996). 

[172] G. D. Neill, et al., “Detection of Incipient Cavitation in Pumps Using Acoustic Emission,” 
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical 
Engineering, 211, no. 4, pp. 267–277 (1997). 

[173] J. Yan, et al., “Nondestructive Detection of Valves Using Acoustic Emission Technique,” Advances 
in Materials Science and Engineering 2015 (2015). 

[174] L. Dong, Y. Zhao, C. Dai, “Detection of Inception Cavitation In Centrifugal Pump By Fluid-Borne 
Noise Diagnostic,” Shock and Vibration 2019 (2019). 

[175] G. Geiger, “Monitoring of an Electrical Driven Pump Using Continuous-Time Parameter Estimation 
Methods,” IFAC Proceedings Volumes, 15, no. 4, pp. 603-608 (1982). 



 

 68 

[176] I. S. Koo, W. W. Kim, “The Development of Reactor Coolant Pump Vibration Monitoring and a 
Diagnostic System in the Nuclear Power Plant,” ISA transactions, 39, no. 3, pp. 309-316 (2000). 

[177] E. Egusquiza, “Condition Monitoring of Pump-Turbines. New Challenges,” Measurement, 67, pp. 
151-163 (2015). 

[178] S. Mukhopadhyay, S. Chaudhuri, “A Feature-Based Approach to Monitor Motor-Operated Valves 
Used in Nuclear Power Plants,” IEEE Transactions on Nuclear Science, 42, no. 6, pp. 2209-
2220(1995). 

[179] H. D. Haynes, “Aging And Service Wear of Electric Motor-Operated Valves Used in Engineered 
Safety-Feature Systems of Nuclear Power Plants”, No. NUREG/CR-4234, vol. 2. Nuclear Regulatory 
Commission (1989). 

[180] P. Granjon, “Condition Monitoring of Motor-Operated Valves in Nuclear Power Plants,” The Eighth 
International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 
CM/MFPT 2011 (2011). 

[181] S.-C. Kang, et al., “Motor Control Center (MCC) Based Technology Study for Safety-Related Motor 
Operated Valves,” Nuclear Engineering and Technology, 38, no. 2, pp. 155-162 (2006). 

[182] S. Kang, et al., “A Study on The Actuator Efficiency Behavior of Safety-Related Motor Operated 
Gate and Globe Valves,” Nuclear Engineering and Design, 239, 12, pp. 2705-2712 (2009). 

[183] A. R. Bhende, et al., “Detection of Incipient Failure in Nuclear Reactor Pressure Systems Using 
Acoustic Emission,” Jurnal Tribologi, 2, pp. 1-30 (2014). 

[184] F. Elasha, et al. “Application of Acoustic Emission in Diagnostic of Bearing Faults within a 
Helicopter Gearbox,” Procedia CIRP, 38, pp. 30–36 (2015). 

[185] C. J. Li, S. Y. Li, “Acoustic Emission Analysis for Bearing Condition Monitoring,” Wear, 185, no. 
1, pp. 67-74 (1995). 

[186] D. Mba, “Acoustic Emissions and Monitoring Bearing Health,” Tribology Transactions, 46, no. 3, 
pp. 447-451(2003). 

[187] D. F. Shi, F. Tsung, P. J. Unsworth, “Adaptive Time–Frequency Decomposition for Transient 
Vibration Monitoring of Rotating Machinery,” Mechanical Systems and Signal Processing, 18, no. 
1, pp. 127-141 (2004). 

[188] S. Seker, E. Ayaz, “Feature Extraction Related to Bearing Damage in Electric Motors by Wavelet 
Analysis,” Journal of the Franklin Institute, 340, no. 2, pp. 125-134 (2003). 

[189] A. K. Nandi, C. Liu, D. Wong, “Intelligent Vibration Signal Processing for Condition Monitoring,” 
Proceedings of the International Conference Surveillance, vol. 7 (2013). 

[190] R. Yan, R. X. Gao, “Machine Health Diagnosis Based on Approximate Entropy,” Proceedings of the 
21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510). 
vol. 3. IEEE (2004). 

[191] M. A. S. Jeronimo, et al., “Monitoring the Thermal Efficiency of Fouled Heat Exchangers: A 
Simplified Method,” Experimental Thermal and Fluid Science, 14, no. 4, pp. 455-463 (1997). 

[192] C. M. Astorga-Zaragoza, et al., “Observer-Based monitoring of Heat Exchangers,” ISA transactions, 
47, no. 1, pp. 15-24 (2008). 

[193] C. Ennaceur, et al., “Monitoring Crack Growth in Pressure Vessel Steels by the Acoustic Emission 
Technique and the Method of Potential Difference,” International Journal of Pressure Vessels and 
Piping, 83, no. 3, pp. 197-204 (2006). 



 

 69 

[194] M. Niffenegger, H. J. Leber, “Monitoring the Embrittlement of Reactor Pressure Vessel Steels by 
Using the Seebeck Coefficient,” Journal of Nuclear Materials, 389, no. 1, pp. 62-67 (2009). 

[195] V. Giurgiutiu, A. Zagrai, J. Bao, “Embedded Active Sensors for In-Situ Structural Health Monitoring 
of Thin-Wall Structures,” Journal of Pressure Vessel Technology, 124, no. 3, pp. 293-302 (2002). 

[196] J. Degrieck, W. Waele, P. Verleysen, “Monitoring of Fibre Reinforced Composites with Embedded 
Optical Fibre Bragg Sensors, with Application to Filament Wound Pressure Vessels,” NDT & E 
International, 34, no. 4, pp. 289-296 (2001). 

[197] X. F. Yao, et al., “Full-Field Deformation Measurement of Fiber Composite Pressure Vessel Using 
Digital Speckle Correlation Method,” Polymer Testing, 24, no. 2, pp. 245-251 (2005). 

[198] M. Kunzler, et al., “Use of Multidimensional Fiber Grating Strain Sensors for Damage Detection in 
Composite Pressure Vessels,” Smart Structures and Materials 2005: Smart Sensor Technology and 
Measurement Systems, vol. 5758, International Society for Optics and Photonics (2005). 

[199] C. B. Scruby, H. N. G. Wadley, “An assessment of acoustic emission for nuclear pressure vessel 
monitoring,” Progress in Nuclear Energy, 11, no. 3, pp. 275-297 (1983). 

[200] B. Trujillo, A. Zagrai, “Embedded and Conventional Ultrasonic Sensors for Monitoring Acoustic 
Emission During Thermal Fatigue,” Health Monitoring of Structural and Biological Systems 2016, 
vol. 9805, International Society for Optics and Photonics (2016). 

[201] P. Tscheliesnig, G. Lackner, A. Jagenbrein, “Corrosion detection by means of acoustic emission (AE) 
monitoring,” Proceedings of the 19th World Conference on Non-Destructive Testing (WCNDT 2016), 
Munich, Germany (2016). 

[202] L. B. Sipahi, M. R. Govindaraju, D. C. Jiles, “Monitoring Neutron Embrittlement in Nuclear Pressure 
Vessel Steels using Micromagnetic Barkhausen Emissions,” Journal of Applied Physics, 75, no. 10, 
pp. 6981-6983 (1994). 

[203] C. Li, et al., “Effects of neutron irradiation on magnetic properties of reactor pressure vessel steel,” 
Nuclear Engineering and Design, 342, pp. 128-132 (2019). 

[204] B. Fekete, P. Trampus, “Acoustic Barkhausen Effect Observed in Various Steels,” Materials Science 
Forum, 885, Trans Tech Publications (2017). 

[205] P Ramuhalli, et al., Experimental Design for Evaluating Selected Nondestructive Measurement 
Technologies-Advanced Reactor Technology Milestone: M3AT-16PN2301043, No. PNNL-25561 
Rev. 0, Pacific Northwest National Laboratory (PNNL), Richland, WA (2016). 

[206] F. Li, et al., “Propagation of Guided Waves in Pressure Vessel,” Wave Motion, 52, pp. 216-228 
(2015). 

[207] Y. Lugovtsova, J. Prager, “Structural Health Monitoring of Composite Pressure Vessels Using 
Guided Ultrasonic Waves,” Insight-Non-Destructive Testing and Condition Monitoring, 60, no. 3, 
pp. 139-144 (2018). 

[208] B. Trujillo, A. Zagrai, “Embedded and Conventional Ultrasonic Sensors for Monitoring Acoustic 
Emission During Thermal Fatigue,” Health Monitoring of Structural and Biological Systems 2016, 
vol. 9805, International Society for Optics and Photonics (2016). 

[209] J. M. Muggleton, et al., “A Theoretical Study of the Fundamental Torsional Wave in Buried Pipes 
for Pipeline Condition Assessment and Monitoring,” Journal of Sound and Vibration, 374, pp. 155-
171 (2016). 

[210] Z. Liu, Zheng, Y. Kleiner, “State-of-the-Art Review of Technologies for Pipe Structural Health 
Monitoring,” IEEE Sensors Journal, 12, no. 6, pp. 1987-1992 (2012). 



 

 70 

[211] A. Smith, N. Dixon, G. Fowmes, “Monitoring Buried Pipe Deformation Using Acoustic Emission: 
Quantification of Attenuation,” International Journal of Geotechnical Engineering, 11, no. 4, pp. 
418-430 (2017). 

[212] H. J. Heather-Smith, et al., “Monitoring Buried Infrastructure Deformation Using Acoustic 
Emissions,” International Journal of Geotechnical Engineering, 11, no. 4 (2017). 

[213] A. Smith, I. D. Moore, N. Dixon, “Acoustic Emission Sensing of Pipe-Soil Interaction: Development 
of an Early Warning System for Buried Pipe Deformation,” International Conference on Smart 
Infrastructure and Construction 2019 (2019). 

[214] A. Smith, N. Dixon, G. Fowmes, “Monitoring buried pipe deformation using acoustic emission: 
quantification of attenuation,” International Journal of Geotechnical Engineering, 11, no. 4, pp. 418-
430 (2017). 

[215] Y.-J. Shin, et al,, “Application of Time-Frequency Domain Reflectometry for Detection and 
Localization of a Fault on a Coaxial Cable,” IEEE Transactions on Instrumentation and 
Measurement, 54, no. 6, pp. 2493-2500 (2005). 

[216] P. Smith, C. Furse, J. Gunther, “Analysis of spread spectrum time domain reflectometry for wire fault 
location,” IEEE sensors journal, 5, no. 6, pp. 1469-1478 (2005). 

[217] R. Papazyan, R. Eriksson, “Calibration for time domain propagation constant measurements on 
power cables,” IEEE Transactions on Instrumentation and Measurement, 52, no. 2, pp. 415-418 
(2003). 

[218] M. K. Smail, et al., “Detection of Defects in Wiring Networks Using Time Domain Reflectometry,” 
IEEE Transactions on Magnetics, 46, no. 8, pp. 2998-3001 (2010). 

[219] C. Furse, et al., “Frequency-Domain Reflectometry for On-Board Testing of Aging Aircraft Wiring,” 
IEEE Transactions on Electromagnetic Compatibility, 45, no. 2, pp. 306-315 (2003). 

[220] Y. J. Chung, C. Furse, J. Pruitt, “Application of Phase Detection Frequency Domain Reflectometry 
for Locating Faults in an F-18 Flight Control Harness,” IEEE Transactions on Electromagnetic 
Compatibility, 47, no. 2, pp. 327-334 (2005). 

[221] E. Song, et al., “Detection and Location of Multiple Wiring Faults Via Time–Frequency-Domain 
Reflectometry,” IEEE Transactions on Electromagnetic Compatibility, 51, no. 1, pp. 131-138 (2009). 

[222] J. Wang, et al., “Application of Joint Time–Frequency Domain Reflectometry for Electric Power 
Cable Diagnostics,” IET Signal Processing, 4, no. 4, pp. 395-405 (2010). 

[223] J. Wang, et al., “Health Monitoring of Power Cable Via Joint Time-Frequency Domain 
Reflectometry,” IEEE transactions on Instrumentation and Measurement, 60, no. 3, pp. 1047-1053 
(2010). 

[224] E. Song, et al., “Detection and Location of Multiple Wiring Faults Via Time–Frequency-Domain 
Reflectometry,” IEEE Transactions on Electromagnetic Compatibility, 51, no. 1, pp. 131-138 (2009). 

[225] P. F. Fantoni, “Condition Monitoring of Electrical Cables Using Line Resonance Analysis (LIRA),” 
17th International Conference on Nuclear Engineering, American Society of Mechanical Engineers 
Digital Collection (2010). 

[226] M. Ekelund, P. F. Fantoni, U. W. Gedde, “Thermal Ageing Assessment Of EPDM-Chlorosulfonated 
Polyethylene Insulated Cables Using Line Resonance Analysis (LIRA),” Polymer testing, 30, no. 1, 
pp. 86-93 (2011). 



 

 71 

[227] G. J. Toman, P. F. Fantoni, “Cable Aging Assessment and Condition Monitoring Using Line 
Resonance Analysis (LIRA),” 16th International Conference on Nuclear Engineering, American 
Society of Mechanical Engineers Digital Collection (2009). 

[228] P. F. Fantoni, Wire System Aging Assessment and Condition Monitoring: The Line Resonance 
Analysis Method (LIRA), no. HWR-788, Institutt for Energiteknikk (2005). 

[229] K. T. Gillen, R. A. Assink, R. Bernstein, “Condition monitoring approaches applied to a 
polychloroprene cable jacketing material,” Polymer Degradation and Stability, 84, no. 3, pp. 419-
431 (2004). 

[230] K. Anandakumaran, “Aging and Condition Monitoring Studies of Composite Insulation Cables Used 
in Nuclear Power Plants,” IEEE Transactions on Dielectrics and Electrical Insulation, 14, no. 1, pp. 
227-237 (2007). 

[231] Y. T. Hsu, et al., “Correlation Between Mechanical and Electrical Properties for Assessing the 
Degradation of Ethylene Propylene Rubber Cables Used in Nuclear Power Plants,” Polymer 
Degradation and Stability, 92, no. 7, pp. 1297-1303 (2007). 

[232] J.-S. Kim, “Evaluation of Cable Aging Degradation Based on Plant Operating Condition,” Journal 
of Nuclear Science and Technology, 42, no. 8, pp. 745-753 (2005). 

[233] D. McCarter, et al., “Nuclear power plant instrumentation and control cable prognostics using 
indenter modulus measurements,” International Journal of Prognostics and Health Management, 16, 
no. 5, pp. 1-10 (2014). 

[234] V.A. Sotiris, W.T. Peter, and M. Pecht, “Anomaly detection through a Bayesian support vector 
machine.” IEEE Transactions on Reliability, 59, no. 2, pp.277-286 (2010). 

[235] N. Gang, L. Xiong, X. Qin, M. Pecht, “Fault Detection Isolation and Diagnosis of Multi-Axle Speed 
Sensors for High-Speed Trains,” Mechanical Systems and Signal Processing, 131, pp. 183-198 
(2019). 

[236] M. Zhao, M. Kang, B. Tang, M. Pecht, “Multiple Wavelet Coefficients Fusion in Deep Residual 
Networks for Fault Diagnosis,” IEEE Transactions on Industrial Electronics, 66, no. 6, pp. 4696-
4706 (2018). 

[237] Y. Zhang, X. Rui, H. Hongwen, M. Pecht, “Long Short-Term Memory Recurrent Neural Network 
for Remaining Useful Life Prediction of Lithium-Ion Batteries,” IEEE Transactions on Vehicular 
Technology, 67, no. 7, pp. 5695-5705 (2018). 

[238] J. Liu, J. Liu, D. Yu, M. Kang, W. Yan, Z. Wang, M. Pecht, “Fault Detection for Gas Turbine Hot 
Components Based on a Convolutional Neural Network,” Energies, 11, no. 8, pp. 2149 (2018). 

[239] W. Yu, K. L. Tsui, W.M. Eden, M. Pecht, “A fusion approach for anomaly detection in hard disk 
drives,” in Proceedings of the IEEE 2012 Prognostics and System Health Management Conference 
(PHM-2012 Beijing), pp. 1-5. IEEE (2012). 

[240] D. Enkhjargal, C. Chen, and M. Pecht, “A Bayesian Hidden Markov Model-based approach for 
anomaly detection in electronic systems,” in 2013 IEEE Aerospace Conference, pp. 1-10. IEEE, 
(2013). 

[241] X. Jin, M. Zhao, T. Chow, and M. Pecht, “Motor Bearing Fault Diagnosis Using Trace Ratio Linear 
Discriminant Analysis,” IEEE Transactions on Industrial Electronics, 61, no. 5, pp. 2441–2451 
(2014). 

[242] S. Choi, E. Pazouki, J. Baek, and H. R. Bahrami, “Iterative Condition Monitoring and Fault Diagnosis 
Scheme of Electric Motor for Harsh Industrial Application,” IEEE Transactions on Industrial 
Electronics, 62, no. 3, pp. 1760–1769 (2015). 



 

 72 

[243] H. Oh, T. Shibutani, and M. Pecht, “Precursor monitoring approach for reliability assessment of 
cooling fans,” Journal of Intelligent Manufacturing, 23, no. 2, pp. 173–178 (2012). 

[244] M. Kang, J. Kim, In-Kyu Jeong, Jong-Myon Kim, and M. Pecht, “A Massively Parallel Approach to 
Real-Time Bearing Fault Detection Using Sub-Band Analysis on an FPGA-Based Multicore 
System,” IEEE Transactions on Industrial Electronics, 63, no. 10, pp. 6325-6335 (2016). 

[245] W. He, Q. Miao, M. Azarian, and M. Pecht, “Health monitoring of cooling fan bearings based on 
wavelet filter,” Mechanical Systems and Signal Processing, 64, pp. 149-161 (2015). 

[246] N. Lee, M. Azarian, M. Pecht, J. Kim, and J. Im, “A Comparative Study of Deep Learning-Based 
Diagnostics for Automotive Safety Components Using a Raspberry Pi,” in 2019 IEEE International 
Conference on Prognostics and Health Management (ICPHM), pp. 1-7. IEEE (2019). 

[247] A. Vasan, B. Long, and M. Pecht, “Diagnostics and prognostics method for analog electronic 
circuits,” IEEE Transactions on Industrial Electronics, 60, no. 11, pp. 5277-5291 (2012). 

[248] V. Khemani, M. Azarian, and M. Pecht, “Electronic Circuit Diagnosis with No Data,” in 2019 IEEE 
International Conference on Prognostics and Health Management (ICPHM), pp. 1-7. IEEE (2019). 

 

 
  



 

 73 

Appendix A 
 

CHARACTERIZATION OF PILOT SYSTEMS 

 
This appendix provides a complete characterization (see Table 12) of the EHC, RCIC and HPCI 

systems from a risk-informed perspective.  
 

Table 12. Characterization of EHC, RCIC and HPCI systems. 

System 
Characterization EHC System RCIC and HPCI Systems 

Key functions 

Provide normal reactor pressure 
control by controlling steam flow 
consistent with reactor power, 
Control reactor pressure during 
startup, heatup, and cooldown 
evolutions, 
Control the speed and electrical load 
on the turbine generator, and 
Provide protection for the main 
turbine, main generator and main 
condenser. 

The major functions include: 
Reactor vessel coolant inventory 
control, 
Reactor vessel pressure control. 
 
Additional functions may be specified 
but they are generally of lower safety 
importance and typically not modeled 
in the PRA. 

   

Key Risk-Informed 
Applications 

  

50.65 Maintenance 
Rule 

SSCs is within the rule scope because 
of potential to scram reactor or cause 
an engineered safety feature (ESF) 
actuation 
 

Typically, SSCs are within scope due 
to being classified as safety related 
and also based on several risk 
importance criteria for RCIC and 
HPCI 

 

50.69 – NEI 00-04 
SSC 
Characterization & 
Treatment 

In general, SSCs not categorized 
 

The SSCs in these systems may be 
chosen for characterization and 
treatment 

 

TSTF-425, NEI 04-
10, SFCP 

TSV and TCV testing frequency may 
be within scope but in many cases 
there are limitations on frequency 
adjustment because of concerns with 
main turbine missile generation 
analysis 

Various surveillances have been 
extended (e.g., HPCI/RCIC Low 
Steam Supply Pressure Test, 
HPCI/RCIC Fill & Vent) 
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System 
Characterization EHC System RCIC and HPCI Systems 

TSTF-505, NEI 06-
09, RMTS 

EHC may be indirectly in RMTS (i.e., 
risk-informed completion times) 
because the main turbine bypass 
valves (BPVs) typically are in scope as 
well as the closure of the TSVs and 
TCVs (which provide reactor 
protection system (RPS) input) 

 

Typically, RCIC and HPCI are within 
scope of RMTS program 

 

RG 1.178 Inservice 
Inspection of Piping 

Generally, not in-scope 
 

Typically, RCIC and HPCI are within 
scope of the RI-ISI program 

 

   

Potential Impacts on 
Generation 

  

Direct loss of 
generation due to 
equipment reliability 
and availability 
issues 

Performance of the EHC directly 
impacts plant thermal efficiency and 
electrical generation. System failure 
can directly cause a turbine trip and 
subsequent reactor scram.  

RCIC and HPCI are standby only and 
their performance does not directly 
affect electrical power generation. 

Indirect impacts 
(e.g., Tech Specs 
limiting condition 
for operation) 

Generally, the steam cycle aspects of 
the turbine typically are not within 
Technical Specifications (TS). 
However, the BPVs are within TS as 
well as inputs to the RPS including: 

TSV Closure, Trip Oil Pressure – Low 
Function 
TCV Fast Closure Trip Oil Pressure – 
Low Function 
when thermal power is greater than a 
specified percentage. 

RCIC and HPCI are subject to 
Technical Specifications. The allowed 
outage times (AOTs) are plant-
specific with limits on the time that 
these systems may be inoperable 
before action up to and including 
plant shutdown is necessitated. 

   

Potential Impacts of 
Off-normal 
Transients and 
Accidents 
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System 
Characterization EHC System RCIC and HPCI Systems 

With no physical 
damage to 
equipment 

The vast majority of off-normal 
transients (e.g., turbine trip/reactor 
trip) involve no major damage to 
equipment necessitating more than a 
few days of assessment or repair. 

The vast majority of RCIC and HPCI 
performance issues can be readily 
addressed (within the allowed outage 
times prescribed in the plant 
Technical Specifications) and do not 
require long repair times or large 
capital expenditures. 

With physical 
damage to 
equipment 

Incidents involving turbine overspeed 
precursors or actual events can result 
in root cause analysis and in some 
cases extensive repair resulting in 
weeks of outage. In a worst-case 
scenario, the turbo-generator could be 
catastrophically damaged potentially 
resulting in several months of lost 
generation and extensive 
repair/replacement costs. 

Hazards such as internal flooding of 
the RCIC and HPCI compartments or 
fire in those compartments can have 
major impacts necessitating 
significant repair and in extreme cases 
replacement of key components. 

   

Potential Regulatory 
Impacts 

  

MD 8.3 Incident 
Investigation 

Incidents involving turbine overspeed 
precursors or actual events could result 
in NRC investigation such as special 
inspection (or greater) depending on 
the risk significance of the event.  

Risk-significant failures of RCIC or 
HPCI could prompt NRC 
investigation. The NRC will typically 
review the sequence of events, and the 
licensee’s root cause analysis, 
determine the probable causes, and 
assess the corrective actions to 
address the RCIC/HPCI inoperability. 

Significance 
Determination 
Process (SDP) for 
inspection finding 

The risk significance of a performance 
deficiency involving EHC-related off-
normal transients or accidents with 
failures of mitigating equipment is 
evaluated and used to establish 
whether and to what extent NRC 
applies additional inspections. 

The risk significance of a 
performance deficiency involving 
RCIC or HPCI is evaluated and used 
to establish whether and to what 
extent NRC applies additional 
inspections. 

Reactor Oversight 
Process performance 
indicators (e.g., 
MSPI) 

Initiating events such as unplanned 
scrams (per 7000 critical hours) or 
unplanned scrams with complications 
will impact performance indicators 
(initiating events). However, EHC 
performance is not assessed by the 
MSPI. 

The risk impacts of RCIC or HPCI 
reliability and availability departures 
from established baselines are 
assessed in the MSPI. RCIC/HPCI 
failures may also factor into the safety 
system functional failure (SSFF) 
performance indicator. 
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Appendix B 
 

SUMMARY OF RI APPLICATIONS  
 

Table 13 summarizes the most relevant RI applications from a decision-making perspective (e.g., cost 
vs. savings) while Table 14 links specific SSC parameters to RI applications. 

 
Table 13. RI applications impact on plant decisions.  

RI 
application Complexity Implementation PRA 

input 
Cost 

(upfront) 
Cost 

(subsequent) Roadblocks Savings 
(hard/soft $) 

RMTS, 
4(b), RICT H Moderate H H L 

PRA quality- CC 
II with closure of 
peer review 
findings; 
Regulatory 
uncertainty, 

Hard: Allows 
maintenance at 
power thus 
shortening 
refueling outage; 
avoid forced 
shutdown 

SFCP, 5(b) L Easy M M L 

Some PRA quality 
issues; also, 
heavily dependent 
on Engineering 
Department staff 
availability and 
participation 

Hard: Reduced 
testing of 
equipment and 
costs, avoidance of 
power reduction 
and/or reduced 
refuel outage 
duration. Reduced 
worker exposure. 
Soft: Reduction of 
high-risk 
evolutions leading 
to reactor scram. 

50.69 categ. = H 
treat. = M Hard M M H 

PRA quality- CC 
II with closure of 
peer review 
findings; also, 
seismic issues. 

Hard: Reduced 
procurement costs, 
as well as reduced 
testing and 
inspection 

RI-ISI M Moderate M L L 

None. Has been 
implemented 
across nearly the 
entire U.S. fleet 

Hard: Direct 
savings in terms of 
reduced 
inspections and 
reduced worker 
radiation exposure 
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Table 14. Links between RI applications and SSC parameters. 

RI application Affected SSC parameters 

RMTS In-scope SSCs, specific Technical 
Specifications LCOs affected 

SFCP 

Specific Technical Specifications 
Surveillance Requirements affected and 
associated frequency change, impact on 
time-related failure probability 

10CFR50.69 Replacement cost savings, maintenance and 
testing cost savings, new reliability data 

RI-ISI In-scope ASME piping Classes and 
segments/elements, associated risk metrics  
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Appendix C 
 

MAPPING OF NPP EVENTS TO PLANT IMPACT 
STATES 

 
Table 15 provides a summary of events which may occur in a NPP and their relative cost impact binned 

in ranges listed in Table 16. 
Table 15. NPP event vs. cost impact. 

Event 
Nominal 
Outage 

Duration 

Median 
Impact 

 Uncertainty 
Range Comment 

Minor equipment issue None C0 C0-C1 Plant-specific data 

Minor equipment repair None C1 C0-C2 Plant-specific data 

Equivalent of several hours of 
lost generation due to 
equipment problems  

2 hours C2 C1-C3 Plant-specific data 

Equivalent of one shift of lost 
generation due to equipment 
problems 

8 hours C3 C2-C4 Plant-specific data 

Equivalent of one day of lost 
generation due to equipment 
problems 

1 day C4 C3-C5 Plant-specific data 

Equivalent of several days of 
lost generation due to 
equipment problems 

3 days C5 C4-C6 Plant-specific data 

Uncomplicated reactor trip or 
manual shutdown 

Days to 1 
week C6 C5-C7 Industry event data 

Complicated reactor trip with 
minimal physical damage 1 week C6 C5-C7 

River Bend electrical fault 
causing loss of normal service 
water, circulating water, and 

feedwater (May 2012) 

Internal flooding  – spray event 
on key equipment  1 week C6 C5-C7 Judgment, pairwise comparison 

Fire to one key component 1 week C6 C5-C7 Waterford feedwater pump fire 
(June 1985) 

Inadvertent/stuck-open 
primary SRV (BWR only) 1 week C6 C5-C7 Judgment, pairwise comparison 
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Event 
Nominal 
Outage 

Duration 

Median 
Impact 

 Uncertainty 
Range Comment 

Loss of offsite power 1 to 2 
weeks C7 C6-C8 

Industry event data, potential for 
accident sequence precursor or 
special inspection per MD 8.3 
(e.g., Browns Ferry-3 LOOP, 

May 2012) 

ECCS suction from 
suppression pool (BWR) 2 weeks C7 C6-C8 Judgment, pairwise comparison 

Complicated reactor trip with 
some physical damage 

2 to 4 
weeks C7 C6-C8 Byron-2 (Jan 2012) electrical 

fault 

Tornado through site – some 
damage to non-safety SSCs 4 weeks C7 C6-C8 Browns Ferry, impact per unit 

(April 2011) 

General internal flooding - 
early termination 4 weeks C7 C6-C8 

Millstone-3 MSR drain line 
ruptures (Dec 1990), Oconee-2 

FW heater extraction line rupture 
(June 1982) 

Turbine building or switchgear 
room fire with some physical 
damage 

4 weeks C7 C6-C8 Quad Cities-2 (April 2014), 
Oconee-1 (Jan 1989) 

Fire in main transformer 10 weeks C8 C7-C9 STP-2 fire (Jan 2013) 

BWR emergency 
depressurization / blowdown 10 weeks C8 C7-C9 Judgment, pairwise comparison, 

Regulatory impact 

Complicated reactor trip with 
significant physical damage 10 weeks C8 C7-C9 Wolf Creek (Jan 2012) 

BWR containment venting 10 weeks C8 C7-C9 Judgment, pairwise comparison, 
Regulatory impact 

PWR feed & bleed – short 
duration  10 weeks C8 C7-C9 Judgment, pairwise comparison, 

Regulatory impact 

Extended Station Blackout 10 weeks C8 C7-C9 Judgment, pairwise comparison, 
Regulatory impact 

Major feed line/steam line 
break outside containment with 
significant physical damage 
(PWR) 

10 weeks C8 C7-C9 Judgment, pairwise comparison 

Major internal flooding – early 
termination 10 weeks C8 C7-C9 Judgment, pairwise comparison 

Seismic event at or beyond 
design basis 10 weeks C8 C7-C9 North Anna seismic inspection & 

analysis, per unit (Aug 2011) 
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Event 
Nominal 
Outage 

Duration 

Median 
Impact 

 Uncertainty 
Range Comment 

Switchgear room fire with 
some damage 10 weeks C8 C7-C9 Robinson (March 2010), 

Waterford (June 1995) 

Turbine building fire with 
moderate physical damage 10 weeks C8 C7-C9 Salem-2 (Nov 1991) 

Stuck-open primary 
PORV/SRV – short duration 
up to point of sump 
recirculation (PWR) 

10 weeks C8 C7-C9 Judgment, pairwise comparison 

Stuck-open primary 
PORV/SRV – long duration 
through sump recirculation 
(PWR) 

1 year C9 C8-C10 Judgment, pairwise comparison 

Switchgear room fire with 
significant damage 1 year C9 C8-C10 

Judgment, pairwise comparison 
(several significant fires in the 

former Soviet Union and Eastern 
Europe, see NUREG/CR-6738) 

Major external flooding 1 year C9 C8-C10 Ft. Calhoun (June 2011), 
judgment, pairwise comparison 

Major feed line/steam line 
break inside containment 
(BWR) 

1 year C9 C8-C10 Judgment, pairwise comparison 

Catastrophic turbine-generator 
fire 1 year C9 C8-C10 Maanshan-1 (July 1985) 

Reactor coolant pump seal 
LOCA 1 year C9 C8-C10 Judgment, pairwise comparison 

Small pipe-break LOCA 1 year C9 C8-C10 Judgment, pairwise comparison, 
Regulatory impact 

Steam generator tube rupture 1 year C9 C8-C10 Indian Point-2 (Feb 2000), 
Regulatory impact 

PWR feed & bleed – long 
duration through recirculation 1 year C9 C8-C10 Judgment, pairwise comparison, 

Regulatory impact 

ATWS at high power – BWR 
or PWR 1 year C9 C8-C10 

Judgment, pairwise comparison, 
Regulatory impact (1983 Salem 

events were at low power) 

Raw (fresh) water injection 
into steam generator(s) 1 year C9 C8-C10 Judgment, pairwise comparison 

General or major internal 
flooding – no termination 1 year C9 C8-C10 Judgment, pairwise comparison 
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Event 
Nominal 
Outage 

Duration 

Median 
Impact 

 Uncertainty 
Range Comment 

Major feed line/steam line 
break inside containment 
(PWR) 

1 year C9 C8-C10 Judgment, pairwise comparison 

BWR alternate RPV injection 
with alternate water source 
(raw but fresh water)  

1 year C9 C8-C10 Judgment, pairwise comparison 

Switchgear room or cable 
spreading room fire with 
catastrophic damage 

> 1 year C10 C9-C11 Browns Ferry (March 1975), see 
also NUREG/CR-6738 

Salt water injection into steam 
generator(s) > 1 year C10 C9-C11 Cost data, judgment, pairwise 

comparison 

Medium LOCA > 1 year C10 C9-C11 

Judgment, pairwise comparison, 
Regulatory impact, near-miss 
2002 Davis-Besse vessel head 

degradation 

Short-duration core uncovery 
and fuel temperature excursion > 1 year C10 C9-C11 Judgment, pairwise comparison, 

Regulatory impact 

BWR RPV injection after 
containment failure but no CD terminal C11 C10 up to 

loss of plant 
Judgment, pairwise comparison, 

Regulatory impact 

Large LOCA terminal C11 C10 up to 
loss of plant 

Judgment, pairwise comparison, 
Regulatory impact 

ISLOCA – major 
leakage/rupture outside 
containment but no CD 

terminal C11 C10 up to 
loss of plant 

Judgment, pairwise comparison, 
Regulatory impact 

Pressurized thermal shock of 
reactor pressure vessel terminal C11 C10 up to 

loss of plant 
Judgment, pairwise comparison, 

Regulatory impact 

Contained core damage event, 
minimal to small release terminal C12 C11 up to 

C13 

TMI-2 accident costs adjusted to 
current dollars (rounded), e.g., 
NUREG/BR-0058 and 0184 

Core damage event, large 
release terminal C13 C12 up to 3x 

C13 
Estimated Fukushima accident 

costs (rounded) 
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Table 16. Cost associated to each impact bin. 

Impact Bin Value 

C0 $0 

C1 $30,000 

C2 $100,000 

C3 $300,000 

C4 $1 million 

C5 $3 million 

C6 $10 million 

C7 $30 million 

C8 $100 million 

C9 $300 million 

C10 $600 million 

C11 $1 billion 

C12 $10 billion 

C13 $100 billion 

 



 

 83 

Appendix D 
 

STANDBY FAILURE MODEL 

 
Reliability is the likelihood that a SSC performs its required function(s) for a specified period of time 

[45]. Unreliability is the mathematical complement of reliability and is the likelihood that an SSC does not 
operate for its mission time when required.  

Availability represents the degree to which an SSC is operational and accessible when required for use, 
with no reference to a mission time [45]. Unavailability is the mathematical complement of availability. 
Unavailability modeling in plant PRAs generally is with regard to testing and maintenance of the SSC. 

The standby failure rate model is a simplified means of representing a state of failure of an SSC. In this 
model, the failure rate is given by λ which we take to be a constant failure rate with time, T, the time period 
during which the SSC is “ready” for actual operation [46]. For SSCs that are not continuously monitored 
but for which periodic surveillance is performed, the probability that the SSC will be in a failed state when 
demanded is given by the well-known expression: 

Q = ½ λT  + λTR           (D-1)  
where T is the time between STs or PM, and TR is the repair time. Here it is assumed that the SSC is fully 
renewed following the ST or PM (i.e., the SSC is in “a good as new” condition). Often it is also assumed 
that the repair time, typically hours or days, is small in comparison to the test interval, one month to 24 
months (typical BWR refueling cycle). For this situation of small repair time, Equation D-1 can be 
simplified by: 

Q ≈ ½ λT           (D-2) 
Plant-specific data on unavailability are collected at the component, train, or system level by a number of 
risk-informed programs and processes as described in greater detail in Section 5 of this report.  

If θ represents the mean time that an SSC is unavailable due to test and maintenance, then to Equation 
D-2 we can include the contribution of that unavailability to give the total as: 

Qt = ½ λT  + θ/T          (D-3) 

In theory, the test interval, T, can be optimized (from the perspective of SSC reliability and availability) by 
finding the value that minimizes Qt. Differentiating Equation D-3 with respect to T gives: 

dQt/dT = ½ λ  - θ/T2          (D-4) 
Setting Equation D-4 to zero and re-arranging to find the optimum test interval, Topt, gives the well-known 
expression: 

Topt = ¼2𝜃/𝜆           (D-5) 

For most mechanical equipment including pumps, valves, and emergency diesel generators, the actual 
test intervals specified in the plant TS is found to be not too far off from the optimum. There are exceptions, 
of course, for SSCs that cannot be tested during power operation or would result in unnecessary radiological 
exposure to workers. Additionally, too frequent testing can result in “wear-out” which has the effect of 
increasing the failure rate λ with time, thus negating the assumption of constant failure rate. 
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The reliability principles expressed by Equations D-3 and D-5 are illustrated in Figure 28 where we 
represent the x-axisby frequency of performing the PM or ST (i.e., 1/T, the reciprocal of the test period). 
 

 
Figure 28. Total probability that SSC is in a failed state Qt. 

 

A shortcoming of this standby model is that it simplifies the treatment of real-world failure mechanisms 
by aggregating all degradations and failure mechanisms into one constant rate parameter, λ. Also, while 
optimizing reliability, the approach does not necessarily optimize total testing and maintenance costs. 

In reality, SSCs can degrade or fail by a number of vastly different mechanisms, each with its own rate 
of failure/degradation, repair time, contribution to train/system unavailability, and repair cost. If N 
represents the total number of degradation and failure mechanisms for which plant-specific data can be 
collected, then Equation D-3 can be expanded to give: 

Qt = (½ λ1T + θ1/T) + …+ (½ λNT + θN/T)        (D-6) 
The “optimum” test interval is thus no longer clear. Each degradation or failure mechanism will have 

its individual optimum interval for ST and PM depending on the relative magnitudes of λN and θN. In 
practice, plant-specific programs account for this observation (at least qualitatively) and have implemented 
ST and PM procedures at differing frequencies, although these have not necessarily been optimized from 
the perspective of cost. 

Cost considerations can be factored into Equation D-6 by including plant-specific repair and 
testing/maintenance costs for each of the degradation/failure mechanisms, N. If CR represents the 
generalized repair cost, and CTM the generalized cost of the ST or PM, then Equation D-6 can be modified 
to give the total annual testing, maintenance, and repair cost for a particular SSC as: 

Ct = λ1 CR1 + CTM1 /T + …+ λN CRN + CTMN /T   ($/yr)     (D-7) 
It can be demonstrated that for typical component failure rates and PM/ST frequencies that costs are 
usually dominated by the ST and PM costs. For example, assume the following: 

• λ = 10-5 /hr  
• T = 720 hr (monthly testing) 
• CR = $4,000 (nominal 40 labor hours @ $100 /hr for most small repairs) 
• CTM = $200 (nominal 1 hr ST duration assuming 2 personnel). 
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Repair cost would thus be: (10-5 /hr) (8760 hr/yr) ($4,000) = $350 /yr  

Testing cost would be: ($200) (8760 hr/yr) /720 hr = $2400 /yr 
Thus, test and maintenance costs are found in this example to totally dominate overall costs. 

Care must be taken not to generalize this observation for one particular failure mode to all possible 
degradation and failure mechanisms. A catastrophic failure mode that is one to two orders of magnitude 
lower in frequency but results in the need to completely overhaul or replace the SSC (e.g., emergency diesel 
generator) could be the overall dominant contributor to SSC costs if a plant forced shutdown is also the 
consequence of the assumed failure.  

The costs represented by routine PM/ST and small-to moderate scope SSC repair are often referred to 
as hard costs shown on the balance sheet. Additional soft costs that potentially lead to regulatory impact as 
well as lost power generation need to be considered as well.  

For example, an SSC failure mechanism that is the result on a licensee performance deficiency and 
leads to an increase in core damage frequency of greater than 1.E-5 yr-1 and a Yellow inspection finding 
under the NRC’s Reactor Oversight Process (ROP) may have associated costs (NRC inspection time, plant 
staff support, plant modifications, program impacts) of some $30 million. Concern over potential regulatory 
impact could be reason enough to perform more frequent testing than the “optimum” might indicate. The 
framework in this project must therefore factor in conditional probabilities that various failure mechanisms 
result in regulatory impact in addition to the potential for forced plant shutdown. 
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Appendix E 
 

MARKOV METHOD 

 
Given some of the shortcomings of the Standby Failure Model, an alternate approach to applying plant-

specific data in this project is the use of the Markov Method. A full discussion of this approach is beyond 
the scope of this report and the reader is referred to Lee and McCormick [47] or any number of other 
publications on reliability theory.  

Figure 29 shows a Markov Model for a simple generalized SSC. In this illustration, three general states 
are indicated: 

• State S: fully functional (i.e., Success) 
• State D: degraded 
• State F: failed 

 
Figure 29. Markov model example. 

A degraded state might be a condition requiring attention such as a pump vibration alarm in the alert 
condition. In this state there is an increased probability that if no action is taken the SSC would eventually 
fail. Therefore, planned maintenance would be scheduled and performed to restore the SSC to a fully 
functional condition. Also shown are transition rates, λ, from Success to Degraded, Degraded to Failed, and 
Success directly to Failed. These rates can be derived from the plant performance data corresponding to the 
reciprocals of Mean-Time-To-Degradation (MTTD) and Mean-Time-To-Failure (MTTF). 

Repair rates are given by μ. For SSCs that are continuously monitored such as many electronic circuits, 
the various values of μ represent strictly the repair time. For many SSCs such as mechanical equipment, the 
degraded or failed state may be found only during ST, PM, or upon occurrence of an actual demand. In 
these cases, the values of μ need to reflect detection time as well. Variations of the Markov diagram could 
decompose such rates into detection and repair. 

From the transition rates illustrated in Figure 29 a set of coupled linear differential equations can be 
written as follows: 

dS/dt = -λd S - λf S + μds D + μfs F         (E-8a) 
dD/dt = λd S - λdf D - μds D          (E-8b) 

dF/dt = λf S + λdf D - μfs F          (E-8c) 
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In this simple model it is assumed that all of the transition rates, λ and μ, are constant with time. The 
above differential equations can be solved using Laplace transforms and linear algebra akin to solutions for 
radioactive decay chains. The results are exponential functions for the various states from which the 
probabilities of the various states also can be derived. 

As is the case for the Standby Failure Model, SSCs can degrade or fail by a number of vastly different 
mechanisms, each with its own rate of failure/degradation, repair time, contribution to train/system 
unavailability, and repair cost. Thus, Equations E-8a through c can be modified to include more states of 
degradation and failure to the degree that the plant-specific SSC performance data support the added 
complexity. 
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Appendix F 
 

DATA ANALYSIS EXAMPLES 
 

Example 1: Small Motor Replacement in RCIC System 
On-going PMs identify the need to replace all or portions of the vacuum pump motor that is part of the 

RCIC system. A WO is generated and some 30 tasks are specified as part of the WO. These include tasks 
such as: 

• Disassemble, clean and inspect pump 
• Repair minor wiring  
• Adjust motor resistor 
• Inspect and clean discharge check valve on RCIC pump  
• Clean gasket surfaces  
• Reassemble pump with new gaskets 
• Install the proper amount of shims to set the correct impeller gap 
• Install new packing  
• Fill lantern ring with specified grease. 

During the work, the on-line risk monitor transitioned from GREEN to YELLOW per the Operations 
Log. The System Unavailability file lists a nominal 60 hours of unavailability that were accrued due to this 
planned maintenance. 

A summation of the individual WO tasks gives total labor as 135 hours. At an assumed nominal fully-
loaded cost plus unspecified overhead (e.g., engineering resources, operations resources, etc.) of $100 per 
hour, nominal cost of this task is about $13k plus materials (therefore it is presumed that this task incurred 
under $50k in total costs).  

The integrated plant PRA model (full-power internal events plus fire) has CDF of 8.E-6/yr and large 
early release frequency (LERF) of 3.E-7/yr. The associated risk achievement worth (RAW) for CDF has a 
nominal value of about 3 for RCIC. The ICCDP of the PM, taking no credit for any compensatory measures 
that may have been implemented during the RCIC outage is thus: 

  ICCDP ~ (3 - 1) (8.E-6/yr) (60/8760) ~ 1.E-7   

This is a small but not insignificant fraction of the plant annual core damage probability of 8.E-6. 

Economic risks consist of: 

• Regulatory impact 
• Lost generation 
• Economic damages from potential accidents. 

The RCIC system has a 14-day (336 hr) AOT per the plant Technical Specifications, so there is little 
risk of exceeding this limit and entering a forced plant shutdown. 

The MSPI uses a 3-year moving time period for the system performance, so the incremental 
contribution to the MSPI from this activity to refurbish the motor is about 3.E-8 compared to the White 
threshold at 1.E-6. So, there is little impact on the MSPI. 
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From these results it is concluded that there is very low adverse regulatory impact from carrying out 
this WO. Additionally, it can be concluded that the improvement in system reliability and performance 
more than compensates for the unavailability that was incurred on the system as a result of performing the 
maintenance.  

Since the RCIC system is a standby system and not used for power generation, there is no possibility 
of reactor trip and lost generation from this activity. As discussed above, the risk of unplanned plant 
shutdown due to exceeding the AOT is low for this activity. 

The unavailability of the RCIC system for the nominal 60 hours of outage time is estimated above as 
contributing to a theoretical increase in core damage probability of ~1.E-7. Appendix C of this report gives 
a categorization of C12 and $10 billion for the plant impact vector resulting from core damage. The 
associated contribution to economic risk thus is estimated to be a nominal value of 

(10-7) ($1010) or ~ $1000 
Similar calculations for the contribution to large early release probability using appropriate plant risk 
metrics gives an additional economic risk contribution of ~$100. 

In summary, the economic risk contribution from regulatory impact, lost generation potential, and 
potential accident damages is a small fraction of the total cost of this PM task. 

The benefits of refurbishing the motor are more difficult to ascertain using strictly the plant data that 
has been provided for this project. If operation of the vacuum pump motor was absolutely necessary for 
Operability of RCIC then allowing the motor to further degrade would adversely impact RCIC failure 
probability and overall system unavailability.  

The plant 10 CFR 50.69 documentation describes the vacuum pump as non-safety, RISC-4 and LSS. 
Hence, the immediate risk impact of vacuum pump degradation/failure is evaluated to be low. However, 
the vacuum pump serves to condense steam that leaks from the RCIC turbine seals to limit radioactivity 
levels in the RCIC room. Thus, failure of this SSC would have a worker radiological exposure impact. A 
water spray condenses the steam which is then dumped into the RCIC pump discharge and the non-
condensibles go to the suppression pool. Therefore, long-term impacts of this function of the vacuum pump 
need to be assessed to further quantify the benefits of this motor refurbishment. This is beyond the scope 
of the current effort; however, such evaluation would be appropriate for inclusion in LTAM plan for the 
RCIC system. Almost any measurable contribution to RCIC failure probability would have regulatory 
impact, with the nominal cost of a White inspection finding or White MSPI estimated at about $10 million. 
Hence, PM activity that averts even a few percent increase in the probability of a White Regulatory finding 
(probability of a $10 million impact versus total cost of repair at under $50k when materials are included) 
would clearly tilt the Cost-Benefit equation in favor of motor replacement and continuation of performance 
of this PM.     

 

Example 2: RCIC System MOV Switch Failure 
During a surveillance test an MOV in the RCIC system failed to open. This valve needs to be open to 

provide RCIC pump suction from the suppression pool. The system is designed that normal pump suction 
is from the CST until a low tank level is reached, at which time automatic switchover to the suction from 
the suppression pool occurs. For this event, an IR was generated, and a WO was created. The failure was 
due to an auxiliary contactor for a hand switch which was then replaced. The System Unavailability file 
gives a nominal 5 hours of RCIC system unavailability during the work.  

Because of multiple suction sources, the PRA identifies the RAW for the valve in question as having 
only a nominal 1.4 value. The ICCDP estimate using the mathematical approach as for Example #1 gives 
about 3.E-8, a very low value. Review of the MSPI for the corresponding calendar quarter showed an 
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Unavailability Index (UAI) increase from the previous quarter for the High Pressure Injection function of 
an amount comparable to the 3.E-8 increment. 

Without further detailed review of the historical MSPI worksheets, it is unclear from the plant data that 
was provided whether a functional failure was counted in the MSPI program. However, it can be illustrated 
that one additional MOV failure within the RCIC system over a 3-year period would have no impact. 
Specifically, the performance data are pooled for MOVs in the RCIC system resulting in several hundred 
demands, and because of the Bayesian process for determining a change in MOV failure probability from 
the baseline, one additional MOV failure within the system would have no measurable impact on the 
Unreliability Index in the MSPI. This was confirmed by a review of the MSPI for the calendar quarter in 
question. Hence it was concluded that the MOV failure (i.e., auxiliary contactor failure in a hand switch) 
has no regulatory impact. 

Based on the quantification in Example #1, it also can be concluded that economic risk contribution 
from lost generation and the potential to affect accident damage costs are insignificant. 

Labor hours for the switch repair were recorded as 35. Hence, repair costs are under $10k. Regardless 
of the potential benefits of the repair, these costs under $10k would appear to be at a level below concern 
and the repair is justified simply on the basis of maintaining the plant in good working order for routine 
operations. In fact, many operating NPPs have instituted “Fix it Now” (FIN) teams that are specifically 
tasked with addressing such minor maintenance activities as they arise. As a result, the marginal costs 
associated with addressing this type of failure are likely to have been conservatively estimated in this 
analysis. Because the required surveillance performed its objective of identifying failures or degraded 
system performance, it is concluded that the ST provides a valuable contribution to maintaining adequate 
system availability, reliability, and performance.  
 

Example 3: HPCI Turbine Bearing Oil Leak 
A significant oil leak was identified on the HPCI turbine following turbine shutdown from scheduled 

pump valve and flow testing. An IR was generated, and a WO was processed. Investigation of the source 
of the oil leak identified that the pressure retaining portion of the pressure switch failed allowing oil to enter 
the switch housing. Oil was found leaking from the switch housing and an unsealed intermediate junction 
box where the pressure switch flexible conduit terminated. The oil leak rate was estimated to be about one 
liter per minute with the auxiliary oil pump operating. This leak was classified as a Maintenance Rule 
Functional Failure, as well as a failure of the HPCI turbine as a monitored component in the MSPI program. 
This was confirmed by observing an incremental change in UAI and step change in Unreliability Index 
(URI) under the MSPI program for the High Pressure Injection function.  

As a result of this failure, HPCI unavailability of about 15 hours was accrued. Labor hours for repair 
amounted to about 40. The PRA gives a RAW for the HPCI system of about 4. 

In comparison to Example #1, the RAW for HPCI is slightly higher than for RCIC (4 versus 3) while 
the hours of unavailability are substantially less (15 hr versus 60) in this example. Simply by inspection of 
the ratios of RAW and hours of unavailability the risk impact of the unavailability of HPCI in this example 
is bounded by the RCIC Example #1. Reactor risk and economic risk are low due to unavailability alone. 

However, there still remains the matter of the effect of the HPCI pump failure on unreliability and its 
impact on ICCDP. The plant PRA database for HPCI indicates HPCI functional failures are rare, with few 
recorded failures over the previous 10-year observation period. Therefore, any one additional failure may 
have a small but noticeable impact on calculated risk.  

For example, the Birnbaum importance measure for HPCI is approximated by: 
 B ~ (RAW - 1) * CDF 
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 B ~ (4 - 1) * 8.E-6/yr 

 B ~ 2.4E-5/yr 
Nominal failure to start (FTS) probability for the HPCI pump is approximately 0.01, while failure to run 
(FTR) for a 4-hour mission is approximately 0.002. Doubling of the FTS probability results in a nominal 
2.E-7/yr increase in CDF (B * 0.01), which is small but not insignificant. Like Example #1, ensuring that 
these types of failures are not repeated is clearly cost effective.   
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Appendix G 
 

HPI RELIABILITY MODELING 

 
 
For the HPI system scheme shown in Figure 16, we have constructed the FT for the HPI system as 

shown in Figure 30, Figure 31 and Figure 32. In our application some of the failure rates and failure 
probabilities in Figure 30, Figure 31 and Figure 32 were updated with the values generated by the 
unavailability models described in Section 8.2.1. The corresponding list of Minimal Cut Sets (MCSs) is 
shown in Table 17. In particular, the unavailability models for pumps and valves of the HPI system scheme 
shown in Figure 16 were linked to the Basic Events as indicated in Table 18 and Table 19. 

 

 
Figure 30. HPI system fault tree. 

HPI

NO OR INSUFFICIENT HPI  
FLOW TO RCS

HPI0

FAILURE OF HPI SUCTION  
PATHS

HPI04

FAILURE OF HPI SUCTION  
PATH 1

HPI-MOV-CC-001
1.8200E-03

HPI MOV 001 (RWST SUCTION)  
FAILS TO OPEN

HPI-MOV-OC-001
1.3990E-04

HPI MOV 001 (RWST SUCTION)  
FAILS TO REMAIN OPEN

HPI05

FAILURE OF HPI SUCTION  
PATH 2

HPI-MOV-CC-002
1.8200E-03

HPI MOV 002 (RWST SUCTION)  
FAILS TO OPEN

HPI-MOV-OC-002
1.3990E-04

HPI MOV 002 (RWST SUCTION)  
FAILS TO REMAIN OPEN

HPI1

FAILURE OF HPI PROVIDE  
FLOW TO RCS WITH P3  
NORMALLY RUNNING

HPI3

FAILURE OF HPI PROVIDE  
FLOW TO RCS WITH P1  
NORMALLY RUNNING

HPI-TNK-FC-RWST
7.2000E-06

RWST IS UNAVAILABLE
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Figure 31. HPI1 gate with P3 normally running. 

 
Figure 32. HPI3 gate with P1 normally running. 

HPI1

FAILURE OF HPI PROVIDE  
FLOW TO RCS WITH P3  
NORMALLY RUNNING

HPI10

FAILURE OF HPI PROVIDE  
FLOW TO RCS COLD LEG 1

HPI100

NO FLOW FROM MDP P1

HPI-MDP-FS-P1
5.3000E-04

HPI PUMP 1 FAILS TO START

HPI-MDP-FR-P1
9.3360E-05

HPI PUMP 1 FAILS TO RUN

HPI-MOV-CC-003
1.8200E-03

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO OPEN

HPI-MOV-OC-003
1.3990E-04

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI101

NO FLOW FROM MDP P2

HPI1010

FAILURE OF HPI P2  
DISCHARGE PATHS TO CL1

HPI10100

FAILURE OF HPI P2  
DISCHARGE PATH THROUGH  

V3 TO CL1

HPI-MOV-CC-003
1.8200E-03

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO OPEN

HPI-MOV-OC-004
1.3990E-04

HPI MOV 004 (P2 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI-MOV-OC-003
1.3990E-04

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI10102

FAILURE OF HPI P2  
CROSSOVER PATH TO CL1

HPI-MOV-CC-006
1.8200E-03

HPI MOV 006 (DISCHARGE  
CROSSOVER) FAILS TO OPEN

HPI-MOV-OC-006
1.3990E-04

HPI MOV 006 (DISCHARGE  
CROSSOVER) FAILS TO  

REMAIN OPEN

HPI-MDP-FS-P2
5.3000E-04

HPI PUMP 2 FAILS TO START

HPI-MDP-FR-P2
9.3360E-05

HPI PUMP 2 FAILS TO RUN

HPI11

FAILURE OF HPI PROVIDE  
FLOW TO RCS COLD LEG 2

HPI110

NO FLOW FROM MDP P2

HPI-MDP-FS-P2
5.3000E-04

HPI PUMP 2 FAILS TO START

HPI-MDP-FR-P2
9.3360E-05

HPI PUMP 2 FAILS TO RUN

HPI-MOV-CC-007
1.8200E-03

HPI MOV 007 (DISCHARGE  
CROSSOVER) FAILS TO OPEN

HPI-MOV-OC-007
1.3990E-04

HPI MOV 007 (DISCHARGE  
CROSSOVER) FAILS TO  

REMAIN OPEN

HPI111

NO FLOW FROM MDP P3

HPI-MDP-FR-P3
9.3360E-05

HPI PUMP 3 FAILS TO RUN

HPI-MOV-OC-005
1.3990E-04

HPI MOV 005 (P3 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI-P3-RUNNING
5.0000E-01

HPI P3 IS RUNNING DURING  
NORMAL OPERATIONS

HPI3

FAILURE OF HPI PROVIDE  
FLOW TO RCS WITH P1  
NORMALLY RUNNING

HPI32

FAILURE OF HPI PROVIDE  
FLOW TO RCS COLD LEG 1

HPI320

NO FLOW FROM MDP P1

HPI-MDP-FR-P1
9.3360E-05

HPI PUMP 1 FAILS TO RUN

HPI-MOV-OC-003
1.3990E-04

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI321

NO FLOW FROM MDP P2

HPI3210

FAILURE OF HPI P2  
DISCHARGE PATHS TO CL1

HPI32100

FAILURE OF HPI P2  
DISCHARGE PATH THROUGH  

V3 TO CL1

HPI-MOV-OC-004
1.3990E-04

HPI MOV 004 (P2 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI-MOV-OC-003
1.3990E-04

HPI MOV 003 (P1 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI32102

FAILURE OF HPI P2  
CROSSOVER PATH TO CL1

HPI-MOV-CC-006
1.8200E-03

HPI MOV 006 (DISCHARGE  
CROSSOVER) FAILS TO OPEN

HPI-MOV-OC-006
1.3990E-04

HPI MOV 006 (DISCHARGE  
CROSSOVER) FAILS TO  

REMAIN OPEN

HPI-MDP-FS-P2
5.3000E-04

HPI PUMP 2 FAILS TO START

HPI-MDP-FR-P2
9.3360E-05

HPI PUMP 2 FAILS TO RUN

HPI30

FAILURE OF HPI PROVIDE  
FLOW TO RCS COLD LEG 2

HPI300

NO FLOW FROM MDP P2

HPI-MDP-FS-P2
5.3000E-04

HPI PUMP 2 FAILS TO START

HPI-MDP-FR-P2
9.3360E-05

HPI PUMP 2 FAILS TO RUN

HPI-MOV-CC-007
1.8200E-03

HPI MOV 007 (DISCHARGE  
CROSSOVER) FAILS TO OPEN

HPI-MOV-OC-007
1.3990E-04

HPI MOV 007 (DISCHARGE  
CROSSOVER) FAILS TO  

REMAIN OPEN

HPI301

NO FLOW FROM MDP P3

HPI-MDP-FS-P3
5.3000E-04

HPI PUMP 3 FAILS TO START

HPI-MDP-FR-P3
9.3360E-05

HPI PUMP 3 FAILS TO RUN

HPI-MOV-CC-005
1.8200E-03

HPI MOV 005 (P3 DISCHARGE)  
FAILS TO OPEN

HPI-MOV-OC-005
1.3990E-04

HPI MOV 005 (P3 DISCHARGE)  
FAILS TO REMAIN OPEN

HPI-P1-RUNNING
5.0000E-01

HPI P1 IS RUNNING DURING  
NORMAL OPERATIONS
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Table 17. List of the first 101 MCSs for the HPI system of Figure 16. 

# Prob/Freq Total % Cut Set 
Total 1.104E-5 100  

1 7.200E-6 65.21 HPI-TNK-FC-RWST 
2 3.312E-6 30.00 HPI-MOV-CC-001,HPI-MOV-CC-002 
3 2.546E-7 2.31 HPI-MOV-CC-001,HPI-MOV-OC-002 
4 2.546E-7 2.31 HPI-MOV-CC-002,HPI-MOV-OC-001 
5 1.957E-8 0.18 HPI-MOV-OC-001,HPI-MOV-OC-002 
6 6.748E-11 < 0.01 HPI-MDP-FS-P2,HPI-MOV-CC-003,HPI-MOV-OC-005,HPI-P3-RUNNING 
7 6.748E-11 < 0.01 HPI-MDP-FS-P2,HPI-MOV-CC-005,HPI-MOV-OC-003,HPI-P1-RUNNING 
8 4.503E-11 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P2,HPI-MOV-CC-003,HPI-P3-RUNNING 
9 4.503E-11 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P2,HPI-MOV-CC-005,HPI-P1-RUNNING 
10 1.965E-11 < 0.01 HPI-MDP-FS-P2,HPI-MDP-FS-P3,HPI-MOV-OC-003,HPI-P1-RUNNING 
11 1.965E-11 < 0.01 HPI-MDP-FS-P1,HPI-MDP-FS-P2,HPI-MOV-OC-005,HPI-P3-RUNNING 
12 1.311E-11 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-MDP-FS-P2,HPI-P3-RUNNING 
13 1.311E-11 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P2,HPI-MDP-FS-P3,HPI-P1-RUNNING 
14 1.189E-11 < 0.01 HPI-MDP-FR-P2,HPI-MOV-CC-003,HPI-MOV-OC-005,HPI-P3-RUNNING 
15 1.189E-11 < 0.01 HPI-MDP-FR-P2,HPI-MOV-CC-005,HPI-MOV-OC-003,HPI-P1-RUNNING 
16 7.931E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MOV-CC-005,HPI-P1-RUNNING 
17 7.931E-12 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-MOV-CC-003,HPI-P3-RUNNING 
18 5.187E-12 < 0.01 HPI-MDP-FS-P2,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-P3-RUNNING 
19 5.187E-12 < 0.01 HPI-MDP-FS-P2,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-P1-RUNNING 
20 3.461E-12 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FS-P1,HPI-MOV-OC-005,HPI-P3-RUNNING 
21 3.461E-12 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FS-P3,HPI-MOV-OC-003,HPI-P1-RUNNING 
22 3.461E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P2,HPI-MOV-OC-005,HPI-P3-RUNNING 
23 3.461E-12 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P2,HPI-MOV-OC-003,HPI-P1-RUNNING 
24 3.461E-12 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P2,HPI-MOV-OC-003,HPI-P3-RUNNING 
25 3.461E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P2,HPI-MOV-OC-005,HPI-P1-RUNNING 
26 2.310E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MDP-FS-P3,HPI-P1-RUNNING 
27 2.310E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MDP-FS-P2,HPI-P3-RUNNING 
28 2.310E-12 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-P3-RUNNING 
29 2.310E-12 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MDP-FS-P2,HPI-P1-RUNNING 
30 9.137E-13 < 0.01 HPI-MDP-FR-P2,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-P1-RUNNING 
31 9.137E-13 < 0.01 HPI-MDP-FR-P2,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-P3-RUNNING 
32 6.097E-13 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MOV-OC-005,HPI-P3-RUNNING 
33 6.097E-13 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MOV-OC-005,HPI-P1-RUNNING 
34 6.097E-13 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-MOV-OC-003,HPI-P1-RUNNING 
35 6.097E-13 < 0.01 HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-MOV-OC-003,HPI-P3-RUNNING 

36 4.217E-13 < 0.01 HPI-MOV-CC-005,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
003,HPI-P1-RUNNING 

37 4.217E-13 < 0.01 HPI-MOV-CC-003,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
005,HPI-P3-RUNNING 

38 4.068E-13 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-P3-RUNNING 
39 4.068E-13 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P2,HPI-MDP-FR-P3,HPI-P1-RUNNING 

40 2.814E-13 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-003,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-P3-RUNNING 

41 1.228E-13 < 0.01 HPI-MDP-FS-P3,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
003,HPI-P1-RUNNING 

42 3.242E-14 < 0.01 HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
005,HPI-P3-RUNNING 
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# Prob/Freq Total % Cut Set 

43 3.242E-14 < 0.01 HPI-MOV-CC-005,HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-
007,HPI-P1-RUNNING 

44 3.242E-14 < 0.01 HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
005,HPI-P1-RUNNING 

45 3.242E-14 < 0.01 HPI-MOV-CC-005,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
006,HPI-P1-RUNNING 

46 3.242E-14 < 0.01 HPI-MOV-CC-003,HPI-MOV-CC-007,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-P3-RUNNING 

47 3.242E-14 < 0.01 HPI-MOV-CC-003,HPI-MOV-CC-006,HPI-MOV-OC-005,HPI-MOV-OC-
007,HPI-P3-RUNNING 

48 2.163E-14 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-003,HPI-MOV-CC-006,HPI-MOV-OC-
007,HPI-P3-RUNNING 

49 2.163E-14 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-003,HPI-MOV-CC-007,HPI-MOV-OC-
006,HPI-P3-RUNNING 

50 2.163E-14 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
003,HPI-P1-RUNNING 

51 2.163E-14 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
003,HPI-P3-RUNNING 

52 9.441E-15 < 0.01 HPI-MDP-FS-P3,HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-
007,HPI-P1-RUNNING 

53 9.441E-15 < 0.01 HPI-MDP-FS-P3,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
006,HPI-P1-RUNNING 

54 2.492E-15 < 0.01 HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-P3-RUNNING 

55 2.492E-15 < 0.01 HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-
007,HPI-P3-RUNNING 

56 2.492E-15 < 0.01 HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-P1-RUNNING 

57 2.492E-15 < 0.01 HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-
007,HPI-P1-RUNNING 

58 2.492E-15 < 0.01 HPI-MOV-CC-003,HPI-MOV-OC-005,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P3-RUNNING 

59 2.492E-15 < 0.01 HPI-MOV-CC-005,HPI-MOV-OC-003,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P1-RUNNING 

60 1.663E-15 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-
007,HPI-P1-RUNNING 

61 1.663E-15 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
006,HPI-P3-RUNNING 

62 1.663E-15 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-OC-003,HPI-MOV-OC-
007,HPI-P3-RUNNING 

63 1.663E-15 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-007,HPI-MOV-OC-003,HPI-MOV-OC-
006,HPI-P1-RUNNING 

64 1.663E-15 < 0.01 HPI-MDP-FR-P3,HPI-MOV-CC-003,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P3-RUNNING 

65 7.258E-16 < 0.01 HPI-MDP-FS-P3,HPI-MOV-OC-003,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P1-RUNNING 

66 1.916E-16 < 0.01 HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P3-RUNNING 

67 1.916E-16 < 0.01 HPI-MOV-OC-003,HPI-MOV-OC-005,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P1-RUNNING 

68 1.278E-16 < 0.01 HPI-MDP-FR-P3,HPI-MOV-OC-003,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P3-RUNNING 

69 1.278E-16 < 0.01 HPI-MDP-FR-P3,HPI-MOV-OC-003,HPI-MOV-OC-006,HPI-MOV-OC-
007,HPI-P1-RUNNING 

70 3.937E-17 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-005,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-MOV-OC-004,HPI-P1-RUNNING 

71 1.718E-17 < 0.01 HPI-MDP-FS-P1,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-005,HPI-P3-RUNNING 
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# Prob/Freq Total % Cut Set 

72 1.147E-17 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P3,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-MOV-OC-004,HPI-P1-RUNNING 

73 1.147E-17 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-MOV-OC-004,HPI-P3-RUNNING 

74 3.027E-18 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-005,HPI-P3-RUNNING 

75 3.027E-18 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-005,HPI-MOV-CC-006,HPI-MOV-OC-
004,HPI-MOV-OC-007,HPI-P1-RUNNING 

76 3.027E-18 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-006,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-005,HPI-P1-RUNNING 

77 3.027E-18 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-005,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-006,HPI-P1-RUNNING 

78 2.019E-18 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-MOV-OC-004,HPI-P1-RUNNING 

79 2.019E-18 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-CC-
007,HPI-MOV-OC-004,HPI-P3-RUNNING 

80 1.321E-18 < 0.01 HPI-MDP-FS-P1,HPI-MOV-CC-007,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-006,HPI-P3-RUNNING 

81 1.321E-18 < 0.01 HPI-MDP-FS-P1,HPI-MOV-CC-006,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-007,HPI-P3-RUNNING 

82 8.814E-19 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-006,HPI-P3-RUNNING 

83 8.814E-19 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-MOV-CC-006,HPI-MOV-OC-
004,HPI-MOV-OC-007,HPI-P3-RUNNING 

84 8.814E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P3,HPI-MOV-CC-006,HPI-MOV-OC-
004,HPI-MOV-OC-007,HPI-P1-RUNNING 

85 8.814E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P3,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-006,HPI-P1-RUNNING 

86 2.327E-19 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-007,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-006,HPI-P1-RUNNING 

87 2.327E-19 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-006,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-007,HPI-P1-RUNNING 

88 2.327E-19 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-007,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-006,HPI-P3-RUNNING 

89 2.327E-19 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-006,HPI-MOV-OC-004,HPI-MOV-OC-
005,HPI-MOV-OC-007,HPI-P3-RUNNING 

90 2.327E-19 < 0.01 HPI-MDP-FR-P1,HPI-MOV-CC-005,HPI-MOV-OC-004,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P1-RUNNING 

91 1.552E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-006,HPI-P3-RUNNING 

92 1.552E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-OC-
004,HPI-MOV-OC-007,HPI-P1-RUNNING 

93 1.552E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-007,HPI-MOV-OC-
004,HPI-MOV-OC-006,HPI-P1-RUNNING 

94 1.552E-19 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-CC-006,HPI-MOV-OC-
004,HPI-MOV-OC-007,HPI-P3-RUNNING 

95 1.015E-19 < 0.01 HPI-MDP-FS-P1,HPI-MOV-OC-004,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P3-RUNNING 

96 6.775E-20 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FS-P3,HPI-MOV-OC-004,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P1-RUNNING 

97 6.775E-20 < 0.01 HPI-MDP-FR-P3,HPI-MDP-FS-P1,HPI-MOV-OC-004,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P3-RUNNING 

98 1.789E-20 < 0.01 HPI-MDP-FR-P1,HPI-MOV-OC-004,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P3-RUNNING 

99 1.789E-20 < 0.01 HPI-MDP-FR-P1,HPI-MOV-OC-004,HPI-MOV-OC-005,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P1-RUNNING 

100 1.193E-20 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-OC-004,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P1-RUNNING 
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101 1.193E-20 < 0.01 HPI-MDP-FR-P1,HPI-MDP-FR-P3,HPI-MOV-OC-004,HPI-MOV-OC-
006,HPI-MOV-OC-007,HPI-P3-RUNNING 

 
Table 18. Link between valves for the system shown in Figure 30 and basic events of the FT of Figure 30, Figure 31 and 

Figure 32. 

Valve ID Basic Event ID 
V1 HPI-MOV-CC-001 
V2 HPI-MOV-CC-001 
V3 HPI-MOV-CC-003 
V4 HPI-MOV-CC-004 
V5 HPI-MOV-CC-005 
V6 HPI-MOV-CC-006 
V7 HPI-MOV-CC-007 

 
Table 19. Link between pumps for the system shown in Figure 30 and basic events of the FT of Figure 30, Figure 31 and 

Figure 32. 

Pump ID Basic Event ID 
P1 HPI-MDP-FS-P1 
P2 HPI-MDP-FS-P2 
P3 HPI-MDP-FS-P3 
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Appendix H 
 

PWR FEEDWATER SYSTEM 

 
The generic simplified feedwater system analyzed provides heated feedwater from the feedwater pumps 

to the steam generators. The feedwater system consists of the piping, valves, pumps, heat exchangers, 
controls, instrumentation, and the associated equipment that supply the steam generators with feedwater in 
a closed steam cycle using regenerative feedwater heating. Adequate flow from the condensate system to 
the feedwater pumps was assumed for the modeling process. 

The feedwater system is of the closed type, with deaerating accomplished in the condenser. The water 
discharge from the feedwater pumps flows through one stage of high-pressure heating into the steam 
generators. There are two strings of high-pressure feedwater heaters. Each string is capable of supporting 
50% of the plants rated power output. Each string is provided with motor-operated isolation valves with an 
operator override switch in the control room. A single bypass line, sized to handle the flow through one 
heater, is provided. The two strings of high-pressure feedwater heaters and the bypass line have a common 
discharge header.  

Feedwater line isolation is provided by a hydraulically-operated gate valve and a check valve outside 
the containment. The hydraulically-operated gate valve has an operator override switch in the control room. 
Feedwater line isolation is also provided at the steam generator inlet in the case where the hydraulically-
operated valve and check valve fail.  

The system is composed of three feedwater pumps capable of supporting 50% of the plant's rated power 
output. Two of the pumps are turbine-driven and are used during normal operation. The third pump is used 
as a reserve or standby pump in situations where one of the turbine-driven pumps fails to run. The pumps 
have common suction and discharge headers. 

Discharge from the pumps is automatically recirculated back to the condenser whenever flow to the 
high-pressure feedwater heaters falls below a predetermined point. Pump starting circuits are interlocked 
to prevent starting unless the recirculation control valves are open. Minimum feedwater pump suction 
pressure protection is assured through the heater drain pump control system and the automatic starting of a 
condensate pump and/or condensate booster pump.  

Figure 33 shows the feedwater system beginning at the feedwater pumps up to the high-pressure heater 
discharge. A symbol identification table is provided at the end of this appendix. Feedwater pump discharge 
from pumps B and C are represented by blocks for simplification. The feedwater pump loops for B and C 
are designed the same as pump loop A. Pump A is the standby motor-driven pump. Symbols are described 
in Figure 38. 

Feedwater flow from the high-pressure heater discharge to each steam generator is controlled by a 
feedwater regulator valve in each feedwater line. The regulator valve is controlled by steam generator level, 
steam flow, and feedwater flow. A signal from the feedwater control system also sets the speed of the 
turbine-driven feedwater pumps and the position of the motor-driven pump discharge control valve to 
maintain the main feedwater regulator valves within their control range. This allows the system to 
accommodate all operating conditions automatically and provides a control margin to accommodate load 
transients. During startup, a feedwater regulator bypass valve is controlled by steam generator liquid level 
and reactor power level. Each one of the four steam generators is capable of supporting 25% of the plant's 
rated power output.  
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Figure 33. Feedwater system 

 

Figure 34 shows the feedwater system beginning at the high-pressure heater discharge and up to the 
steam generator inlets. Steam generator loops B, C, and D are simplified in the figure because they are 
designed the same as loop A.  

Heater drain flow into the condensate header is normally controlled as a fixed ratio of total feedwater 
flow, thereby maintaining Net Positive Suction Head (NPSH) above a preset minimum. Under the 10% 
load rejection situation or any other transient situation, this control will automatically maintain adequate 
feedwater pump suction pressure. The feedwater-flow/heater-drain-flow ratio signal is biased by heater 
drain tank level, thereby maintaining heater drain tank level within preset limits. Also, the automatic starting 
of the standby condensate pump will assure adequate flow to the feedwater pumps under all operating 
conditions. The heater drain system was omitted from modeling and was assumed to be operable during all 
feedwater system conditions. 

Main feedwater isolation valves are affected by a safety injection signal. The isolation valves are 
hydraulically operated gate valves capable of closure within 5 seconds of receipt of an actuation signal. The 
valves are also operable from either the main control room or local panels. An additional function of the 
main feedwater isolation valves is to stop the flow of cold water to the preheater section of the steam 
generators in the event of a severe loss of load transient, and under startup and light load conditions when 
the preheater section is bypassed.  

An additional 6-inch diameter feedwater nozzle has been installed on each steam generator above 
maximum water level, as an alternate point of admission for relatively cold feedwater under light load and 
emergency conditions. When the feedwater temperature is less than 275 °F, water is admitted to the upper 
nozzle, bypassing the preheater section of the steam generators.  
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The main feedwater isolation valve, in addition to providing containment isolation under post-accident 
conditions, performs a non-safety-related function in automatically closing in response to main feedwater 
temperature and flow conditions utilizing 2 out of 3 logic provided in the water hammer prevention features. 
This type of logic ensures that a single credible failure will neither prevent the features from operating nor 
cause a trip. The water hammer prevention features were omitted from the modeling process due to the 
features only being needed during light load and emergency conditions. In the next section, there is a 
discussion on how the water hammer prevention features are treated in the modeling process in the case of 
proceeding back to full power after a reactor trip has occurred. 

 

 
Figure 34. Feedwater system from high-pressure heater discharge to the steam generator inlets. 

 

To maintain the feed lines to the upper steam generator nozzles in a continuously purged and warmed 
condition, a tempering flow of 95 gpm is maintained under normal operating conditions in each line. There 
is a cross-connection between each main feedwater line and its respective tempering line, and a feedwater 
preheater bypass valve in the cross-connecting line allows additional flow to augment tempering flow when 
the main feedwater isolation valve is closed under light load conditions. The main feedwater line ahead of 
the isolation valve is purged of cold water by means of flow through the preheater bypass valve. 

A small bypass line around the main feedwater isolation valve provides for purging the main feedwater 
line between the isolation valve and steam generator. A controlled flow through the bypass line ensures that 
water hammer will not be caused by the purge flow. 

When approximately 20% of the Nuclear Steam Supply System (NSSS) rated flow is attained and 
feedwater temperature is significantly higher than 275 °F and the main feedwater lines have been purged 
of cold water, the main feedwater isolation valves will open and the preheater bypass valves will close. 

Under startup conditions, a feedwater regulator bypass control valve automatically controls the water 
level in its respective steam generator. At approximately 25% of NSSS rated flow, the main feedwater 
regulator control valves are placed in service and the bypass control valves are removed from service. Level 
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in the steam generators is therefore automatically controlled at all times. Should the steam generator level 
decrease to the extent that the preheater section is not completely flooded, the isolation valve for that steam 
generator will close and flow will be diverted to the upper steam generator nozzle. Except for this provision, 
the steam generator level is entirely separate and automatically controlled and monitored and is not a part 
of the water hammer prevention features. 

Various timers are included in the automatic controls of the water hammer prevention features to ensure 
that purge flow is maintained for the required length of time. 

If flow to the steam generators remains continuous during a load transient and above a minimum flow 
rate, feedwater will not be diverted to the upper nozzle even if the temperature of the feedwater has dropped 
below 275 °F. Interruption or a reduction in flow below the minimum rate concurrent with a feedwater 
temperature less than 275 °F will cause the feedwater preheater sections of the steam generators to be 
bypassed. 

Since there is always water flowing to the upper nozzle of the steam generator during normal light load 
operation, it is the required location for introducing cold fluid into the steam generator. Auxiliary feedwater 
and chemical feed are connected to the tempering feedwater lines rather than to the main feedwater lines. 
The chemical feed lines are used to add chemicals directly to the steam generators under light-load 
conditions prior to wet layup. 

Continued operation of the system is possible by the use of the multi-stream arrangement and the 
provisions for removing from service and bypassing equipment and sections of the system if it is necessary 
to remove a component such as a feedwater heater, pump or control valve from service. 

The steam generators are equipped with a three-element feedwater flow controller maintaining a 
programmed water level which is a function of turbine load. 

Instrumentation and controls regulate pump recirculation flow rate for the condensate booster pumps 
and feedwater pumps. Measurements of the pump discharge pressure are provided for all pumps in the 
system. Sampling means are provided for monitoring the quality of water in the condensers, condensate 
pump discharge, and feedwater pump suction.  

Steam-pressure measurements are provided at each feedwater heater. Instrumentation and controls are 
provided for regulating the heater drain flow rate to maintain the proper condensate level in each feedwater 
heater shell or heater drain tank. High-level alarm and automatic dump-to-condenser action on a high level 
are provided.  

 

MFW Reliability Modeling 
The modeling was based on estimating the lost generation due to failures in the feedwater system. 

Supporting systems such as instrument air, service water, electric power, etc. were not considered during 
the modeling process. Therefore, failures of exterior systems or components that fail the feedwater system 
are not included in the analysis. The reason for omitting supporting systems, is because the failure of these 
systems causes generation loss unrelated to the feedwater system. The supporting systems are subject to a 
modeling process outside of the generic model presented in this report. 

Each basic event was modeled by component failure rate data and a mission time of 24 hours. Each 
resultant cut set was multiplied by 365 to convert the probability of failure per mission time (24 hours) to 
the probability of failure per year. Situations in which components had the possibility of repair before the 
top event occurred had the MTTR value included in the probability model.  

The duration of the derate events in the modeling process was the sum of the MTTR(s) of the failed 
component(s) and the recovery time to get back up to full power. This duration was multiplied by the 
probability of failure per year to get Effective Full Power Hours (EFPH) of lost generation per year. The 
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plant's electrical output capacity, 1000 MW, was multiplied by the EFPH values to get the lost generation 
in terms of MWh per year. The MWh per year value was then multiplied by $33.50 to get the lost generation 
in terms of dollars per year. The $33.50 is the value of a MWh according to NEI. The equation used to 
convert the results was based on the EPRI’s GRA Plant Implementation Guide, given by the following 
equation. The equation multiplied by the probability of a derate per year gives the estimated lost generation 
of the system. 

Total Lost Generation (MWh) = Magnitude of derate * Duration of load reduction  

= (1 - % of Full Power after load reduction) * Rated Capacity (MW) * (MTTR for the system, 
combinations of trains, or combinations of components leading to the load reduction + time to 
restore plant to power, in hours) 

The water hammer prevention features of the system are highly redundant and were deemed negligible 
in the modeling process for situations in which a reactor trip did not occur. The piping leading to the water 
hammer prevention path was included in the modeling. To account for proceeding back to 25% power after 
a plant trip, in which the water hammer prevention features are needed, a 34-hour start-up time was used. 
After 25% of power was reached it was assumed power would continuously increase by 1.65% power per 
hour. The 1.65% of reactor power per hour was the power increase rate used during the 50% and 25% derate 
situations as well.  

In the 100% derate scenario it was assumed that no electrical output was being transmitted to the grid 
until maximum rated power. In the 50% derate scenario it was assumed that only 50% of the electrical 
output was being transmitted to the grid until maximum rated power. In the 25% derate scenario it was 
assumed that only 75% of the electrical output was being transmitted to the grid until maximum rated 
power. Note that in the economic models these assumptions are conservative (in that they would 
underestimate revenue).  

Failure data for the feedwater pump failures were obtained from EPIX and the MTTRs for the pumps 
were obtained from pc-GAR. Failures of the two turbine-driven pumps were modeled in the 50% derate 
fault tree. The simultaneous failure of both turbine-driven pumps before the motor-driven pump can start-
up and reach capacity was found to be too rare of an event and was omitted from modeling in the 100% 
derate fault tree. In the 50% derate fault tree, the duration of the derate due to the failure of either pump 
was taken as the time for the standby pump to start up and restore the plant to full power. The MTTR of the 
failed pump is the same time it takes for the standby pump to reach capacity; this eliminated the need to 
model the scenario in which the standby pump fails to start because the event in which the standby pump 
fails to start and the failed pump is not repaired in a typical amount of time was too rare of an event. 

Failure data for the different types of valves were obtained from EPIX and the MTTRs for the valves 
were obtained from pc-GAR. In the pc-GAR database, there are only two categories of valves in feedwater 
systems. The MTTR of both valve categories was the same so every valve was assigned the same MTTR. 
The failures of valves that cause a plant trip were modeled in the 100% derate fault tree. The failures of 
valves that are isolable in the feedwater pump loops and the high-pressure heater loops were modeled in 
the 50% derate fault tree. Simultaneous failures of the valves in the pump and heater loops were found to 
be too rare for inclusion in the 100% derate fault tree. The failures of valves that are isolable in the steam 
generator feedwater loops were modeled in the 25% derate fault tree. Simultaneous failures of the valves 
in the steam generator loops were found to be too rare for inclusion in the 100% or 50% derate fault trees.  

According to the Summary of SPAR Component Unreliability Data and Results spreadsheet, there were 
no reports of instrumentation and control failures. Therefore, instrumentation and control failures were 
omitted from modeling. The same result was found for orifices. 

Feedwater piping lengths vary from plant to plant so order of magnitude estimates were made for the 
generic plant. The longest pipes in the system were given a length of 1000 feet. The shortest pipes in the 
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system were given a length of 10 feet. The pipes that were determined to have lengths in between the longest 
and shortest lengths were given a length of 100 feet. Feedwater piping was modeled like the feedwater 
valves. Failures of pipes that resulted in a plant trip were modeled in the 100% derate fault tree. Failures of 
pipes that are isolable in the feedwater pump loops and high-pressure heater loops were modeled in the 
50% derate fault tree. Simultaneous failures of isolable pipes were found to be too rare for inclusion in the 
100% derate fault tree. Failures of pipes that are isolable in the steam generator feedwater loops were 
modeled in the 25% derate fault tree. Simultaneous failures of the pipes in the steam generator loops were 
found to be too rare for inclusion in the 100% or 50% derate fault tree. The failure data for the piping was 
given in terms of failure frequency per length in feet. 

The operator failure with the override switch control failure rate data was obtained from pc-GAR from 
the “Operator Error” category. It was modeled with an “AND” gate everywhere that failure of the operation 
of a valve occurred that an operator would have the ability to correct.  

Failure data for the high-pressure heaters were obtained from EPIX in the section on heat exchangers. 
The MTTRs were obtained from pc-GAR from the categories of “High Pressure Heater Tube Leaks” and 
“Other High Pressure Heater Problems.” The failure of the high-pressure heaters was modeled in both the 
100% and 50% derate fault trees. The on-line repair was assumed due to the isolation valves available to 
each high-pressure heater. The event in which the isolation valves fail to operate or rupture at the same time 
in either high-pressure heater was found to be too rare of an event for modeling. The MTTR was included 
in the probability model to account for time to repair one high-pressure heater before the other fails.  

Maintenance data were not obtained for modeling of this generic PWR feedwater system. Test and 
maintenance activities vary from plant to plant. The omission of test and maintenance activities is important 
to note because the activities can contribute a large amount to lost generation.  

Common mode failures were not found while modeling the system. If further modeling were to occur 
including supporting systems and components, common mode failures would need to be readdressed and 
included in the fault tree construction. Instrument air is a typical example of a supporting system that would 
lead to a common mode failure.  

Two components were subject to special failure rate and MTTR considerations. The pitot tube and end 
closure weld cap were not found in either the pc-GAR or EPIX database. Therefore, WASH-1400 was used 
for failure rates of these SSCs. The end closure weld cap was assigned the failure rate of “closures” from 
WASH-1400. The pitot tube was assigned the failure rate of “flow meters” from WASH-1400. Since both 
of these components were connected to piping and were assumed to contribute to a negligible amount of 
generation loss, the MTTR for piping and supports was used.  

The estimation of component failure frequency and MTTR from pc-GAR data follows the same 
methodology found within the Cooper Nuclear Station GRA report. An Annual Unit Performance and 
Individual Cause Code report can be generated by pc-GAR allowing for the total number of service hours, 
the number of failures, and outage time to be obtained. To estimated component failure frequency from the 
Individual Cause Code report is used to count the number of forced outages (U1, U2, U3) and forced derates 
(D1, D2, D3). The Annual Unit Performance report yields the mean “Unit Service Hours” and when 
multiplied by “Unit Years” gives the total service hours. The total number of forced failure events divided 
by the total service hours yields the component failure frequency. The MTTR values were estimated by 
obtaining the “Hours Loss/Occ” from the Individual Cause Code Report. Multiplying each “Hours 
Loss/Occ” value with the respectively forced outage or derate events and summing them together then 
dividing the sum by the sum of the forced outage events yields the forced derate duration for each category. 
The average forced derate duration is the MTTR.  

The following tables provide the FMEAs conducted for each critical component identified in the study 
along with the failure data, mission time and MTTRs assigned to each component from pc-GAR, EPIX, 
and WASH-1400.   
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Table 20. Steam generator FMEA. 

Steam Generator Loops A, B, C, and D 

Component Failure Mode Effect Description Failure 
Data / hr 

Mission 
Time MTTR 

1FW76A(A,B,C,D) => 1-inch pipe 
leading to emergency drain (10ft). Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-09 24 

Hours 7.6 Hours 

1FW029(A,B,C,D) => Manual 
valve connected to emergency drain. Valve failure Steam generator 

loop failure 

Valve leakage or 
spurious transfer causes 
inadvertent drainage in 

steam generator 
feedwater loop. 

2.42E-07 24 
Hours 15 Hours 

1FW03D(A,B,C,D) => 16-inch pipe 
on steam generator feedwater line 

(100ft). 
Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-08 24 

Hours 7.6 Hours 

1FW82A(A,B,C,D) => 3-inch pipe 
for flow reduction to the steam 

generator (10ft). 
Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-09 24 

Hours 7.6 Hours 

1FW042(A,B,C,D) => Solenoid 
valve connected to flow reduction 

path. 
Valve failure Steam generator 

loop failure 

Valve failure to control, 
spurious transfer, or 

leakage causes 
inadvertent drainage or 

inadequate steam 
generator feedwater 

supply. 

6.45E-07 24 
Hours 15 Hours 

1FW009(A,B,C,D) => 
Hydraulically operated valve on 
steam generator feedwater line. 

Valve leaks Steam generator 
loop failure 

Valve leakage causes 
inadvertent drainage in 

steam generator 
feedwater loop. 

1.93E-07 24 
Hours 15 Hours 

Valve fails to 
operate - 

Hydraulics Steam generator 
loop failure 

Valve spurious transfer 
or failure to control 

causes inadequate steam 
generator feedwater 

supply, there is operator 
override action. 

6.45E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW86A(A,B,C,D) => 16-inch pipe 
on steam generator feedwater line 

(100ft). 
Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-08 24 

Hours 7.6 Hours 

1FW041(A,B,C,D) => Solenoid 
valve connected to water hammer 

prevention path. 
Valve failure Steam generator 

loop failure 

Valve failure to control, 
spurious transfer, or 

leakage causes 
inadvertent drainage or 

inadequate steam 
generator feedwater 

supply. 

6.45E-07 24 
Hours 15 Hours 

1FW81A(A,B,C,D) => 6-inch pipe 
leading to water hammer prevention 

path (10ft). 
Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-09 24 

Hours 7.6 Hours 

1FW008(A,B,C,D) => Check valve 
on steam generator feedwater line. Valve failure Steam generator 

loop failure 

Valve failure to remain 
open or leakage causes 

inadequate steam 
generator feedwater 

supply. 

2.29E-07 24 
Hours 15 Hours 
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Steam Generator Loops A, B, C, and D 

Component Failure Mode Effect Description Failure 
Data / hr 

Mission 
Time MTTR 

Venturi => Mechanical failure, see 
description. 

Pipe rupture 

Steam generator 
loop failure 

Each venturi tube has 4 
3/4-inch pipes (10ft) and 

4 manual valves. 
Leakage cause steam 

generator to be 
unavailable and failure 

will cause 
instrumentation to be 

unavailable. 

2.78E-09 24 
Hours 7.6 Hours 

Valve leakage and 
mechanical 2.42E-07 24 

Hours 15 hours 

Venturi tube 
rupture 1.00E-08 24 

Hours 7.6 Hours 

1FW11(A,B,C,D)A => 3/4-inch 
pipe leading to pressure instrument 

(10ft). 
Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-09 24 

Hours 7.6 Hours 

1FW022(A,B,C,D) => Manual 
valve connected to pressure 

instrument flow. 
Valve failure Steam generator 

loop failure 
Valve leakage causes 
inadvertent drainage. 1.91E-07 24 

Hours 15 Hours 

1FW92(A,B,C,D) => 6-inch pipe for 
flow reduction (10ft). Pipe rupture Steam generator 

loop failure 

Pipe rupture causes leak 
in steam generator 

feedwater loop. 
2.78E-09 24 

Hours 7.6 Hours 

1FW5(1,2,3,4)0 => Solenoid 
operated angle valve on steam 

generator feedwater line. 
Valve failure Steam generator 

loop failure 

Valve failure to control, 
spurious transfer, or 

leakage causes 
inadvertent drainage or 

inadequate steam 
generator feedwater 

supply. 

6.45E-07 24 
Hours 15 Hours 

1FW03C(A,B,C,D) => 16-inch pipe 
connected to main feedwater line 

(100ft). 
Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-08 24 

Hours 7.6 Hours 

1FW006(A,B,C,D) => Motor 
operated isolation/regulation valve 
at the entrance of steam generator 

loop. 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

Steam generator 
loop failure 

Steam generator is 
unavailable if motor 

operated valve 
spuriously transfers or 
fails to control flow, 

there is operator 
override action. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 
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Table 21. Main feedwater line FMEA. 

Main Feedwater Line 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

End closure weld cap. Rupture Feedwater 
system failure 

Rupture of welded cap 
causes leak in main 

feedwater line. 
3.00E-07 24 

Hours 7.6 Hours 

1FW03B => 30-inch pipe delivering 
main feedwater (1000ft). Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-07 24 

Hours 7.6 Hours 

1FW75A => 1-inch pipe connected 
to drainage (10ft). Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-09 24 

Hours 7.6 Hours 

1FW028 => Manual valve 
connected to drainage path. Valve failure Feedwater 

system failure 

Valve leakage or 
spurious transfer causes 
leak in main feedwater 

line. 

2.42E-07 24 
Hours 15 Hours 

Pitot tube Rupture Feedwater 
system failure 

Rupture of pitot tube 
causes leak in main 

feedwater line. 
1.00E-08 24 

Hours 7.6 Hours 

1FW94 => 3/4-inch pipe from pitot 
tube to pressure instrument (10ft). Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-09 24 hours 7.6 Hours 

1PS023 => Manual valve for path to 
pressure instrument. Valve leakage Feedwater 

system failure 

Valve leakage causes 
inadvertent drainage 
from main feedwater 

line. 

1.91E-07 24 
Hours 15 Hours 

1FW10AA => 3/4-inch pipe for 
flow to pressure instrument (10ft). Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-09 24 

Hours 7.6 Hours 

1FW021 => Manual valve for path 
to pressure instrument. Valve leakage Feedwater 

system failure 

Valve leakage causes 
inadvertent drainage 
from main feedwater 

line. 

1.91E-07 24 
Hours 15 Hours 
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Table 22. High-pressure heater and bypass FMEA. 

High Pressure Feedwater Heater Paths and Bypass 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW004A => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

H.P. heater loop 
failure 

Heater is unavailable if 
motor operated valve 
spuriously transfers or 
fails to control flow, 
there is operator 
override action. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW02AA => 24-inch pipe from 
H.P. heater A (100ft). Pipe rupture H.P. heater loop 

failure 

Rupture causes leak in 
heater loop but is 
isolable from main 
feedwater line. 

2.78E-08 24 
Hours 7.6 Hours 

1FW01AA => H.P. feedwater heater 
A. 

Tube leaks 
H.P. heater loop 
failure 

H.P. heater tubes leak or 
other problems occur 
rendering the feedwater 
heater unavailable. 

7.01E-07 24 
Hours 7.5 Hours 

Other problems 1.62E-06 24 
Hours 13 Hours 

1FW01DA => 30-inch pipe 
delivering flow to H.P. heater A 
(100ft). 

Pipe rupture H.P. heater loop 
failure 

Rupture causes leak in 
heater loop but is 
isolable from main 
feedwater line. 

2.78E-08 24 
Hours 7.6 Hours 

1FW003A => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

H.P. heater loop 
failure 

Heater is unavailable if 
motor operated valve 
spuriously transfers or 
fails to control flow, 
there is operator 
override action. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW01CA => 24-inch pipe 
delivering flow to heater loop A 
(100ft). 

Pipe rupture Feedwater 
system failure 

Pipe rupture causes leak 
in main feedwater line. 2.78E-08 24 

Hours 7.6 Hours 

1FW004B => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

H.P. heater loop 
failure 

Heater is unavailable if 
motor operated valve 
spuriously transfers or 
fails to control flow, 
there is operator 
override action. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW02AB => 24-inch pipe from 
H.P. heater B (100ft). Pipe rupture H.P. heater loop 

failure 

Rupture causes leak in 
heater loop but is 
isolable from main 
feedwater line. 

2.78E-08 24 
Hours 7.6 Hours 

1FW01AB => H.P. feedwater heater 
B. 

Tube leaks 
H.P. heater loop 
failure 

H.P. heater tubes leak or 
other problems occur 
rendering the feedwater 
heater unavailable. 

7.01E-07 24 
Hours 7.5 Hours 

Other problems 1.62E-06 24 
Hours 13 Hours 

       



 

 108 

High Pressure Feedwater Heater Paths and Bypass 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW01DB => 30-inch pipe 
delivering flow to H.P. heater B 
(100ft). 

Pipe rupture H.P. heater loop 
failure 

Rupture causes leak in 
heater loop but is 
isolable from main 
feedwater line. 

2.78E-08 24 
Hours 7.6 Hours 

1FW003B => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

H.P. heater loop 
failure 

Heater is unavailable if 
motor operated valve 
spuriously transfers or 
fails to control flow, 
there is operator 
override action. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW01CB => 24-inch pipe 
delivering flow to heater loop B 
(100ft). 

Pipe rupture Feedwater 
system failure 

Pipe rupture causes leak 
in main feedwater line. 2.78E-08 24 

Hours 7.6 Hours 

1FW03A => 20-inch pipe for bypass 
flow (1000ft). Pipe rupture Feedwater 

system failure 
Pipe rupture causes leak 
in main feedwater line. 2.78E-07 24 

Hours 7.6 Hours 

1FW005 => Motor operated 
regulating valve. 

Valve leakage 

Feedwater 
system failure 

Rupture causes leak in 
main feedwater line. 
Failure to regulate flow 
causes feedwater 
temperature issues in 
feedwater system. 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 9.14E-08 24 

Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW16A => 3/4-inch pipe 
delivering flow to pressure 
instrument (10ft). 

Pipe rupture Feedwater 
system failure 

Pipe rupture causes leak 
in main feedwater line. 2.78E-09 24 

Hours 7.6 Hours 

1FW020 => Manual valve 
delivering flow to pressure 
transmitter 

Valve leakage Feedwater 
system failure 

Valve leakage causes 
inadvertent flow from 
main feedwater line. 

1.91E-07 24 
Hours 15 Hours 

1FW01B => 30-inch pipe delivering 
flow from pumps to heaters and 
bypass (1000ft). 

Pipe rupture Feedwater 
system failure 

Pipe rupture causes leak 
in main feedwater line. 2.78E-07 24 

Hours 7.6 Hours 
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Table 23. Feedwater pump A FMEA. 

Feedwater Pump A 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW002A => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Leakage causes 
inadvertent flow from 
main feedwater line 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

Fails feedwater 
pump A loop 

Failure to regulate flow 
inadequately supplies 

feedwater and the loop 
must be isolated. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW01AA => 24-inch pipe for flow 
to regulation valve (100ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW09AA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW09DA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW019A => Open valve for path 
from venturi tube. Valve failure Fails feedwater 

pump A loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 

1FW019D => Open valve for path 
from venturi tube. Valve failure Fails feedwater 

pump A loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 

1FW001A => Check valve on 
feedwater loop line. Valve failure Fails feedwater 

pump A loop 

Valve failure to remain 
open or leakage causes 
inadequate flow from 

pump. 

2.29E-07 24 
Hours 15 Hours 

1FW05AA => 18-inch pipe for flow 
back to condenser (100ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FEFW064 => Flow orifice on path 
back to condenser. Rupture Fails feedwater 

pump A loop 

Orifice allows for 
monitoring flow back to 

the condenser. 
1.00E-08 24 

Hours 7.6 Hours 

1FW73AA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW73DA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW541A => Open manual valve 
on path to flow instrument. Valve failure Fails feedwater 

pump A loop 

Valve leakage causes 
loss of flow from pump 

loop. 
1.91E-07 24 

Hours 15 Hours 

1FW541D => Open manual valve 
on path to flow instrument. Valve failure Fails feedwater 

pump A loop 

Valve leakage causes 
loss of flow from pump 

loop. 
1.91E-07 24 

Hours 15 Hours 

1FW012A => Closed angle valve on 
path back to condenser. 

Valve leakage 

Fails feedwater 
pump A loop 

Valve rupture causes 
leak in pump loop. 

Failure of associated 
control instrumentation 
and operator override 

restricts flow back to the 
condenser. 

1.72E-07 24 
Hours 15 Hours 

Failure of solenoid 
control 4.73E-07 24 

Hours 13 Hours 

Failure of operator 
override switch 2.80E-05 24 

Hours 0 Hours 

1FW04AA => 3/4-inch pipe for 
flow to alternate pressure instrument 

(10ft). 
Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 
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Feedwater Pump A 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW011A => Closed manual valve 
to alternate pressure instrument. Valve leakage Fails feedwater 

pump A loop 
Valve rupture causes 
leak in pump loop. 1.91E-07 24 

Hours 15 Hours 

1FW78AA => 20-inch pipe from 
feedwater pump A (100ft). Pipe rupture Fails feedwater 

pump A loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW01PA => Motor driven steam 
generator feedwater pump A. 

Feedwater pump 
failure 

Fails feedwater 
pump A loop Feedwater pump failure. 3.79E-06 24 

Hours 32 Hours 

 
Table 24. Feedwater pump B FMEA. 

Feedwater Pump Loop B 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW002B => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Leakage causes 
inadvertent flow from 
main feedwater line 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

Fails feedwater 
pump B loop 

Failure to regulate flow 
inadequately supplies 

feedwater and the loop 
must be isolated. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW01AB => 24-inch pipe for flow 
to regulation valve (100ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW09BA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW09EA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW019B => Manual valve for path 
from venturi tube. Valve failure Fails feedwater 

pump B loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 

1FW019E => Manual valve for path 
from venturi tube. Valve failure Fails feedwater 

pump B loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 

1FW001B => Check valve on 
feedwater loop line. Valve failure Fails feedwater 

pump B loop 

Valve failure to remain 
open or leakage causes 
inadequate flow from 

pump. 

2.29E-07 24 
Hours 15 Hours 

1FW05AB => 18-inch pipe for flow 
back to condenser (100ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FEFW065 => Flow orifice on path 
back to condenser. Rupture Fails feedwater 

pump B loop 

Orifice allows for 
monitoring flow back to 

the condenser. 
1.00E-08 24 

Hours 7.6 Hours 

1FW73CA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW73FA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW541F => Open manual valve on 
path to flow instrument. Valve failure Fails feedwater 

pump B loop 

Valve leakage causes 
loss of flow from pump 

loop. 
1.91E-07 24 

Hours 15 Hours 

1FW541C => Open manual valve Valve failure Fails feedwater Valve leakage causes 1.91E-07 24 15 Hours 
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Feedwater Pump Loop B 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

on path to flow instrument. pump B loop loss of flow from pump 
loop. 

Hours 

1FW012B => Closed angle valve on 
path back to condenser. 

Valve leakage 

Fails feedwater 
pump B loop 

Valve rupture causes 
leak in pump loop. 

Failure of associated 
control instrumentation 
and operator override 

restricts flow back to the 
condenser. 

1.72E-07 24 
Hours 15 Hours 

Failure of solenoid 
control 4.73E-07 24 

Hours 13 Hours 

Failure of operator 
override switch 2.80E-05 24 

Hours 0 Hours 

1FW04BA => 3/4-inch pipe for 
flow to alternate pressure instrument 

(10ft). 
Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW011B => Closed manual valve 
to alternate pressure instrument. Valve leakage Fails feedwater 

pump B loop 
Valve rupture causes 
leak in pump loop. 1.91E-07 24 

Hours 15 Hours 

1FW78AB => 20-inch pipe from 
feedwater pump B (100ft). Pipe rupture Fails feedwater 

pump B loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW01PB => Turbine driven steam 
generator feedwater pump B. 

Feedwater pump 
failure 

Fails feedwater 
pump B loop 

Feedwater pump failure. 1.09E-05 24 
Hours 32 Hours 

Other feedwater pump 
problems. 5.38E-07 24 

Hours 19 Hours 

 
Table 25. Feedwater pump C FMEA. 

Feedwater Pump C 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW002C => Motor operated 
regulating valve. 

Valve leakage Feedwater 
system failure 

Leakage causes 
inadvertent flow from 
main feedwater line 

1.06E-07 24 
Hours 15 Hours 

Valve fails to 
operate - Motor 

Fails feedwater 
pump C loop 

Failure to regulate flow 
inadequately supplies 

feedwater and the loop 
must be isolated. 

9.14E-08 24 
Hours 15 Hours 

Valve fails to 
operate - Operator 2.80E-05 24 

Hours 0 Hours 

1FW01AC => 24-inch pipe for flow 
to regulation valve (100ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW09CA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW09FA => 3/4-inch pipe from 
venturi tube to instrument (10ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW019C => Manual valve for path 
from venturi tube. Valve failure Fails feedwater 

pump C loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 

1FW019F => Manual valve for path 
from venturi tube. Valve failure Fails feedwater 

pump C loop 

Valve leakage causes 
loss of flow from pump 

loop and spurious 
transfer inhibits the 

instrumentation 
functionality. 

2.42E-07 24 
Hours 15 Hours 
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Feedwater Pump C 

Component Failure Mode Effect Description Failure 
Data 

Mission 
Time MTTR 

1FW001C => Check valve on 
feedwater loop line. Valve failure Fails feedwater 

pump C loop 

Valve failure to remain 
open or leakage causes 
inadequate flow from 

pump. 

2.29E-07 24 
Hours 15 Hours 

1FW05AC => 18-inch pipe for flow 
back to condenser (100ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FEFW066 => Flow orifice on path 
back to condenser. Rupture Fails feedwater 

pump C loop 

Orifice allows for 
monitoring flow back to 

the condenser. 
1.00E-08 24 

Hours 7.6 Hours 

1FW73BA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW73EA => 3/4-inch pipe to flow 
instrument (10ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW541B => Open manual valve 
on path to flow instrument. Valve failure Fails feedwater 

pump C loop 

Valve leakage causes 
loss of flow from pump 

loop. 
1.91E-07 24 

Hours 15 Hours 

1FW541E => Open manual valve on 
path to flow instrument. Valve failure Fails feedwater 

pump C loop 

Valve leakage causes 
loss of flow from pump 

loop. 
1.91E-07 24 

Hours 15 Hours 

1FW012C => Closed angle valve on 
path back to condenser. 

Valve leakage 

Fails feedwater 
pump C loop 

Valve rupture causes 
leak in pump loop. 

Failure of associated 
control instrumentation 
and operator override 

restricts flow back to the 
condenser. 

1.72E-07 24 
Hours 15 Hours 

Failure of solenoid 
control 4.73E-07 24 

Hours 13 Hours 

Failure of operator 
override switch 2.80E-05 24 

Hours 0 Hours 

1FW04CA => 3/4-inch pipe for 
flow to alternate pressure instrument 

(10ft). 
Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-09 24 
Hours 7.6 Hours 

1FW011C => Closed manual valve 
to alternate pressure instrument. Valve leakage Fails feedwater 

pump C loop 
Valve rupture causes 
leak in pump loop. 1.91E-07 24 

Hours 15 Hours 

1FW78AC => 20-inch pipe from 
feedwater pump C (100ft). Pipe rupture Fails feedwater 

pump C loop 
Pipe rupture causes leak 

in pump loop. 2.78E-08 24 
Hours 7.6 Hours 

1FW01PC => Turbine driven steam 
generator feedwater pump C. 

Feedwater pump 
failure 

Fails feedwater 
pump C loop 

Feedwater pump failure. 1.09E-05 24 
Hours 32 Hours 

Other feedwater pump 
problems. 5.38E-07 24 

Hours 19 Hours 

Figure 35, Figure 36, and Figure 37 show the FT structure of each derate scenario.  
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Figure 35. Feedwater system 100% derate fault tree. 

 

 
Figure 36. Feedwater system 50% derate fault tree. 
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Figure 37. Feedwater system 20% derate fault tree. 

 

 
Figure 38. Feedwater system drawing symbol legend. 
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Appendix I 
 

MFW GRA RESULTS 

 
 
The results obtained from the SAPHIRE [158] models concluded that there are four main contributors 

to lost generation in the feedwater system: pipes, valves, pumps, and heaters. Table 8 shows the 
contributions to lost generation per year. The estimated lost generation from this model for the feedwater 
system represents approximately 0.1% of total plant generation if a 100% capacity for the year would be 
achieved. 

Figure 39 displays the lost generation due to the categories of components to capture the relative 
generation loss contributions.  As would be expected based on general industry operating experience, the 
estimated lost generation is dominated by failures of the active components (pumps and valves) as opposed 
to the passive components (pipes and heaters) in the system. 

 

 
Figure 39. Lost generation contributions from the top categories of components. 

 
The 65 valves evaluated in the study contributed to a large amount of the estimated generation loss.  

Five different types of valves were considered in the model. The average cost of lost generation per valve 
is shown in Figure 40. 

Figure 40 shows that each motor valve contributes more to lost generation than any other valve type. 
Each motor-operated valve is estimated to cost around 3,000 dollars per year due to unavailability from 
failure. The values used to obtain Table 8 and Figure 39 and Figure 40 were composed of the sum of lost 
generation from all three derate scenarios. The 50% derate scenario contributed more to generation loss 
than the 25% and 100% scenarios. Figure 41 shows the lost generation contributions from the different 
derate scenarios. 
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Figure 40. Lost generation per valve. 

 

 
Figure 41. Lost generation contributions from the different derate scenarios. 

 

The top cut sets of the 50% derate scenario are the failure of either running feedwater pump and failure 
of either high-pressure heater. The high-pressure heaters were assumed to be repairable online which led to 
a relatively small lost generation contribution when compared to other industry GRA results of feedwater 
systems. To identify how this assumption affected the results, the 100% derate fault tree was modified on 
the basis that online repair of either high-pressure heater was not possible. Figure 42 shows the difference 
in lost generation through changing the repair capability of the high-pressure heaters.  

The value of lost generation caused by the high-pressure heater unavailability increases by more than 
a factor of five. Modification of this repair assumption increases the lost generation due to the feedwater 
system by more than 100,000 dollars per year. The value increase would be more substantial if test, 
maintenance, and repair costs were included in the evaluation. Figure 43 displays the contributions from 
the different derate scenarios when the online repair capability of the high-pressure heaters is removed.  

The results above show that the high-pressure heaters do not contribute as much to risk as the industry 
would suggest when repairable at derated power levels. The ability to repair a high-pressure heater while 
at derated power level has positive impact on economic risk. 
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RAW and FV importance measures were obtained for each basic event in the fault trees. The values 
were plotted on a four-quadrant plot to view the relative positions of each basic event. Figure 44 displays 
the four-quadrant plot composed of 17 basic event types.  

 

 
Figure 42. Lost generation comparison related to heater repair capability. 

 
The plot is on a log-log scale. Plotting the two importance measures for each basic event category on a 

four-quadrant plot provides valuable insights for managing generation risk activities. The thresholds in the 
plot should be viewed as large bands of grey. Threshold lines in four-quadrant plots are used to weigh out 
cost-benefit risk-mitigating decisions for proposed component modifications. The relationships of the 
components with one another is useful for analysis. Consideration of the figure yields conclusions that 
correspond to other industry GRA models of feedwater systems. Figure 45 and Figure 46 display the 
feedwater system four-quadrant plots from Cooper Nuclear Station GRA and GRA Plant Implementation 
Guide, respectively. 

 

 

 
Figure 43. Lost generation contribution when heaters are not repairable online. 
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Figure 44. GRA feedwater system four-quadrant plot. 
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Figure 45. Cooper nuclear station feedwater/condensate four-quadrant plot. 
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Figure 46. GRA plant implementation guide feedwater/condensate four-quadrant plot. 
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Ignoring the points obtained from the condensate system in Figure 45 and Figure 46, the relationships 
between the components in the feedwater systems are related. For example, the feedwater pumps are located 
far to the right but not as high as some valve types in the system. An additional comparison is the motor-
operated valve location on the generic GRA model and the Cooper Nuclear Station GRA model four-
quadrant plots. Further comparisons yield the same revelations for many components. 

Although the online repair capability has a substantial impact on the high-pressure heaters’ 
contributions to lost generation, the repair capability should have little effect on the four-quadrant plot. This 
may suggest the failure frequency obtained from EPIX is lower than industry experience suggests. The 
reason for this could be due to EPIX not differentiating between low-pressure heaters and high-pressure 
heaters. Different data sources would need to be assessed to reach an adequate conclusion. The model 
evaluated in this report was conducted to provide a basis for a generic feedwater system GRA model. The 
generic model provides a solid foundation for the development of a more detailed GRA model for any 4-
loop PWR.  

 

Uncertainty Analysis 
The uncertainty distributions for the failure rates were given in the EPIX spreadsheet. The uncertainty 

values for failure rates were based on a gamma distribution. Table 26 shows how the uncertainty values 
were given from EPIX. 

Table 26. SPAR Component unreliability data and results. 

Description Failure rate [hr-1] Distribution α 
Turbine-driven pump external leakage (small) 5.38E-07 Gamma 15.5 
Motor operated valve fails to remain open 3.24E-08 Gamma 0.593 
Hydraulic valve fail to control 4.57E-07 Gamma 42.5 

 
Any basic event failure rate that was not obtained from the EPIX spreadsheet was assigned a gamma 

distribution with an alpha value of 10. SAPHIRE used the Monte Carlo evaluation method for uncertainty 
with a sample size of 10,000. The random number seed was a default value obtained from SAPHIRE. The 
uncertainty evaluation was based on the unavailability of the feedwater system to support full power per 24 
hours due to the unavailability of equipment. Therefore, the failure rate and the mean time to repair values 
of components were taken into consideration. An uncertainty analysis was not able to be conducted on the 
lost generation values, such as dollars lost per year. In SAPHIRE, the values used to convert the plant derate 
probability into lost generation were point values and the assumption that there was no associated 
uncertainty with the values was made. The mean time to repair values were difficult to assign an uncertainty 
due to the method of obtaining the values. The pc-GAR database does not provide values of uncertainty. 
Therefore, in the case of the generic plant, the values were assumed to be exact point values. The following 
figures are the probability density and cumulative distribution plots for the different derate scenarios. Figure 
47 and Figure 48 are the distributions for unavailability (in hours) of the feedwater system to support more 
than 75% power per 24 hours.  
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Figure 47. 25% derate probability density. 

 

 
Figure 48. 25% derate cumulative distribution. 
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Figure 49 and Figure 50 are the distributions for unavailability (in hours) of the feedwater system to 
support more than 50% power per 24 hours. 

 

 
Figure 49. 50% derate probability density. 

 

 
Figure 50. 50 % derate cumulative distribution. 
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Figure 51 and Figure 52 are the distributions for unavailability (in hours) of the feedwater system to 
support any power per 24 hours. 

 

 
Figure 51. 100% derate probability density. 

 

 
Figure 52. 100% derate cumulative distribution. 
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Appendix J 
 

RAVEN CODE CAPABILITIES 
 
 

RAVEN is a flexible and multi-purpose Uncertainty Quantification (UQ), regression analysis, PRA, 
data analysis and model optimization software. Depending on the tasks to be accomplished and on the 
probabilistic characterization of the problem, RAVEN perturbs (through Monte-Carlo, Latin Hypercube, 
reliability surface search [8] sampling methods) the response of the system by altering its parameters. The 
system is modeled by third party software (e.g., RELAP5-3D, MAAP5) and accessible to RAVEN either 
directly (software coupling) or indirectly (via input/output files). The data generated by the sampling 
process is analyzed using classical and more advanced data mining approaches. RAVEN also manages the 
parallel dispatching (i.e., both on desktop/workstation and large High-Performance Computing machines) 
of the software representing the physical model. RAVEN heavily relies on artificial intelligence algorithms 
to construct surrogate models of complex physical systems in order to perform UQ, reliability analysis 
(limit state surface), and parametric studies. The RAVEN architecture is shown schematically in Figure 53. 

 

 
Figure 53.  RAVEN abstracted module scheme. 

 
RAVEN’s scope is to provide a set of capabilities to build analysis flows based on UQ, reliability 

analysis, optimization and data analysis techniques to be applied to any physical model(s). The main 
objective of RAVEN is to assist the engineer/user to: 

• Identify the best design (on any physics/model) and its safety impact  
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• Estimate the likelihood of undesired outcomes (risk analysis) 

• Identify main drivers/events to act on for reducing impact/consequences of anomalous dynamic 
behaviors of the system under analysis 

• Construct analysis flows combining multiple physical models and analysis procedures 

In other words, the RAVEN software can be employed to perform: 

• Uncertainty Quantification 

• Sensitivity Analysis / Regression Analysis 

• Probabilistic Risk and Reliability Analysis 

• Data Mining Analysis 

• Model Optimization 

The RAVEN software employs several novel and unique techniques, based on extensive use of artificial 
intelligence algorithms, such as adaptive (smart) sampling, adaptive branching algorithms (Dynamic Event 
Tree), time-dependent statistical analysis and data mining. The overall set of algorithms implemented in 
the RAVEN software are designed to handle highly non-linear systems, characterized by system response 
discontinuities and discrete variables. These capabilities are crucial for handling complex system models, 
such as those used in the analyses of NPPs. For example, reliability surface analysis, as implemented in 
RAVEN, is unique and capable to handle non-linear, discontinuous systems, allowing for faster and more 
accurate assessing of failure risk for complex systems.  

Among the different capabilities, RAVEN provides the unique functionality to combine any model (e.g. 
physical models, surrogate models, data analysis models, etc.) in a single entity (named Ensemble Model) 
where each model can feedback into others. In the following section, a more detailed description of this 
capability is reported. 

 

Ensemble Modeling in RAVEN 
In several cases multiple models need to be interfaced with each other since the initial conditions of 

some models are dependent on the outcomes of others. In order to solve this problem, RAVEN provides a 
model entity named EnsembleModel [21]. This class is able to assemble multiple models of other categories 
(i.e., Code, External Model, Reduced Order Models - ROM), identifying the input/output connections, and, 
consequentially the order of execution and which sub-models can be executed in parallel.  

Figure 54 shows an example of an EnsembleModel that is constituted of 3 sub-models (e.g., Reduced Order 
Models [13], Codes, or External Models) where: 

• Model 2 is connected with Model 1 through the variable Θ (Model 1 output and Model 2 input); 

• Model 3 is connected with Model 2 through the variable Π (Model 2 output and Model 3 input); 
In this case, the EnsembleModel is going to drive the execution of all the sub-models in sequence, since 
each model (except the Model 1) is dependent on the outcomes of previously executed models. 

In several cases, the input of a model depends on the output of another model whose input is the output 
of the initial model. In this situation, the system of equations is non-linear, and an iterative solution 
procedure needs to be employed. The EnsembleModel entity in RAVEN is able to detect the non-linearity 
of the sub-models’ assembling and activate the non-linear solver: an iterative scheme. Figure 55 shows an 
example of when the EnsembleModel entity activates the iteration scheme, which ends when the residue 
norm (between an iteration and the other) falls below a certain input-defined tolerance. 
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Figure 54. Example of an EnsembleModel constituted of 3 sequential sub-models. 

 

 

 
Figure 55. EnsembleModel resolving in a non-linear system of equations – Numerical iterations. 

 

 
Figure 56. EnsembleModel data exchange. 
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In RAVEN all the models’ outputs are collected in internal containers (named DataObjects) that store 
time-series and input/output data relations in a standardized fashion (see Figure 56); in this way, the 
communication of the output information among different entities (i.e. Models) can be completely 
independent with respect to the particular type of output generated by a model. The EnsembleModel entity 
fully leverages this peculiarity in order to transfer the data from a Model to the other(s). Based on the 
Input/Output relations of each of the sub-models, the EnsembleModel entity constructs the order of their 
execution and, consequentially, the links among the different entities. 
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Appendix K 
 

REVIEW OF METHODS FOR SUPPLY CHAIN 
SURVEILLANCE AND PRODUCT EVALUATION 

 

 
According to the Jesse Garant Metrology Center, an aerospace company can save millions of dollars in 

costs to fix a post-production problem if they spend tens of thousands of dollars (1% of a million) in pre-
production inspection. This conclusion corresponds to the fact that if the materials supplied by the supplier 
are defective, then the products manufactured using those materials are also defective.  

Industries today focus on quality starting right from the raw materials to the final manufactured product. 
The raw materials and products supplied by the suppliers that do not conform to the industry expectations 
can be avoided by implementing several methods and techniques defined under the term “Supply Chain 
Surveillance.” 

Supply Chain Surveillance (SCS) is the process of identifying, analyzing and maintaining the quality 
standards of the materials and products sent by the supplier with respect to the industry expectations. 
Additionally, it helps to evaluate the potential supplier, establish a healthy relationship with the suppliers, 
set expectations for the tolerable defects and quality standards, and verify those expectations.  

This appendix provides a literature survey on the methods used in Supply Chain Surveillance. Review 
was conducted for tools used by various industry sectors and independent of specific NPP supply chain. 
Some of these tools and their background are summarized in this report. 

 

Using Blockchain in Supply Chain Provenance and Traceability 
Industries today are trying to manage hyper-complex, global supply chains, which involve the 

production, transportation, and fulfillment of products among widespread suppliers. The lack of 
transparency and the difficulties associated with the investigation of suspicious illegal or unethical practices 
are the major concerns in today’s supply chain management. Blockchains are distributed digital ledgers of 
cryptographically signed transactions that are grouped into blocks [65]. Blockchain might find the right 
place in the supply chain to provide the proof of origin for parts and authentication. Blockchain can be 
adopted to many applications used for any exchange, agreements, tracking, and payments. It is a 
decentralized system with everyone in the chain takes ownership for every other asset on the blockchain. 
These assets are recorded and cannot be erased, which aids in bringing out the transparency of the system. 
The data in blockchain flows seamlessly in and around, and in real-time, manufacturers can optimize 
manufacturing planning and store-level forecasting. They can ensure that the right amount of stock is 
available to satisfy demand with limited excess, thereby eliminating lost sales, minimizing carrying costs 
and increasing profitability [66]. Figure 57 from the National Institute of Standards and Technology (NIST) 
shows the layout of blockchain integration with the supply chain. 
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Figure 57. Blockchain layout. 

 

Many large companies like IBM, Walmart, Unilever, Nestle, use this concept in their supply chain 
management to enhance their provenance, traceability, transparency, immutability, and trust with the 
suppliers. For example, IBM has come up with a concept of crypto-anchors which when combined with the 
blockchain technology act as a tamper-proof digital signature helping in authenticating products sent by the 
supplier. According to IBM, these crypto-anchors are smaller than a grain of salt that has as many as one 
million transistors and costs less than ten cents to manufacture. According to the 2018 MHI annual industry 
report, it is expected that the inculcation of blockchain technology in the supply chain in many of the 
industries will rise to 54% over the next five years. The advancements in microfluidics, packaging 
platforms, cryptography integrated with blockchain technology will find a new solution to combat the 
current problems of the supply chain. 

 

Evaluation of Suppliers Using Data Envelopment Analysis (DEA) 
Supplier selection is a multi-criterion problem, which includes both qualitative and quantitative factors. 

The relationship between the industry and the supplier has always been critical. The essential criteria 
typically utilized for this purpose are pricing structure, delivery product quality and service. A DEA is 
multifactor, non – parametric productivity analysis tool, which effectively considers multiple inputs and 
output measures in evaluating relative efficiencies [67]. This data analysis tool evaluates the suppliers based 
on their inputs and outputs, from which their performance and relative efficiency are calculated. These 
values are beneficial in benchmarking the right supplier. The data collected here as inputs and outputs are 
analyzed using the weighted average formula, as shown below in the equation (K-1)[68]:  

𝐸 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑠𝑢𝑚	𝑜𝑓	𝑜𝑢𝑡𝑝𝑢𝑡𝑠
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑠𝑢𝑚	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡𝑠 =
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e vÈ	
É

ÈiV
⋅ 	xÈÆ

 (K-1) 

where m is the number of inputs, s is the number of outputs, yÂÆ is the amount of k-produced by the supplier, 
xÈÆ is the amount of input j utilized by the supplier, vÈ is the weight given to the input k, and uÂ is the weight 
given to output j. The DEA method is not only helpful in evaluating the supplier based on their efficiency 
but it also helps in focusing on the critical parameter(s) that the supplier should work to meet the 
expectations of the industry. Many third-party agencies had developed their own DEA software to analyze 
the complex input and output data and help in finding an efficient supplier for the industry. 
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Evaluation Of Suppliers Using Factory Audits 
The quality of the imported products depends wholly on the suppliers and their factory working 

conditions that should comply with the international standards. Having an unqualified supplier who does 
not conform with the international standards can subject the recipient to supply chain risks, from factory 
disasters and negative publicity to legal repercussions and quality issues. The lack of a standardized audit 
framework has led to “audit fatigue” in the industry.  

ISO 9001 is a quality management standard developed by the International Organization for 
Standardization (ISO). It is the only standard that can be attributed to quality management in the ISO 9000 
family. A typical ISO 9001 standard quality system includes evaluating the following: Basic facilities; 
environment and equipment maintenance; quality management system organization; incoming quality 
controls for materials and components; during production controls to identify quality issues; finished goods 
controls and inspection; lab testing capabilities; HR recruitment and training practices; engineering, 
research and design capabilities; business development and management behavior [70]. Companies like 
Alibaba evaluate, assess and select the suppliers based on the ISO quality standard audit. 

   

Evaluation Of Supplier Using Reliability Capability 
Evaluating supplier by factory audits can be helpful in one way, but the international standards and 

parameters that establish the ability of a manufacturer to produce a quality product do not necessarily 
establish the manufacturer’s ability to produce a reliable product consistently. Consequently, the ISO 9000 
series certifications that act as an international reference for quality requirements cannot be used as a metric 
for assessing the capability of a manufacturer to produce a reliable product [71]. So, industries should 
undergo reliability capability assessment to have a  pre-facto assurance that the goods and services delivered 
by their supplier are reliable enough to not have any production flow disruption. Reliability capability is 
the measure of an electronics manufacturer’s ability to identify and understand its reliability-related 
objectives and the effectiveness of the processes and practices used by the organization to meet those 
objectives [72]. The reliability capability evaluation process is comprised of three phases. In the first phase, 
initial information about the process is sent to the company being evaluated. A reliability capability 
evaluation questionnaire is included for the company to answer and collect evidence supporting the 
answers. In the second phase, evaluators visit the facility, and verify the responses to the questions with the 
supporting evidence. The third phase involves the compilation of an evaluation report. After this three-
phase process, five levels of reliability capability maturity along with their characteristics are measured 
with respect to evolutionary transition for a company. To assign a maturity level to a key practice, 
requirements in terms of reliability tasks have been enumerated. An assessment based on key practices can 
place companies at one of the five maturity levels using radar charts [73]. It also been proved that this 
method is very efficient in benchmarking the supplier for reliability based on their activities. 

 

Product’s Construction Data Form (PCDF) 
Critical components are those which, when they fail compromise the safety of the product. They are 

crucial in maintaining compliance with the standard. The International Electrotechnical Commission (IEC) 
specified that critical components, sometimes referred to as safety-critical components, are a primary 
concern in developing a PCDF [74]. A PCDF should list the following information: part number; 
manufacturer or trademark name; part type or model; technical specifications; relevant testing standard and 
certification markings or symbols. An example of PCDF table is shown in Figure 58 [75]. Using this PCDF, 
the supplier industry checks the critical components for its International Safety Standard along with the 
quality. It also saves time by providing the requirements for production. 
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Figure 58. An example of CDF for an electrical appliance exported to Germany. 

 

Risks of Counterfeit Part and Material Injection 
A counterfeit electronic part is one whose identity has been deliberately misrepresented. A counterfeit 

part is considered a category of non-conforming product. Along with the methods discussed earlier, there 
is always a risk of counterfeited raw-materials and components making their way into the supply chain. 
These parts can be avoided by using the tools and methods reported in the literature [76-79] and by use of 
appropriate supply chain management tools and industry standards. Our primary focus in this report is the 
methods used in the supply chain surveillance. One of the evaluation criteria for the tools will be the ability 
to avoid counterfeit parts and materials. 
 

Evaluation Criteria to Compare The Surveillance Tools 
The following criteria are selected to evaluate and compare the various methods:  

1. Human resources cost: The total cost involved in employing the human resource and their services to 
develop, implement and monitor the pilot process. 

2. Capital cost:  The fixed, one-time setup expenses of the pilot process, per se initial research, 
administrative and management expenses.  

3. Performance cost: The cost associated with measuring the performance factors which are represented 
in the ratio of cost to benefits. 

4. Material cost: The cost associated with the procuring, storing and buying materials (both direct and 
indirect) for the implementation of the process. 

5. Workforce skill requirement: The skill of the manpower for implementing the process based on the 
methods, in terms of high, medium or low skill requirement. 

6. Process implementation time: The time taken for implementing the pilot process based on the 
methodology. 

7. Product evaluation time: The time taken for evaluating the product. 
8. Number of unscheduled maintenance: The measure of how frequently the maintenance team will 

be responding to the product being manufactured from the supplied raw materials that underwent the 
pilot process developed based on the method. 
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9. Ability to detect and avoid counterfeit parts and materials: Counterfeit parts result in additional 
risk of not finding a responsible party to make good if a problem arises – the surveillance method 
should be able to detect and avoid counterfeit parts. 
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Appendix L 
 

ADVANCED PHM METHODS 
 
 

Designers often establish the usable life of products and warranties based on extrapolating accelerated 
test results to assumed usage rates and life-cycle conditions. These assumptions may be based on worst-
case scenarios of various parameters composing the end-user environment. In principle, if the assumed 
conditions and actual use conditions are the same, the product should be reliable for the designed lifetime, 
as shown in Figure 59 (a). However, this is rarely true, and usage and environmental conditions could vary 
significantly from those assumed. To address the actual lifecycle conditions, products can be equipped with 
life consumption monitors for in situ assessment of remaining life. Thus, even if the product is used at a 
higher usage rate and in harsh conditions, it can still avoid unscheduled maintenance and catastrophic 
failure, maintain safety, and ultimately save cost. Or if the product is used in a more benign manner, its life 
can be extended (see Figure 59 (b)).  

 

  
 (a) Usage as per design  (b) More severe usage than intended design 

 
 (c) Less severe usage than intended design 

Figure 59. Application of health monitoring for product reuse. 
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One of the vital inputs in making end-of-life decisions is the estimate of degradation and the remaining 
life of the product. Figure 59 (c) illustrates a scenario in which a working product is returned at the end of 
its designed life. Using the health monitors installed within the product, the reusable life can be assessed, 
without having to disassemble the product. Ultimately, depending on other factors including cost of the 
product, demand for spares, and yield in assembly and disassembly, the manufacturer can choose to reuse 
or dispose. 

Data-driven approaches use data analytics and machine learning to determine anomalies and make 
predictions about the reliability of electronic devices, systems, and products based on internal and/or 
external covariates (called endogenous and exogenous covariates). Internal covariates (e.g., temperature, 
vibration) are measured by sensors on the asset and are only present when the asset is operating. External 
covariates (e.g., weather data) are present whether the asset is operating or not. The data-driven approach 
analyzes asset performance data based on a training database of internal and/or external covariates. A failure 
precursor is a data event or trend that signifies performance degradations that may be indicative of 
impending failure. A precursor indication is usually a change in a measurable variable that can be associated 
with subsequent failure. For example, a shift in the output voltage of a power supply might suggest 
impending failure due to a damaged feedback regulator and opto-isolator circuitry. Failures can then be 
predicted by using causal relationships between measured variables that can be correlated with subsequent 
failure and for Phisics of Failure (PoF). 

A first step in failure precursor PHM is to select the life-cycle parameters to be monitored. Parameters 
can be identified based on factors that are crucial for safety, that are likely to cause catastrophic failures, 
that are essential for mission completeness, or that can result in long downtimes. Selection can also be based 
on knowledge of the critical parameters established by experience, field failure data on similar products, 
and qualification testing. More systematic methods, such as Failure Modes, Mechanisms, And Effects 
Analysis (FMMEA), can also be used to determine parameters that need to be monitored. 

In general, to implement a precursor reasoning-based PHM system, it is necessary to identify the 
precursor variables for monitoring and then develop a reasoning algorithm to correlate the change in the 
precursor variable with the impending failure. This characterization is typically performed by measuring 
the precursor variable under an expected or accelerated usage profile. Depending on the characterization, a 
model is developed—typically a parametric curve-fit, neural network, Bayesian network or a time-series 
trending of a precursor signal. This approach assumes that there are one or more expected usage profiles 
that are predictable and can be simulated, often in a laboratory setup. In some products the usage profiles 
are predictable, but this is not always true. 

For a fielded product with highly varying usage profiles, an unexpected change in the usage profile 
could result in a different (non-characterized) change in the precursor signal. If the precursor-reasoning 
model is not characterized to factor in the uncertainty in life-cycle usage and environmental profiles, it may 
provide false alarms. Additionally, it may not always be possible to characterize the precursor signals under 
all possible usage scenarios (assuming they are known and can be simulated). Thus, the characterization 
and model development process can often be time consuming and costly and may not always work. There 
are many examples of the monitoring and trending of failure precursor to assess health and product 
reliability. 

Data-driven approaches for PHM are used for both the diagnosis and prognosis stages, often based on 
statistical and machine learning techniques, as illustrated in Figure 60.  

 



 

 136 

 
Figure 60. A general procedure of a data-driven approach to prognostics. 

 

In Figure 60, data acquisition is to collect data necessary for PHM, including operational and 
environmental data that can be obtained from sensors by selecting and appropriately locating sensors that 
provide the capability to collect a history of time-dependent degradation of materials or environmental 
stresses on a target product. In general, the first step of a data-driven approach to PHM is data pre-
processing, including missing value management, data cleansing (e.g., noise removal, outlier removal), 
normalization or scaling, imbalanced data management, and so forth. 

The next step will be feature discovery to find a good set of features that can be used for anomaly 
detection, diagnosis, and prognosis. More specifically, feature discovery involves feature construction via 
time, frequency, and time-frequency analyses, dimensionality reduction based on either feature extraction 
or feature selection, and feature learning using deep neural networks to automatically discover the 
representations needed for feature detection and classification, typically related to diagnostic tasks in PHM. 
Note that feature extraction is used to reduce the dimensionality of the given feature vector by using linear 
or non-linear transformations, whereas feature selection is used to select an optimal subset of the given 
feature vector for PHM tasks.  

Representative feature extraction techniques include Principal Component Analysis (PCA) [80], Kernel 
PCA [81], Linear Discriminant Analysis (LDA) [82], Kernel LDA [83], generalized discriminant analysis 
[84], independent component analysis [85], t-distributed stochastic neighbor embedding [86], and so forth. 
For feature selection, the following methods are representative: filter methods, wrapper methods, and 
embedded methods. Filter feature selection methods apply a statistical measure to assign a scoring to each 
feature. The features are ranked by their score and either selected to be kept or removed from a given 
dataset. The methods are often univariate and consider the feature independently, or with regard to the 
dependent variable. Some examples of some filter methods include the Chi-square test [87], information 
gain [88] and correlation coefficient scores [89]. Wrapper methods consider the selection of a set of features 
as a search problem, where different combinations are prepared, evaluated and compared to other 
combinations. A predictive model (e.g., k-nearest neighbor, support vector machines, and neural networks) 
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is used to evaluate a combination of features and assign a score based on model accuracy. The search 
process may be methodical such as a best-first search, it may be stochastic such as a random hill-climbing 
algorithm, or it may use heuristics, like forward and backward passes to add and remove features. An 
example of a wrapper method is the recursive feature elimination algorithm [90]. Embedded methods learn 
which features best contribute to the accuracy of the model while the model is being created. The most 
common type of embedded feature selection methods are regularization methods. Regularization methods 
are also called penalization methods that introduce additional constraints into the optimization of a 
predictive algorithm (such as a regression algorithm) that bias the model toward lower complexity (fewer 
coefficients). Examples of regularization algorithms are the LASSO [91], elastic net [92] and ridge 
regression [93] approaches.  

The use of handcrafted features for diagnosis has limited improving diagnostic performance [94]. 
Likewise, handcrafting a good set of features is a manual process that is problem-specific and un-scalable. 
Accordingly, the need for automatically discovering the features useful for anomaly detection, diagnosis, 
and prognosis has increased. Zhao et al. [95, 236] verified the efficacy of deep neural networks for feature 
learning to improve diagnostic performance. Shao et al. [96] used auto-encoders to reduce the 
dimensionality of the input data and employed a novel convolutional deep belief network to learn the 
representative features for fault diagnosis. Liu et al. [97] used a Gaussian-Bernoulli deep belief network for 
fault diagnosis of electronics-rich analog systems by effectively capturing high-order semantic features 
from analog circuits’ voltage signals and verified the effectiveness of the method by comparing with 
conventional feature extraction methods in terms of diagnostic performance.  

Diagnosis extracts fault-related information from the sensor signals caused by anomalies in asset health. 
Anomalies may result from material degradation, as well as changes in use conditions. Diagnosis relates 
the signal anomalies to a failure mode(s) and identifies the quantity of damage that has occurred as a health 
indicator. The results from this anomaly diagnosis can provide advanced warnings of failure. As mentioned 
above, diagnosis is often referred to as a classification problem due to its nature of identifying failure modes 
and/or mechanisms, pinpointing the type of faults, and determining the levels of degradation. Accordingly, 
diverse supervised learning algorithms have been employed for diagnosis, including k-nearest neighbor 
[98,99], support vector machines [100,101,234], decision trees [102,103], and shallow/deep neural 
networks [104-106, 238] and petri nets [235]. 

Despite the fact that the supervised learning algorithms have been studied for fault diagnosis of diverse 
applications, the problem is that there is no systematic way to identify a specific machine learning model 
that can work well for fault diagnosis. This is because each of the machine learning models are based on 
assumptions on one or more properties of data (e.g., non-normality, multimodality, nonlinearity, etc.). For 
example, a support vector machine assumes the data or its transform using a kernel function to be linearly 
separable. Likewise, a fundamental assumption of the linear discriminant analysis is that the independent 
variables (or features) are normally distributed. These assumptions can rarely be met in real-world data, 
leading to unacceptable errors. With the development of artificial neural network technology, deep learning 
techniques have become popular. These techniques do not depend on strong assumptions as do many other 
methods, and their superior accuracy has been reported for a wide range of applications. However, deep 
learning has yet to overcome the following challenges. First, it is prone to overfitting, leading to large 
variances. Second, it does not work well for multimodal data. Although some solutions have been proposed 
for the former challenge, the later challenge will likely remain unresolved into the near future. Thus, 
ensemble learning methods to overcome the drawbacks of selecting a specific machine learning algorithm 
for fault diagnosis have been used [107].  

Prognosis or remaining useful life estimation methods use statistical and machine learning algorithms 
to predict the progression of a specific failure mechanism from its incipience to failure within appropriate 
confidence intervals. Xiong et al. [108] presented a state-of-charge estimation method for lithium-ion 
batteries using a double-scale particle filtering method. Chang et al. [109] introduced a prognostics-based 
qualification method for light-emitting diodes by exploiting a relevance vector machine regression model. 
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This step often requires additional information not traditionally provided by sensors, such as maintenance 
history, past and future operating profiles, and environmental factors [110], but available within the Internet 
of Things (IoT) paradigm. The final key aspects of PHM are to effect appropriate decision making; to 
prevent catastrophic failures; to increase asset availability by reducing downtime and no-fault-founds; to 
extend maintenance cycles and execute timely repair actions; to lower life-cycle costs from reductions in 
inspection, repair, and inventory costs; and to improve system qualification, design, and logistical support. 

Compared to PoF approaches, data-driven approaches do not necessarily need system-specific 
information. The behavior of the system based on the data collected can be learnt using the data-driven 
approaches and can be used to analyze intermittent faults by detecting changes in system features. The 
approaches can also be used in complex systems with multiple and potentially competing failure modes as 
long as the system exhibits repeatable behavior. Zhang et al. [237] presented an approach for the prognosis 
of lithium-ion batteries using Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) to 
learn the long-term dependencies among the batteries’ degraded capacities. In other words, the strength of 
data-driven approaches is their ability to transform high-dimensional noisy data into lower-dimensional 
information for diagnostic and prognostic decisions. Reliance on historical data on the failure modes or 
mechanisms the analyst seeks to detect, are some of the limitations of the data-driven approach. This 
especially can be an issue when the consequence of failure is high, resulting in reliance on simulated or 
laboratory rather than field data for the training dataset. Reliance on historical data is also an issue for new 
products for which an extensive field failure history is not available. 

The advantages from the PoF-based and data-driven approaches are combined to allow better RUL 
prediction capability [111] as shown in Figure 61. This approach reduces the reliance on historical datasets 
and addresses the issue of previously unseen failure modes.  
 

 
Figure 61. Fusion PHM approach [111]. 

 
In fusion PHM, the first step is to determine which variables to monitor. The variables consist of 

external covariates, including operational and environmental loads, as well as internal covariates based on 
sensor data. The next step is to identify features of these variables. Then, in-situ measurements and 
deviations from the features associated with healthy states are used to detect anomalous behavior (e.g., 
Mahalanobis distance [112] (basically a multi-dimensional generalization of the idea of measuring how 
many standard deviations away a point P is from the mean of a distribution D) , sequential probability ratio 
test [113], and self-organizing map [114]). Once anomalies are detected, isolation techniques identify 
features that significantly contribute to the abnormal status. These features are further used as inputs of PoF 
models for RUL prediction. For the purpose of feature isolation, various data-mining and machine learning-
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based techniques (e.g., PCA [115], mutual information-based feature selection [116], and support vector 
machine SVM [117]) can be employed.  

PoF models are used to assess in-situ degradation of the system under environmental and operating 
conditions. In fact, a number of potential failure mechanisms may exist in the use of the system. It may not 
always be the case that, it is theoretically necessary to have PoF model(s) corresponding to each failure 
mechanism for accurate assessment of in-situ degradation. So, the fusion PHM scheme basically identifies 
and prioritizes the potential mechanisms for the system under certain environmental and operational 
conditions. Then, PoF models can be identified from the database involving pre-defined PoF models. 

Failure definition is considered as a process of defining the criteria of failure. Additionally, failure 
definition is based on PoF models, historical usage data, system specifications, or related standards for each 
potential failure mechanism. In Figure 61, degradation modeling is defined as a process of learning (or 
predicting) the behavior of the model parameters that are highly correlated with failure. To predict a 
parameter degradation trend, techniques such as relevance vector machine [118], hidden Markov model 
[119], and filters (e.g., Kalman filter [120] and particle filter [121]) can be used. If the predictive parameters 
meet the failure criteria resulting from failure mode definition, then the RUL is predicted using this 
information. Estimated Time To Failure (TTF) also can be predicted using statistical and machine learning 
models. 

The aim of the fusion approach is to overcome the limitations of both the PoF-based and data-driven 
approaches for RUL prediction. A fusion prognostic framework was proposed to improve the accuracy of 
system state forecasting by incorporating the strengths of both the data-driven and PoF approaches. The 
fusion PHM approach was used to predict the RUL of Multilayer Ceramic Capacitors (MLCCs) [122], 
avionics systems [123], integrated-gate bipolar transistors (IGBTs) [124], and corrosion fatigue of 
structures [125]. These fusion-based PHM applications can be appropriate for specific applications. In the 
future, IoT-based PHM will assist these fusion models in the same way as it will support data-driven 
models. 

 

Implementation of PHM in a System of Systems 
System of systems is the term used to describe a complex system comprising many different subsystems 

that may be structurally or functionally connected. These different subsystems might themselves be made 
up of different subsystems. In a system of systems, many independent subsystems are integrated such that 
the individual functions of the subsystems are combined to achieve a capability/function beyond the 
capability of the individual subsystems. For example, a military aircraft is made up of subsystems, 
including: airframe, body, engines, landing gear, wheels, weapons, radar, avionics etc. Avionic sub-systems 
could include the Communication Navigation and Identification (CNI) system, GPS, inertial navigation 
system (INS), Identification Friend Or Foe (IFF) system, landing aids, and voice and data communication 
systems.  It is noted that NPPs similarly incorporate numerous subsystems that monitor and control various 
high-level functions such as core reactivity, core flow and cooling, containment integrity, etc. all with the 
overall objective of economically and safety generating electricity.   

Implementing an effective PHM strategy for a complete system of systems requires integrating different 
prognostic and health monitoring approaches. Because the systems are so complex, the first step in 
implementation of prognostics is to determine the weak link(s) in the system. One of the ways to achieve 
this is by conducting a FMMEA for the product. Once the potential failure modes, mechanisms, and effects 
have been identified, a combination of canaries, precursor reasoning, and life-cycle damage modeling may 
be implemented for different subsystems of the product, depending on their failure attributes. Once the 
monitoring techniques have been decided, the next step is to analyze the data. 

Different data analysis approaches like data-driven models, PoF-based models, or hybrid data analysis 
models can be used to analyze the same recorded data. For example, operational loads of computer system 
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electronics such as temperature, voltage, current, and acceleration can be used with PoF-damage models to 
calculate the susceptibility to electromigration between metallization and thermal fatigue of interconnects, 
plated-through holes, and die attach. Also, data about the CPU usage, current, and CPU temperature, for 
example, can be used to build a statistical model that is based on the correlations between these parameters. 
This data-driven model can be appropriately trained to detect thermal anomalies and identify signs for 
certain transistor degradation.   

Implementation of prognostics for a system of systems is complicated and in the very initial stages of 
research and development. But there has been tremendous development in certain areas related to PHM. 
Advances in sensors, microprocessors, compact nonvolatile memory, battery technologies, and wireless 
telemetry have already enabled the implementation of sensor modules and autonomous data loggers.  
Integrated, miniaturized, low-power, reliable sensor systems operated using portable power supplies (such 
as batteries) are being developed.  These sensor systems have a self-contained architecture requiring 
minimum or no intrusion into the host product, in addition to specialized sensors for monitoring localized 
parameters.  Sensors with embedded algorithms will enable fault detection, diagnostics, and remaining-life 
prognostics, which will ultimately drive the supply chain.  The prognostic information will be linked via 
wireless communications to relay needs to maintenance staff and decision-makers. Automatic identification 
techniques such as Radio Frequency Identification (RFID) will be used to locate parts in the supply chain, 
all integrated through a secure web portal to acquire and deliver replacement parts quickly on an as-needed 
basis. 

Research is being conducted in the field of algorithm development to analyze, trend, and isolate large-
scale multivariate data. Methods like projection pursuit using principal component analysis and support 
vector machines, Mahalanobis distance analysis, symbolic time-series analysis, neural networks analysis, 
and Bayesian networks analysis can be used to process multivariate data. 

Even though there are advances in certain areas related to prognostics, many challenges still remain. 
The key issues with regard to implementing PHM for a system of systems include decisions of which 
systems within the system of systems to monitor, which system parameters to monitor, selection of sensors 
to monitor parameters, power supply for sensors, on-board memory for storage of sensed data, in situ data 
acquisition, and feature extraction from the collected data. It is also a challenge to understand how failures 
in one system affect another system within the system of systems and how it affects the functioning of the 
overall system of systems. Getting information from one system to the other could be hard, especially when 
the systems are made by different vendors. Other issues to be considered before implementation of PHM 
for system of systems are the economic impact due to such a program, contribution of PHM implementation 
to a condition-based maintenance, and logistics. 

The elements necessary for a PHM application are available, but the integration of these components 
to achieve the prognostics for a system of systems is still in the works. In the future, electronic system 
designs will integrate sensing and processing modules that will enable in situ PHM. A combination of 
different PHM implementations for different subsystems of a system of system will be the norm for the 
industry.  
 

Implementation of PHM: Electronics 
As an example, in this section we describe implementation of PHM in an industry that is different from 

commercial NPPs. This section is intended to provide a reference for how such an advanced PHM system 
could function. In this example we use application of PHM to the commercial electronic devices industry. 

Pecht et al. [126] proposed several measurable parameters that can be used as failure precursors for 
electronic products, including switching power supplies, cables and connectors, CMOS ICs, and voltage-
controlled high-frequency oscillators (see Table 27).   
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Table 27. Potential failure precursors for electronics. 

Electronic Subsystem Failure Precursor 

Switching power supply 

• Direct-current (DC) output (voltage and current levels) 
• Ripple 
• Pulse width duty cycle 
• Efficiency 
• Feedback (voltage and current levels) 
• Leakage current 
• Radio frequency (RF) noise 

Cables and connectors 
• Impedance changes 
• Physical damage 
• High-energy dielectric breakdown 

CMOS IC 

• Supply leakage current 
• Supply current variation 
• Operating signature 
• Current noise 
• Logic-level variations 

Voltage-controlled oscillator 

• Output frequency 
• Power loss 
• Efficiency 
• Phase distortion 
• Noise 

Field effect transistor • Gate leakage current/resistance 
• Drain-source leakage current/resistance 

Ceramic chip capacitor 
• Leakage current/resistance 
• Dissipation factor 
• RF noise 

Electrolytic capacitor 
• Leakage current/resistance 
• Dissipation factor 
• RF noise 

RF power amplifier 
• Voltage standing wave ratio (VSWR) 
• Power dissipation 
• Leakage current 

  

In general, to implement a precursor reasoning-based PHM system, it is necessary to identify the 
precursor variables for monitoring and then develop a reasoning algorithm to correlate the change in the 
precursor variable with the impending failure. This characterization is typically performed by measuring 
the precursor variable under an expected or accelerated usage profile. Depending on the characterization, a 
model is developed—typically a parametric curve-fit, neural network, Bayesian network or time-series 
trending of a precursor signal. This approach assumes that there are one or more expected usage profiles 
that are predictable and can be simulated, often in a laboratory setup. In some products the usage profiles 
are predictable, but this is not always true. 

For a fielded product with highly varying usage profiles, an unexpected change in the usage profile 
could result in a different (non-characterized) change in the precursor signal. If the precursor reasoning 
model is not characterized to factor in the uncertainty in life-cycle usage and environmental profiles, it may 
provide false alarms. Additionally, it may not always be possible to characterize the precursor signals under 
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all possible usage scenarios (assuming they are known and can be simulated). Thus, the characterization 
and model development process can often be time consuming and costly and may not always work.  

There are many examples of the monitoring and trending of failure precursors to assess health and 
product reliability. Some key studies are presented below. 

Early detection of anomalies in any system or component prevents impending failures and enhances 
performance and availability. The complex architecture of electronics, the interdependency of component 
functionalities, and the miniaturization of most electronic systems make it difficult to detect and analyze 
anomalous behaviors. A Hidden Markov Model-based classification technique determines unobservable 
hidden behaviors of complex and remotely inaccessible electronic systems using observable signals. Dorg 
et al. [240] presented a data-driven approach for anomaly detection in electronic systems based on a 
Bayesian Hidden Markov Model classification technique. The posterior parameters of the Hidden Markov 
Models are estimated using the conjugate prior method. An application of the developed Bayesian Hidden 
Markov Model-based anomaly detection approach was presented for detecting anomalous behavior in 
Insulated Gate Bipolar Transistors using experimental data. The detection results illustrated that the 
developed anomaly detection approach can help detect anomalous behaviors in electronic systems, which 
can help prevent system downtime and catastrophic failures. 

Unexpected circuit failures in analog circuits during field operation can have severe implications. To 
address this concern, Vasan et al. [247] developed a method for detecting faulty circuit condition, isolating 
fault locations and predicting the remaining useful performance of analog circuits. Through successive 
refinement of circuit's response to a sweep signal, features were extracted for fault diagnosis. The fault 
diagnostics problem was solved as a pattern recognition problem using kernel methods. From the extracted 
features, a fault indicator was developed for failure prognosis. Further, an empirical model was developed 
based on the degradation trend exhibited by the fault indicator. A particle filtering approach was used for 
model adaptation and remaining useful performance estimation. 

Khemani et al. [248] developed a simulation based PHM approach for real-world nonlinear analog 
circuits that could be implemented without any operational data from the circuit. This approach used design 
of experiments to estimate the criticality of circuit components. The fault diagnosis of the most critical 
components was carried out using a deep learning model. Individual deep learning models were used for 
every critical component to predict their degradation and were further used in circuit RUL estimation. 

Measurements based on DC resistance have traditionally been used to monitor the reliability of 
electronic products. Unfortunately, DC resistance is not useful for detecting intermediate stages between a 
short and an open, such as a partially degraded interconnect. Under cyclic loading conditions, interconnect 
degradation is caused by fatigue cracking, which often initiates at the surface where the strain range is 
maximized. At high operating frequencies, signal propagation is concentrated at the circumferential region 
of an interconnect due to the skin effect. Therefore, RF impedance analysis offers a more sensitive means 
of detecting interconnect degradation than DC resistance. The skin effect also has implications for the 
reliability of electronics used in applications such as radar and telecommunications. The use of higher 
frequencies will make these circuits increasingly susceptible to performance degradation as a result of small 
cracks or deformation that would go unnoticed in lower frequency applications. The study [149] 
demonstrated applications of the skin effect to detect interconnect degradation. Mechanical fatigue tests 
have been conducted with an impedance-controlled circuit board on which a surface mount component was 
soldered. During solder joint degradation, simultaneous measurements were performed of DC resistance 
using the Time Domain Reflectometry (TDR) reflection coefficient as a measure of RF impedance. Two 
TDR reflection coefficients with different frequency ranges were monitored to evaluate the effect of 
frequency range on the sensitivity of RF impedance to mechanical degradation. The TDR reflection 
coefficients were consistently observed to increase in response to early stages of solder joint cracking, while 
the DC resistance remained constant until the solder joint was completely separated. The TDR reflection 
coefficient measured over a higher frequency range responded earlier than one with a lower frequency 
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range. This demonstrates that as signal frequencies increases, smaller cracks are capable of producing 
detectable amounts of signal integrity degradation. 

Smith and Campbell [136] developed a Quiescent Current Monitor (QCM) that can detect elevated 
Iddq current in real time during operation. The QCM performed leakage current measurements on every 
transition of the system clock to get maximum coverage of the IC in real time. Pecht et al. [137] and Xue 
and Walker [139] proposed a low-power built-in current monitor for CMOS devices. In the Pecht, et al., 
study, the current monitor was developed and tested on a series of inverters for simulating open and short 
faults. Both fault types were successfully detected and operational speeds of up to 100 MHz were achieved 
with negligible effect on the performance of the circuit under test. The current sensor developed by Xue 
and Walker enabled Iddq monitoring at a resolution level of 10 pA. The system translated the current level 
into a digital signal with scan chain readout. This concept was verified by fabrication on a test chip. 

GMA Industries [140-141] proposed embedding Molecular Test Equipment (MTE) within ICs to 
enable them to continuously test themselves during normal operation and to provide a visual indication that 
they have failed. The molecular test equipment could be fabricated and embedded within the individual IC 
in the chip substrate. The molecular-sized sensor “sea of needles” could be used to measure voltage, current, 
and other electrical parameters, as well as sense changes in the chemical structure of integrated circuits that 
are indicative of pending or actual circuit failure. This research focuses on the development of specialized 
doping techniques for carbon nanotubes to form the basic structure comprising the sensors. The integration 
of these sensors within conventional IC circuit devices, as well as the use of molecular wires for the 
interconnection of sensor networks, is a crucial factor in this research. However, no product or prototype 
has been developed to date. 

Electromagnetic coils are widely used components in a variety of industries and systems, including 
electric motors, solenoids, transformers, and electromechanical contacts. Studies have shown that solenoid 
valve electromagnetic coils are components within the valve that are susceptible to failure, with over 50% 
of solenoid valve failures aused by failures in the electrical coil. Moreover, between 26% and 36% of motor 
failures are due to electromagnetic coil insulation problems. The failure of electromagnetic coil insulation 
can lead to catastrophic failure of the coil and subsequently, the component and system in which the coil is 
used. Yet current methods of fault detection in electromagnetic coils cannot be performed in-situ, relegating 
diagnostic efforts to times when the equipment is shut down. The low tolerance for such failures in defense 
products motivates the development and exploitation of the ability to detect and forecast electromagnetic 
coil insulation degradation and failure in-situ. Prior work in the AC motor community on twisted pairs of 
magnet wire and motor coils has shown that coil impedance measurements can reveal useful diagnostic 
information. However, there are discrepancies between many studies in the AC motor community regarding 
the impedance behavior of insulation as it degrades. Furthermore, due to differences in environmental 
loading conditions, the ability to adaptively locate frequencies where impedance better reflects the health 
state of the insulation can be enormously useful. For diagnostic and prognostic capabilities to be fully 
realized, an experimental and theoretical foundation must be established. In [150], the author seeks to 
experimentally confirm the use of impedance as a health indicator and quantify its use in terms of: a) which 
frequencies of impedance measurement best reflect the health of the insulation; b) how the environmental 
loading conditions affect the migration patterns of the impedance measurements; and c) how the impedance 
measurements reflect the chemical and mechanical changes at work as the insulation degrades. Therefore, 
ageing experiments will be conducted by testing coils, while measuring impedance spectra, and periodically 
removing some coils to perform Fourier Transform Infrared (FTIR) spectroscopy and nanoindentation tests 
on the insulation. This study will deliver a data-driven method for detecting and forecasting failures in 
electromagnetic coil insulation and will relate the data-driven method with a physics-of-failure 
understanding of the underlying degradation phenomena. 

Cannich and Mamat-Ibrahim [142] developed an algorithm for health monitoring of voltage source 
inverters with pulse width modulation. The algorithm was designed to detect and identify transistor open-
circuit faults and intermittent misfiring faults occurring in electronic drives. The mathematical foundations 
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of the algorithm were based on discrete wavelet transform (DWT) and fuzzy logic (FL). Current waveforms 
were monitored and continuously analyzed using DWT to identify faults that may occur due to constant 
stress, voltage swings, rapid speed variations, frequent stop/start-ups, and constant overloads. After fault 
detection, “if-then” fuzzy rules were used for very large scale integrated (VLSI) fault diagnosis to pinpoint 
the fault device. The algorithm was demonstrated to detect certain intermittent faults under laboratory 
experimental conditions. 

Self-Monitoring Analysis And Reporting Technology (SMART), currently employed in select 
computing equipment for Hard Disk Drives (HDD), is another example of precursor monitoring [143]. 
HDD operating parameters, including the flying height of the head, error counts, variations in spin time, 
temperature, and data transfer rates, are monitored to provide advance warning of failures (see Table 28). 
This is achieved through an interface between the computer’s start-up program (basic input/output system, 
BIOS) and the HDD. Anomaly detection in HDDs is crucial for users to prevent data loss and to backup 
their data. A fusion approach was proposed to monitor the HDD health status based on Mahalanobis 
Distance (MD) and Box-Cox transformation [239]. A quality control technique-Shewhart control chart - 
was introduced using the transformed MD values to detect the anomalies in HDDs. 

 
Table 28. Monitoring parameters based on reliability concerns in hard drives. 

Reliability Issues Parameters Monitored 

• Head assembly 
- Crack on head 
- Head contamination or resonance 
- Bad connection to electronics module 

• Motors/bearings 
- Motor failure 
- Worn bearing 
- Excessive run-out 
- No spin 

• Electronic module 
- Circuit/chip failure 
- Interconnection/solder joint failure 
- Bad connection to drive or bus 

• Media 
- Scratch/defects  
- Retries 
- Bad servo 
- ECC corrections 

• Head flying height: A downward 
trend in flying height will often 
precede a head crash.  

• Error checking and correction (ECC) 
use and error counts: The number of 
errors encountered by the drive, even 
if corrected internally, often signals 
problems developing with the drive.  

• Spin-up time: Changes in spin-up 
time can reflect problems with the 
spindle motor.  

• Temperature: Increases in drive 
temperature often signal spindle 
motor problems.  

• Data throughput: Reduction in the 
transfer rate of data can signal 
various internal problems.  

  

Systems for early fault detection and failure prediction are being developed using variables such as 
current, voltage, and temperature continuously monitored at various locations inside the system. Along with 
sensor information, soft performance parameters such as loads, throughputs, queue lengths, and bit error 
rates are tracked. Prior to PHM implementation, characterization is conducted by monitoring the signals of 
different variables to establish a Multivariate State Estimation Technique (MSET) model of the “healthy” 
systems. Once the healthy model is established using these data, it is used to predict the signal of a particular 
variable based on learned correlations among all variables [144]. Based on the expected variability in the 
value of a particular variable during application, a Sequential Probability Ratio Test (SPRT) is constructed. 
During actual monitoring, SPRT is used to detect deviations of the actual signal from the expected signal 
based on distributions (and not on a single threshold value) [145-146]. This signal is generated in real time 
based on learned correlations during characterization (see Figure 62). A new signal of residuals is generated, 
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which is the arithmetic difference of the actual and expected time-series signal values. These differences 
are used as input to the SPRT model, which continuously analyzes the deviations and provides an alarm if 
the deviations are of concern [144]. The monitored data are analyzed to provide alarms based on leading 
indicators of failure and enable use of monitored signals for fault diagnosis, root cause analysis, and analysis 
of faults due to software ageing [147].  

 

 
Figure 62. Sun Microsystems’ approach to PHM. 

 

Brown et al. [148] demonstrated that the remaining useful life of a commercial Global Positioning 
System (GPS) can be predicted by using a precursor-to-failure approach. The failure modes for GPS 
included precision failure due to an increase in position error and solution failure due to increased outage 
probability. These failure progressions were monitored in situ by recording system-level features reported 
using the national marine electronics association (NMEA) protocol 0183. The GPS was characterized to 
collect the principal feature value for a range of operating conditions. Based on experimental results, 
parametric models were developed to correlate the offset in the principal feature value with solution failure. 
During the experiment, the BIT provided no indication of an impending solution failure [148]. 

 

PHM Applications: Bearings 
Bearing faults are the main contributors to the failure of electric motors. Electric motors have been used 

in various industrial sectors to convert electrical energy to mechanical energy. Different sources have 
demonstrated that motor bearing failure is the top reason that electric motor fails. The dynamic nature of 
the development of bearing faults poses a challenge for fault detection. Signals that provide efficient 
monitoring include vibration signals, motor current signals, acoustic emission signals. Vibration signals 
have been widely used because of their widespread availability and sensitivity to bearing faults. Usually, 
raw signals are not adequate to identify the existence of a fault; therefore, fault features are extracted from 
the time domain, frequency domain, or time-frequency domain analysis. Vibrations signals are 
nonstationary and hence time-frequency domain methods, such as wavelet analysis and Spectral Kurtosis 
(SK) analysis, are able to process both stationary and nonstationary signals. SK allows the identification of 
the frequency band that contains faulty bearing information by detecting impulse series generated by the 
faulty bearing. However, some other vibration sources, such as gearboxes, also generate impulse series. As 
a result, the frequency band detected by SK may not be the one that contains the faulty bearing information. 
Tian et al. [98] presented a method that detected bearing faults and monitors the degradation of bearings in 
electric motors. Based on SK and cross correlation, the method extracted fault features that represent 
different faults, and the features were then combined to form a health index using Principal Component 
Analysis (PCA) and a semi-supervised K-Nearest Neighbor (KNN) distance measure. The method is able 
to detect incipient faults and diagnose the locations of faults under masking noise. It also provides a health 
index that tracks the degradation of faults without missing intermittent faults.  
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Rolling element bearing faults have an amplitude-modulating effect on their characteristic frequencies 
and hence sub-band analysis was used to determine an optimal sub-band signal that contains intrinsic 
information about bearing faults. Hence, a bearing abnormality index (BAI) that properly quantifies how 
much information a sub-band signal contains about bearing faults was also developed. 

He at al. [245] proposed a vibration-based health monitoring approach for cooling fans using a wavelet 
filter for early detection of faults in fan bearings and for the assessment of fault severity. To match the 
wavelet filter to the fault characteristic signal, a fuzzy rule was introduced to maximize the amplitudes of 
Bearing Characteristic Frequencies (BCFs), which are an indicator of bearing faults. The sum of the 
amplitudes of BCFs and their harmonics (SABCF) was used as an index to capture the bearing degradation 
trend.  

Lee et al. [246] conducted a feasibility study to diagnose faults in automotive safety components that 
are subjected to abnormal vibrations. Four deep learning approaches were developed and evaluated in terms 
of their suitability for embedding inside a vehicle. As a result, all four architectures were trained and 
executed on a Raspberry Pi to replicate the expected computational power of the embedded system. 

Sometimes situations are encountered where the vibration data available is of insufficient frequency 
and/or the accelerometer is installed away from where the bearings. CALCE has also explored using fusion 
prognostics-based methods for RUL estimation of elastomeric bearings in a rotor bearing damper system. 
Health and Usage Monitoring (HUMS) data consisting of 25 parameters was provided by the manufacturer 
of the system. The HUMS data available for the project were primarily loading data, not health indicators 
(i.e., there were no data that indicate the condition of the bearings, only the loads placed on the aircraft). 
The analysis was further complicated because all the monitoring sensors were physically removed from the 
bearings and the sampling frequency was 1Hz rendering traditional vibration analysis infeasible. Several 
data-driven and physics-based approaches were explored to find correlations between the bearing lifetimes 
and the data from the HUMS parameters; however, none of these approaches led to a significant negative 
correlation with the life of the bearings as one would expect if lifetime were determined by damage 
accumulation as a result of the continued application of loads (i.e., if failure were due to a wearout 
mechanism such as fatigue). To overcome this obstacle, genetic programming was used to construct a 
feature that had a negative correlation between the bearing life and the cumulative density of excursions of 
HUMS parameters. A similarity-based model was used to predict the RUL of bearings, where the bearings 
with the most similar degradation trends formed the basis for the RUL prediction. Similarity-based model 
makes the use of health indicators constructed using physics of failure approaches and hence is a fusion 
prognostics approach taking advantage of both physics of failure and data driven approaches.  

 
PHM in the Internet of Things (IoT) Era 

The smart, connected elements of IoT require an appropriate technology infrastructure. This 
infrastructure is represented as a “technology stack” and is shown in Figure 63. A technology stack 
facilitates data exchange between the system and the user, integrates data from business systems and 
external sources, serves as the platform for data storage and analytics, runs applications, and safeguards 
access to systems and the data flowing to and from them [127]. The elements associated with the system 
are described by the lower half of the technology stack. There are two parts, software and hardware. One 
of the evolutions currently underway is the addition of embedded sensors, RFID tags, and processors, built 
into the system. Collectively this enables new data to be collected for PHM. These data need to be 
transmitted and therefore network connectivity shown in the central block is a key feature of the IoT 
paradigm. The data collected and transmitted have to be stored and processed in an efficient and 
interpretable way. This is increasingly being done using cloud computing services represented by the top 
block in the technology stack. The people who access the results of the analysis as well as those involved 
in the development and maintenance of the technology stack elements and the models it supports are 
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denoted by the user. On either side to the stack there are blocks that identify the importance of authentication 
and security at all levels in the technology stack as well as the potential relationships with other systems 
and sources of information. 

 

 
Figure 63. Technology stack for supporting IoT. 

 
The following section considers how IoT has been and will be applied in the near future for PHM 

applications in different industrial sectors. 
 

IoT-Enabled PHM in Manufacturing 
Manufacturing is a major source of economic benefit in many countries. The manufacturing industry 

has traditionally focused on product quantity for mass production. In order to strengthen competitiveness, 
the manufacturing paradigm is now shifting towards combining sales with maintenance services enabled 
by IoT. There is a significant shift underway from a focus on products alone to a focus on platforms. A 
company’s product operates as a facilitator and the product’s value is created by the participants instead of 
the company itself in a platform approach. Examples include platform-based businesses such as Apple, 
Uber, and AirBnB. A prerequisite for a successful platform is a company’s ability to build a value 
proposition around an ecosystem and not only around its own products.  

In the manufacturing industry, Industrie 4.0 and its associated Smart Factory program are initiatives of 
the German government to assist in the development of cyber-physical platforms that enable IoT 
developments [128]. Cyber-physical platforms change the traditional manufacturing processes by 
integrating devices, equipment, and platforms in a factory, connecting factory-to-factory and integrating 
operational and information technologies. Examples of platforms that support these ideas include the GE 
Predix platform [129] and SAP Hana [130].  
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IoT-Enabled PHM Applications: Energy Generation 
The energy-generation industry consists of nuclear, thermal power, and renewable energy. Thermal 

power (oil, coal, and natural gas) generates 81.4% of the world’s supply, biofuels 10.2%, nuclear 4.8%, 
hydro 2.4%, and renewables (geothermal, wind, and heat) 1.2% [131].  

Power generation is a significant contributor to CO2 emissions, responsible for about 50% of total 
global emissions of this gas. Hence, significant effort is going into improving the efficiency of generation 
and distribution. Cloud computing is enabling the development of so-called smart grid computing. Smart 
grids use large numbers of networked sensors, power electronic devices, distributed electricity generators, 
and communications appliances. Integration of a large quantity of real-time information and data processing 
is required and as a result, the electric grid is becoming smarter and more complex [132]. IoT-based PHM 
is an integral part of a smart grid as engineers seek to monitor the health of key components in the network.   

Renewable energy includes wind, hydro, solar, and biofuel energy generation. Among these, wind 
energy generation often encounters reliability issues. In order to deliver desired capacity, wind power plants 
often require long blades and high towers, which increase the load and stress, and which may eventually 
cause wind turbine failure. Many wind farms are located in remote locations, such as offshore or on a 
mountain, where accessibility is limited. A number of organizations, for example, GE (Digital Wind Farm) 
and Siemens (Wind Service Solutions), now provide IoT service solutions for wind farms. These solutions 
aim to optimize turbine performance and equipment life by using RUL estimation models to predict 
maintenance requirements [133].  

IoT-based PHM in the energy-generation industry can change the maintenance paradigm by supporting 
the use of more CBM. It can increase plant reliability and availability, stabilize the power supply with less 
power interruption, and eventually provide the industry with a good reputation and trust.  In addition, IoT-
based PHM plays a role in ensuring that ageing power infrastructure is appropriately monitored for 
unplanned failures and that deteriorated assets are replaced at cost- and risk-effective intervals. 

 
IoT-Enabled PHM Applications: Transportation and Logistics 

IoT is playing an increasing role in the transportation and logistics industries as more physical objects 
are equipped with barcodes, RFID tags, and sensors. Transportation and logistics companies now conduct 
real-time monitoring as they move physical objects from an origin to a destination across their supply chain. 
The ability to predict failures has been enhanced using the ability to see how long an item has been in 
storage and under what conditions (e.g., heat, vibration, humidity, and contaminating environments) from 
an IoT-based PHM perspective. An asset may undergo several loading conditions or even fail during 
transportation and storage due to unexpected exposure to mechanical shock and vibration, cosmic radiation, 
or being in a too dry, wet, or humid environment.  

Commercial aviation spends more than 50% of its total expenses on maintenance, repair, and operations 
[134]. Aircraft component failure results in significant loss of safety, profit, as well as reputation. Integrated 
Vehicle Health Management (IVHM) is a unified system that assesses the current and future states of 
vehicles and has evolved over the last 50 years [135]. IVHM with PHM capability has the potential to 
influence aircraft design by reducing system redundancy, resulting in fewer subsystems and modules on an 
aircraft. IoT-based PHM application in aviation can reduce unplanned maintenance and no-fault-found 
events and can improve aircraft availability and safety. 
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IoT-Enabled PHM Applications: Automobiles 
The automobile industry is driving innovation in the application of technology that enables consumers 

to get advanced notice of problems with their vehicles as well as real-time diagnostics support. For example, 
cars made by General Motors, Tesla, BMW, and other manufacturers now have their own Application 
Programming Interfaces (APIs). The APIs allow applications built by third parties to interface with the data 
collected on the car. This enables the development of applications for IoT-based PHM that add value by 
increasing connectivity, availability, and safety. 

Enabling real-time navigation, remote vehicle control, self-diagnosis, and in-vehicle infotainment 
service, IoT allows “smart” cars in the field to connect to the network. Smart cars can connect to other cars, 
as well as infrastructure, to share their route information for efficient route planning. Smart cars are evolving 
as a connected device, and in the future users may be able to purchase mobility through a driverless car 
network rather than having to own a car. The reliability of a future smart car network will depend on 
appropriate use of IoT-based PHM. Just so that unplanned in-service failures, which may affect the car 
network performance, can be avoided, cars with deteriorating health will need to be scheduled out of the 
system.  

 

IoT-Enabled PHM Applications: Medical Consumer Products 
Medical devices are another area where consumer needs are increasing, and the consequences of the 

failures can be critical. For example, failures of in-vivo devices, such as pacemakers, can cause patient 
death. Medical devices can fail due to battery performance degradation. Patients with pacemakers are 
required to check at a fixed-time interval to ensure the device is functioning correctly. IoT-based PHM 
allows medical consumer products to be monitored and diagnosed continuously and remotely, and therefore 
can help these patients by reducing the number of intervals required for regular checking. IoT-based PHM 
of medical devices can also facilitate remote patient monitoring, homecare service for the elderly, and 
chronic disease management [136].  

 

IoT-Enabled PHM Applications: Warranty Services 
Conventionally, customers seek warranty services when their assets fail. However, seeking a remedy 

to failure after the failure has occurred is inconvenient and expensive for both the customers and 
maintainers. The customer loses operational availability, and the maintainers must conduct corrective 
maintenance, which is generally more expensive than predictive maintenance due to collateral damage, 
scheduling, diagnosis, and spare parts availability. In addition, waiting until an asset fails can pose safety 
(and liability) issues. 

Figure 64 overviews a predictive warranty service, where the asset is one that the customer has a 
significant investment in and for which the operational availability of the asset serves a critical function 
(e.g., cars and aircraft). The inclusion of IoT-based PHM into warranties can augment the customer’s ability 
to make a decision about whether to seek warranty service prior to asset failure by offering useful 
information, such as the onset of the asset's degradation, type of failure, and RUL. Consequently, the IoT 
based PHM can facilitate effective logistical support by showing where and how the customer's asset is 
degrading. 
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Figure 64. Inclusion of IoT-based PHM in predictive warranty service [110]. 

 

IoT-Enabled PHM Applications: Robotics 
IoT enables robots to connect to other robots and devices. FANUC’s Intelligent Drive Link Drive 

(FIELD) system is an example of IoT-based PHM. It is a platform that connects not only robots, but also 
peripheral devices and sensors. FANUC is collaborating with Cisco, Rockwell Automation, and Preferred 
Networks to establish the platform. IoT expands the definition of robots from simple task performers to 
autonomous ones with self-learning abilities. This transformation has the potential to make robots play a 
vital role in interacting with humans. IoT-based PHM can be a key technology for autonomous robots. It 
enables robots to diagnose themselves based on collecting data and artificial intelligence technologies as a 
self-cognizant electronic system. 
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Appendix M 
 

MBSE ARCHITECTURE OF RI-PSH 
 
 

SysML Language for MBSE 
The chosen language for the initial testing/development of this plant MBSE architecture has been 

SysMLc [153] since it provides more functionalities when compared to standard UML language. SysML in 
particular, supports the specification, analysis, design, verification and validation of systems that include 
hardware, software, data, personnel, procedures and facilities. From a practical perspective, an MBSE 
model described by SysML is composed by a set of diagrams that operates on different levels and different 
dimensions. Each diagram represents an element of the considered model. Note that SysML is not a 
methodology per se but it is, instead, a visual modeling language that provides the following capabilities to 
the modeler:  

• Semantics/syntax: high level abstract representation of a system by employing different classes of 
diagrams 

• Notation: a representation of such system representation 

SysML is based on four main “pillars”, i.e., four main types of diagrams (see Figure 65): 
1. Structure: which specifies the internal structure of a model though blocks and how these blocks are 

being used 
2. Behavior: which specifies (e.g., by employing a state machine formalism) the interactions and 

functions of the blocks defined in 1. 

3. Requirements: which specifies the properties and boundaries required by each block defined in 1. 
in order to perform the behaviors defined in 2. 

4. Parametrics: which specifies the mathematical model (e.g., time dependent dynamics) of each 
block defined in 1. based on the requirements defined in 3. 

Figure 66 shows in a graphical form the full list of diagrams available in SysML and their dependencies. 
The diagrams highlighted in dashed line are the ones that have been added or expanded from UML. 
 

Operational Context for RI-PSH  
The starting point for the design of the RI-PSH architecture is the definition of a hypothetical NPP 

organizational chart as shown in Figure 67. For the scope of this report we are considering not only 
maintenance and equipment reliability but also other plant divisions such as procurement. These plant 
divisions are not independent from each other but are coupled to each other with different degrees of 
coupling. 

 

 
c http://www.omgsysml.org/ 



 

 152 

 
Figure 65. Graphical representation of SysML “pillars” [153]. 

 
Figure 66. Graphical representation of SysML diagrams [153]. 

 

 
Figure 67. Example of NPP organzuational chart. 
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Regarding equipment reliability and maintenance divisions we have shown in Figure 68 how equipment 
reliability and maintenance are coupled to each other. In this figure, incident/event reports and online 
streaming data are employed to determine plant health and manage maintenance activities, i.e., work orders 
(see Figure 69 and Figure 70). By employing existing PRA models, plant health data are used to determine 
the plant risk profile. 

 

 
Figure 68. Hypothetical structure of plant equipment maintenance and equipment reliability workflow. 

 

 
Figure 69. Examples of workflow for CM and PM. 
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Figure 70. Workflow for plant maintenance work-orders. 

 

The proposed RI-PSH architecture is employing (see Figure 71): 

• Data: plant online streaming data but also recovered data at the fleet and industry level 
• Models:  

o System model: these models can be either stochastic (e.g., reliability or ageing models for 
specific components/systems) or deterministic (e.g., system behavior models such as finite 
state machines, petri nets) 

o System simulators: these models employ simulation-based codes (e.g., RELAP5-3D) to 
emulate system behavior under different initial/boundary conditions. 

o Engine methods: methods that based on new data:  
§ determine plant health parameter and update current pant operations (e.g., 

component PM intervals) – PHM function 
§ forecast plant behavior and update component life-cycle operations (e.g., 

component replacement strategy) – RIAM function 
 

Initial Design for RI-PSH Architecture 
From a MBSE perspective the first modeling step is the definition of the use case for the system under 

consideration. For the RI-PSH, we have identified 6 main actors: 
1. Actual generating station, i.e., plant which provides actual SSC activities 
2. Set of databases at the plant/fleet/industry levels which provide extensive operating history 

knowledge (e.g., failure and maintenance reports) 
3. Reactor operators (including sources such as electronic logs and surveillance data) 
4. Plant equipment reliability operators/managers 
5. Maintenance crews 
6. Plant procurement office 

Work-order
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Figure 71. Elements for the proposed RI-PSH architecture. 

 
Figure 72 shows the interactions and the functionalities provided by RI-PSH to the actors listed above. 

Note that Figure 72 explicitly includes not only PHM (e.g., maintenance related) but also RIAM (e.g., SSC 
life-cycle related) functionalities. 

 
Figure 72. Use case diagram for the RI-PSH. 
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Figure 73, provides more details about the internal structure diagram of the RI-PSH by indicating the 

main modules designed to provide the functionalities shown in Figure 72. Figure 74 [155] goes more into 
the details of the PHM module shown in Figure 73. 

 

 
Figure 73. Internal diagram in SysML for the RI-PSH. 

 

 
Figure 74. SysML internal diagram for the PHM module [155]. 
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Appendix N 
 

VIEWING GENERATION RISK ASSESSMENT MODELS 
IN SUCCESS SPACE 

 

 
When applying logic modeling software, it is common to work in failure space to generate and quantify 

scenarios that yield adverse consequences (such as minimal cut sets). There are good reasons for doing this. 
But once this is done, in many applications, there are also good reasons to turn the result around, and view 
it in success space. In many applications, much is to be learned from a success-space perspective. For 
example:  

• In formulating a safety case for a hazardous facility, it is beneficial to do “prevention analysis” in 
order to identify combinations of success paths that (together) provide needed levels of functional 
reliability, required redundancy, required diversity, … . See, for example, reference [17]. 

• If something goes wrong, and we need to compensate for it lest we lose the function, it is useful to 
understand what success paths remain available, and which of them are more reliable than the 
others.  

This section looks at GRA Modeling (as exemplified by [157]) with a view to applying success-space 
thinking in that context.  

We begin with some comments about modeling simple series / parallel systems. Next, we review some 
key aspects of generation risk assessment, beginning with quantification, and then moving on to the way 
one popular implementation of “unavailability” metrics is carried out in logic model software. Finally, we 
point out what has to be done to the results from a model of that kind, before it can be interpreted in success 
space. 

 

Series / Parallel Systems 
The following considerations drive much of what goes on in GRA: 

• While safety systems are redundant, and sometimes have complicated interdependencies on support 
systems, much of “generation” has much less redundancy; as a result, the logic models are much 
simpler. However, capitalizing on whatever redundancy exists is a key part of risk management.  

• Quantification is a much different matter in GRA. We are not comparing E-5 CDF contributors to 
E-7 CDF contributors; we are comparing E-1 unavailability contributors to E-15 unavailability 
contributors.  

 

Figure 75 shows a notional reliability block diagram for a topologically simple system that is not unlike 
some of the systems involved in generation risk: for some purposes, we can think of it as mostly being a 
series system. This diagram is not meant to be a good physical description of the system; it is simply meant 
to illustrate what is required for functional success. According to this diagram, we need for all of blocks A-
E to succeed, and we need for F and G to succeed. F succeeds if either F1 succeeds or F2 succeeds, and 
similarly for G. 
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Figure 75. Reliability block diagram for a simple system. 

 

At the level of abstraction shown in the figure, and assuming that there is no functional commonality 
between any of the blocks, we can write down the minimal cut sets and the minimal path sets by 
inspection:  

Cut Sets: A+B+C+D+E+F1*F2+G1*G2,  

Path Sets: /A*/B*/C*/D*/E*(/F1 + /F2)*(/G1+/G2), 
where: 

• * means the logical “AND,” 
• + means the logical “OR,” 
• An unmodified letter (A, C, …) means “failure of the indicated block,”  
• “/” means “NOT.”  

Thus, “A” means “Failure of A,” “/A” means “NOT Failure of A” (i.e., “Success of A”). 
From Figure 75, blocks A-E are always needed; failure of any of these blocks represents failure of the 

function (e.g. plant trip is this represents systems needed for plant generation). Block F causes a trip if and 
only if both of its elements fail, and similarly for Block G.  

In an essentially series system, the most unavailable block in the system limits the availability that is 
achievable. For example, if the unavailability of C is 0.9, then the system unavailability cannot be less than 
0.9, no matter what we do to the other blocks.  

 

Quantification of Unavailability 
If the system were simply either “up” or “down,” we could use an expression like the above cut set 

expression to quantify unavailability, which (by definition) would refer to the amount of time spent in the 
“down” state.  

If individual block contributions to unavailability are small enough that they will not occur 
simultaneously, we can sum the contributions to estimate the total unavailability, and we can model each 
one within the following approximation.  

Consider the state diagram shown in Figure 76, showing “UP” and “DOWN” states for a single 
component, and arcs representing that component going into the “DOWN” state (i.e., “failed”), and being 
repaired and restored to the “UP” state. 
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OUT

F G
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Figure 76. Two state Markov models for a single component.  

 
The arc from “UP” to “DOWN” represents the component going bad (“DOWN”); the rate of this 

transition is the failure rate l. The arc from “DOWN” to “UP” represents restoration of the component to 
being good again (“UP”). We can attribute probabilities to these states; the probability of being in the UP 
state, P(UP) is the availability, and P(DOWN) is the unavailability. Moreover, within classical reliability 
theory, we can model the time dependence of these states using the following equations: 

𝑑𝑃(𝐷𝑂𝑊𝑁)
𝑑𝑡 = 𝜆(𝑡)𝑃(𝑈𝑃) − 𝜇(𝑡)𝑃(𝐷𝑂𝑊𝑁) (N.1) 

𝑑𝑃(𝑈𝑃)
𝑑𝑡 = −𝜆(𝑡)𝑃(𝑈𝑃) + 𝜇(𝑡)𝑃(𝐷𝑂𝑊𝑁) (N.2) 

𝑃(𝑈𝑃) + 𝑃(𝐷𝑂𝑊𝑁) = 1 (N.3) 
 

If l and µ are constant, a system like this will evolve to a steady state, in which the average rate of 
actual failures (𝜆 ∗ 𝑃(𝑈𝑃)) is balanced by the average rate of actual restorations (𝜇 ∗ 𝑃(𝐷𝑂𝑊𝑁)). In this 
condition: 

𝑃(𝐷𝑂𝑊𝑁) =
𝜆

𝜆 + 𝜇 , 𝑃(𝑈𝑃) =
𝜇

𝜆 + 𝜇 (N.4) 

The constant repair rate µ implies an average repair time t,  with µ=1/t. Recognizing that typically µ>>l, 
we can write: 

𝑃(𝐷𝑂𝑊𝑁) ≅ 𝜆𝜏	. (N.5) 
In words: within the so-called “lambda-tau approximation,” the average unavailability of a particular 
component is given by the product of its failure rate and the average time needed to restore it. 

The above discussion is illustrated in Figure 77. Note that the values of l and µ have been chosen to 
make their relationship visible in this plot; they are not meant to be typical. For these values, the steady-
state unavailability is in fact given by 𝑃(𝐷𝑂𝑊𝑁) = �

�ªÐ
, but the lambda-tau approximation is not 

particularly good. 
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Figure 77. Example plot of availability and unavailability over time. 

 

Let us recapitulate the specializations and approximations in this calculation:  

• As illustrated in the above plot, the steady state calculation is valid only after the initial conditions 
are “forgotten.” If we start out an operating cycle with all components as good as new, then the 
unavailability early in the cycle may be less, perhaps significantly less, than the steady-state 
calculation would suggest.  

• First, we assumed that the failure rate and repair rate were constant. For some components in some 
environments, the failure rate may be approximately constant; but ageing and wearout, especially 
if accelerated as a result of some environmental or loading factor, could change this appreciably. 
The repair process is unlikely to be a stochastic Poisson process; it is more likely that particular 
failure modes will take particular amounts of time to repair. On the other hand, for a given failure 
mode, there may well be a typical characteristic restoration time rather than an average over 
exponentially distributed repair times, and in that case, using that characteristic restoration time in 
the lt approximation is more than reasonable, assuming we are out in the regime where initial 
conditions are “forgotten.” 

 

Generation Risk Assessment 
 
The following formula appears in an EPRI report on generation risk assessment [157]: 
 

𝐿𝑀𝑤ℎ =e𝜆V,U𝑃V,U𝑅V,U +
�

UiV

e𝜆°,Ò𝑃°,Ò𝑅°,Ò
d

ÒiV

 (N.6) 

accompanied by the following explanatory text: 
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“In this formula, λ1 is the average frequency of trip events per year, λ2 is the average 
frequency of derate events per year, P is the reduced power level [power reduction factor 
for the event (e.g., 100% for trip and a value between 1% to 99% for derate)], R is the 
restoration time in hours for the event (repair time including the time required for reduction 
and restoration of power), the index “i” covers the combinations of SSC failures that can 
lead to a trip, the index “j” covers the combinations of SSC failures that can lead to a derate. 
The resulting units are “megawatt hours per year”. 

 
The formula seems unexceptionable: it computes average lost megawatt-hours per year by (1) 

computing block unavailabilities (probabilities of being unavailable) within the lambda-tau approximation 
discussed above, (2) using these probabilities to weight the associated lost production, and (3) summing 
over the failure modes that give rise to lost production. 

Such a formula can be implemented in different software in different ways. If we were just computing 
functional unavailability in SAPHIRE [158], the normal thing would be to quantify a basic event for 
component unavailability by putting l and t right into the basic event parameters, and letting the program 
explicitly compute unavailability of the subject a basic event. But that’s not what some of the Generation 
Risk people do. Knowing that SAPHIRE quantifies cut sets by multiplying basic event probabilities, and 
that SAPHIRE then quantifies top events by putting together all of these contributions (often using the “min 
cut upper bound” approximation, which may be better than just summing up cut set probabilities), we can 
implement the above formula by treating each factor in each term as if it were a basic event, with 
“probability” equal to frequency l, or fraction of lost power P, or restoration time R; and then contriving 
input to the logic software to yield the above expression, knowing that its calculation will perform the 
indicated products and summations. 

 

Trying to View the Above Expression in Success Space 
What happens when we take a model like that and try to view it in success space? Consider the 

following “cut set” expression resulting from applying the above approach to a two-component system: 
LMWH=L1*TAU1*P1+L2*TAU2*P2. 

If this were really just a Boolean expression, then complementing it would have a simple meaning. For 
example, if the left-hand variable meant “Failure of System X,” then “NOT Failure of System X” would 
mean “Success of System X.” Instead, complementing LMWH, we have  

/LMWH=(/L1+/TAU1+/P1)*(/L2+/TAU2+/P2) 

=/L1*/L2+/L1*/TAU2+/L1*/P2+/TAU1*/L2+/TAU1*/TAU2+/TAU1*/P2+ 
/P1*/L2+/P1*/TAU2+/P1*/P2. 

This does not have any particular meaning. Consider the success term /P1*/P2.  What might it mean to say 
that success is achieved if “the power lost due to L1 is ‘NOT P1’ AND the power lost due to L2 is ‘NOT 
P2?’”? The point is that although we used a Boolean code to quantify the LMWH formula, the “basic 
events” are not True / False conditions, such as “pump so-and-so is in a failed state.” Rather, their values 
are arithmetic. 

 

Path forward 
With some effort, we might be able to contrive a way of interpreting the above form for /LMWH. For 

example, we could argue that “success” is achieved if the amount of derate resulting from either component 
is zero. Success is also achieved if the restoration time becomes zero, or if the outage rate becomes zero. 
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For now, we would rather find a way to map the GRA expression into Boolean form. In order to begin 

to work with a Boolean expression for unavailability, we have to transform this expression in a couple of 
ways. Mainly, we need to work with basic events that are either “true” or “false,” and whose probabilities 
we can quantify. Additionally, if we need to distinguish derate from trip, and especially if we need to 
distinguish degrees of derate, we need to flag subsets of the overall expression, rather as if degree of derate 
were analogous to “plant damage state.” In effect, for some purposes, we would want unavailability 
expressions for each discrete degree of derate that we wish to consider. Given such a group of expressions, 
we might impose varying stringencies of prevention measures; maybe we would require high assurance of 
not having a trip, but only moderate assurance of not derating by 2%. 

Returning to the two-cut-set problem discussed above, suppose we rewrite the contributors as basic 
events corresponding to unavailability, and partition the expression into one expression for each degree of 
derate. We would then look for ways to sharply reduce high derates, and in parallel, look for ways to 
somewhat reduce nearly-negligible derates; and then we would “AND” these expressions together, hoping 
to find an efficient solution where (for example) reduction of some failure rate (or increase of some 
restoration rate) has the desired effect on both categories of derate at once. In fact, a failure-space 
importance measure exists for just such an application [156]. It relies on manipulating the values of 
parameters inside basic event models, implicitly varying (say) a parameter that influences the failure rates 
of multiple basic events.  

For a model in which redundancy and topology are more complex than the pedagogical examples 
considered here, it would be preferable to start with success-space analysis, especially Prevention Analysis, 
which requires a model expressed in terms of logic variables. Such an effort may be mounted in the coming 
year. 
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Appendix O 
 

SUMMARY OF CONDITION ASSESSMENT 
APPROACHES 

 

 
Prognostics and health management technologies rely on accurate, reliable indicators of equipment 

condition. Significant research and development has investigated appropriate measurements and analyses 
of those measurements to extract relevant component health indicators. Many of these tools, such as 
periodic vibration monitoring of rotating equipment and ultrasonic inspection of pressure vessel welds, are 
commonly employed in current NPPs.  Additional equipment condition assessment methods have been 
proposed in the literature, and in some cases are commonly in use outside the nuclear industry. The 
following subsections summarize available equipment condition assessment methods for both active and 
passive systems, structures, and components common to NPPs. 
 

Active Components 
Active components include components and systems that physically actuate to perform their functions, 

e.g., motors, valves, and pumps. Because these systems are performing an action, monitoring and estimation 
of their health state may be more straightforward. In many cases, the system process performance contains 
information about the current state of health of the key components that together perform the process. 
However, relying only on process data may not be sufficient for complex systems with many active 
components. Techniques have been developed for each of the major classes of components in NPPs; 
commonly investigated methods are summarized in Table 29 and the associated references. Measurement 
technologies and feature extraction methods are largely mature for active components, although many of 
these methods are not commonly used in practice in the nuclear industry.  

Many active components share common approaches to condition monitoring and assessment. With few 
exceptions, active component health is monitored through passive measurements; that is, the components 
are not interrogated outside of their normal operation in order to measure indicators of component health. 
Current and voltage monitoring for electrically-powered systems supports common Motor Current 
Signature Analysis (MCSA) and Motor Power Signature Analysis (MPSA), as well as a variety of other 
analysis methods that have been developed for bespoke application. All rotating equipment are commonly 
monitored through vibration analysis and associated joint time-frequency analysis. NPPs employ many of 
these techniques through periodic ISI, but they are largely amenable to permanently mounted sensors to 
support continuous or near-continuous in situ monitoring. 
 

Passive Components 
Passive components include structures and components that typically provide barriers or conduits and 

do not move or actuate in the performance of their function, e.g., vessels, pipes, and cables. Passive 
component health is current monitored through periodic In-Service Inspection (ISI) according to practices 
outlined in the American Society for Mechanical Engineers (ASME) Boiler & Pressure Vessel (BPV) Code. 
Current and proposed Nondestructive Test And Evaluation (NDTE) methods for several key passive 
component classes are summarized in Table 30. Unlike active components, passive components typically 
must be interrogated with an active signal to obtain health indicators. The results of these active 
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interrogations are then analyzed and correlated back to structure health parameters, such as the existence 
and propagation of internal cracks.  

Significant work remains to identify the most appropriate NDTE signatures and feature extraction 
methods for monitoring most passive components of interest in NPPs. Many of these techniques have been 
demonstrated in laboratory settings, but there do not currently exist long-lived, permanently mounted 
sensors to support in situ health monitoring for passive components. As these measurement technologies 
mature, many passive component monitoring methods may be well-suited to deep learning and big data 
analytics approaches for identifying and extracting the key features of measured signals that indicate the 
current health state of a large, passive structure. 
 

Table 29. Equipment condition assessment methods for common active components. 

Active Components 
Component 

Type Measurements Method of Analysis Selected References 

Motors 

Current, Voltage 

Motor current signature analysis [159][160][161][162] 

Spectrum synch [163] 

Bispectrum analysis and active 
interrogation [164] 

Time series statistics (e.g., mean, 
variance) [165] 

Vibration 

Frequency analysis [166][167] 

Time series statistics (e.g., RMS, 
variance, kurtosis) [168] 

Approximate entropy [169][170] 

Motor-driven 
Pumps 

Current, Voltage Motor current signature analysis [159][171] 

Acoustic Emission Amplitude and frequency [172][173][174] 

State Parameter 
Estimation 

Process monitoring of state 
variables [175] 

Vibration Joint time-frequency analysis [176][177] 

Motor Operated 
Valves Current, Voltage 

Motor current signature analysis [159][178][179][180] 

Thrust and torque estimation [181][182] 

Bearings 

Acoustic Emission Envelope analysis [183][184][185][186] 

Vibration 
Joint time-frequency analysis [176][177][187][188][189] 

Approximate entropy [169][189][190] 
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Table 30. Nondestructive evaluation and condition assessment methods for passive components. 

Passive Components 
Component Type Measurements Selected References 
Heat exchangers Process variables [191][192] 

Pressure vessel 

Thermoelectric properties [193][194] 
Mechanical strain [193][195][196][197][198] 
Acoustic emission [193][199][200][201] 
Magnetic Barkhausen noise [202][203][204][205] 
Ultrasonic guided waves [205][206][207][208] 

Pipes 
Ultrasonic guided waves [208][209][210] 
Acoustic emission [210][211][212][213][214] 

Cables 

Time domain reflectometry [215][216][217][218] 
Frequency domain reflectometry [219][220] 
Joint time-frequency domain reflectometry [221][222][223][224] 
Line Resonance Analysis (LIRA) [225][226][227][228] 
Indenter modulus [229][230][231][232][233] 

 


