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SUMMARY 

Industry equipment reliability and asset management programs are essential 
elements that help ensure the safe and economical operation of nuclear power 
plants. The effectiveness of these programs is addressed in several industry-
developed and regulatory programs.  

The Risk-Informed Asset Management (RIAM) project is tasked to develop 
tools in support of the equipment reliability and asset management programs at 
nuclear power plants. These tools are designed to create a direct bridge between 
component health/lifecycle data and decision making (e.g., maintenance 
scheduling and project prioritization).  

The goal of this report is to provide a guide for specific use cases that the 
RIAM project is targeting. We have grouped uses cases into three main areas. The 
first area focuses on the analysis of equipment reliability data with a particular 
emphasis on condition-based data, such as test/surveillance reports and component 
monitoring data. The second area focuses on the integration of equipment 
reliability into system/plant reliability models to determine system/plant health and 
identify the components that are critical to maintain an operational system. Lastly, 
the third area manages plant resources, such as maintenance activities and 
replacement scheduling using optimization methods. 

Here the primary focus is on supporting typical system engineer decisions 
regarding maintenance activity scheduling and component aging management. 
This is performed in a risk-informed context where the term “risk” is broadly 
constructed to include both plant reliability and economics. This framework 
combines data analytics tools to analyze equipment reliability data with risk-
informed methods designed to support system engineer decisions (e.g., 
maintenance and replacement schedules, optimal maintenance posture) in a 
customizable workflow. 
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INDUSTRY USE CASES FOR 
RISK-INFORMED SYSTEM HEALTH AND ASSET 

MANAGEMENT 
 

 

1. INTRODUCTION 
The Risk-Informed Systems Analysis (RISA) Pathway1 [1] of the United States Department of Energy 

(DOE) Light Water Reactor Sustainability (LWRS)2 [2] program is conducting collaborative research that 
applies risk-informed technology to assist operating nuclear power plants (NPPs) to reduce costs and 
support their adaptation to the changing economic and power generation environment. The research is being 
performed within the framework of specific use cases, which are intended to enable rapid technology 
development, deployment, and dissemination throughout the operating U.S. NPP fleet to address issues of 
pressing economic, operational, or safety significance. 

One area of research in the RISA pathway is focusing on the development of methods and tools being 
designed to optimize plant operations (e.g., maintenance/replacement schedules, optimal maintenance 
postures for plant structures, systems, and components [SSCs]) in a manner that is more cost effective than 
current approaches and makes better use of available SSC health and cost data. This is accomplished under 
the Risk-Informed Asset Management (RIAM) project by creating a direct bridge (see Figure 1) between 
component equipment reliability (ER) data and decision making (e.g., maintenance scheduling and project 
prioritization). Here we are supporting typical system engineer decisions regarding maintenance activity 
scheduling and component aging management.  

 

 
Figure 1. Graphical representation of the RIAM project and its tools: INL developed (bottom left) and 

open-source libraries (bottom right). 

 
1 RISA website: https://lwrs.inl.gov/SitePages/Risk-Informed%20Systems%20Analysis.aspx  
2 LWRS website: https://lwrs.inl.gov/ 
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Section 2 provides a broad overview of the specific use cases on which RIAM project is focusing. Here, 
we also provide information on the RIAM-developed tools that support these use cases and outline 
references to applications of such tools. Section 3 provides a brief overview of the toolkit that has been 
developed to tackle the use cases listed in Section 2. Reference [3] provides more details about the structure 
of the toolkit and how elements of this toolkit can be combined to create customizable workflows. 

The overall workflow that can be constructed using the RIAM toolkit is covered in three main tasks. 
These tasks can be assembled to directly propagate ER data through the decision making process as 
indicated in Section 4. The first task focuses on the analysis of equipment reliability data with a particular 
emphasis on condition-based data, such as test/surveillance reports and component monitoring data (see 
Section 5). The second task focuses on the integration of equipment reliability and simulated data into 
system/plant reliability models to determine system/plant health and identify the components that are 
critical to maintain an operational system (see Section 6). And the third task manages plant resources such 
as maintenance activities (MAs) and replacement scheduling using optimization methods (see Section 7). 

 

2. USE CASES OVERVIEW 
A more detailed overview of the RIAM project capabilities is shown in Figure 2 where the main use 

cases have been grouped into three main area: 

1. ER data analytics. Targeting the analysis of ER data to adequately measure component health. This 
area includes all the methods designed to analyze numeric and text ER data (i.e., monitoring data, 
maintenance activities, work orders and maintenance/issue reports [IRs]), employ historic data to detect 
abnormal behavior (anomaly detection) and the cause of such abnormal behavior (diagnostic), and 
predict SSC future performances (prognostic). 

 

 
Figure 2. Graphical overview of the RIAM project research, development, and demonstration (RD&D) 

directions. 
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Table 1. List of use cases per the three RIAM projects RD&D directions. 

RD&D 
Area Use Case Models and Methods References 

ER data 
analytics 

Analyze IRs and WOs and extract 
information SR2ML NLP methods Section 5.5 

Retrieve and summarize 
component performance and 
reliability history 

SR2ML ER data analysis 
methods Section 5 

Detect component anomalous 
behaviors 

SR2ML ER data analysis 
methods Section 5.4 

Measure component health SR2ML SSC margin model Section 6.1 

Digital 
modeling 

Measure system/plant health SR2ML margin-based 
reliability solver Section 6.1, [6] 

Monitor risk of loss of power 
generation VERT GRA models Section 6.2, [5], [6] 

Identify most critical SSC SR2ML margin-based 
reliability post-processor Section 6.2, [6] 

Resource 
optimization 

Select set of projects that provide 
highest value  

RAVEN multi-objective 
optimization methods Section 7.2, [7] 

Prioritize and schedule projects  LOGOS knapsack base 
models Section 7.1, [4], [7] 

Preventive maintenance posture 
optimization 

RAVEN single- or multi-
objective optimization 
methods 

[7] 

Maintenance job scheduling LOGOS task optimization 
models Section 7.4 

 
2. Digital modeling. Designed to model from a risk perspective the considered system/plant and, more 

importantly, fully integrate ER data into such models. The main feature of these risk models is that they 
encompass not only reliability/availability of the system/plant but also economic aspects. The real 
challenge is to inform these models directly with the available ER data (historic and current).  

3. Resource optimization. Targeting the optimization of plant resources. Here, plant resources include 
multiple entities, such as plant operation and maintenance (O&M) and capital budgets, workforce tasks, 
and SSC lifecycle. This area is directly linked to the plant decision making process and is considers 
both short- and long-term decisions. 

Table 1 summarizes the set of specific use cases for each of these three areas that have been considered 
by the RIAM project. For each use case, we indicated the set of tools that have been developed and the 
references that provide the direct application of the developed tools. For a few use cases, we have listed 
previous reports that can provide details of the developed methods, while in this report we provide a short 
summary for completeness.  
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3. RIAM TOOLKIT 
In July 2021, the first step toward the development of this framework was taken when two software 

packages, which are an integral part of the enterprise risk analysis framework, were released with an open-
source license: LOGOS and SR2ML [3]. SR2ML is a software package that contains a set of reliability 
models designed to integrate equipment reliability data (e.g., aging, testing, maintenance) and perform 
system-level reliability calculations [6]. LOGOS is a software package that contains a set of discrete 
optimization algorithms that can be employed to effectively manage plant assets and optimize schedules 
for plant operations [7]. These software packages are plugins that can be interfaced with the Idaho National 
Laboratory (INL)-developed RAVEN code to propagate data uncertainties in model variables, perform data 
analysis, and perform model optimization (e.g., via genetic algorithm heuristics). In this respect, SR2ML is 
designed to propagate equipment reliability knowledge to the system/plant level to identify the components 
that are most critical to system/plant health. LOGOS uses this information to prioritize and schedule plant 
operations (e.g., maintenance, testing, replacement) based on budget, reliability, and resource constraints. 
Lastly, VERT is a new tool designed to contain plant, system and component reliability models. 

This risk analytics platform consists of the following tools designed for specific use cases: 

• LOGOS: Designed for plant resource optimization (e.g., project prioritization and project scheduling) 
(https://github.com/idaholab/LOGOS)  

• SR2ML: Component and system reliability modeling and analysis of equipment reliability data 
(https://github.com/idaholab/SR2ML)  

• RAVEN: Data analysis computational framework (e.g., model optimization and uncertainty 
propagation) (https://github.com/idaholab/raven)  

• VERT: Plant generation risk assessment modeling (https://hpcgitlab.inl.gov/mandd/vert)  

• TEAL: Plant economic analysis (https://github.com/idaholab/TEAL).  

 

 
Figure 3. RIAM risk analytics toolkit: elements in yellow were developed within the RIAM project while 

the development of the elements in red was shared among other DOE programs. 
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4. THE RISK ANALYTICS PLATFORM WORKFLOW 
The scope of this section is to provide a more detailed guide on how the methods and tools developed 

under the RIAM project (and described throughout this report and in [4, 5, 6, 7]) can be used to bridge ER 
data with decisions. We refer here to Figure 4 which graphically describes a complete risk analytics 
platform data workflow. 

The starting point is the set of ER data generated by the SSC monitoring system (bottom left of 
Figure 4), available for example from the plant monitoring and diagnostic (M&D) center. The steps of this 
workflows are as follows: 

1. Analysis of ER data using methods presented in Section 5. The goal is to 1) track SSC health (i.e., 
performance/degradation), and 2) identify possible anomalies in the SSC behavior (see Section 5.4 and 
bottom-left portion of Figure 4). 

2. Measure SSC health by determining the margin of specific SSC failure modes given current SSC 
conditions and historic data (see Section 6 and mid-left portion of Figure 4).  

3. Once margin values are determined for the failure modes of the chosen SSC, they are propagated 
through classical reliability models (e.g., fault trees) to determine: 1) the margin at the system/plant 
level (i.e., plant system/health), and 2) the risk importance measure for each SSC failure mode (see 
Section 6 and top-left portion of Figure 4). 

 

  
Figure 4. RIAM toolkit as bridge between ER data to decisions: graphical representation of the workflow 
starting with SSC monitoring data (bottom left) to reliability modeling (top left) to project prioritization 

(center) and task scheduling (right). 

 

4. The next step is to choose the optimal set of projects (e.g., maintenances activities) given plant 
system/health information determined in Step 3. Two possible paths can be followed (see center portion 
of Figure 4): 
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a. Ranking-based path: the failure modes with highest consequences and importance measures are 
selected. Economic constraints might be used to filter the chosen project list. 

b. Multi-objective optimization path: projects are chosen based on both reliability and economic 
factors simultaneously (e.g., through a Pareto frontier analysis as indicated in Section 7.1) 

5. The next step is to set the optimal schedule for the projects chosen in Step 4 (see top-right portion of 
Figure 4). Using the methods presented in Section 7.2 and [4,7] it is now possible to set the optimal 
project actuation schedule based on reliability and economic constraints (i.e., medium- and long-term 
decisions).  

6. Each project is partitioned into tasks and the optimal schedule of each task (i.e., short-term decisions) 
is determined (see bottom-right portion of Figure 4) using the methods presented in Section 7.3. Here, 
tasks that might be provided by plant system engineers are added to the list of tasks for the projects 
chosen in Step 5. 

 

5. ER DATA ANALYTICS  
This section addresses the first area of use cases listed in Table 1. Here, we present a set of methods 

designed to analyze ER data that in both numeric (i.e., monitoring data) and textual (i.e., 
maintenance/incident reports). The goal is to employ current and historic data to: 

• Detect possible abnormal behaviors (i.e., anomaly detection) 

• Identify the cause of such abnormal behavior (i.e., diagnostic) 

• Predict SSC future performances (i.e., prognostic). 

The RIAM project has focused on the development of innovative methods designed to: extract 
knowledge from IRs and infer more likely failure modes, integrate numeric and text data in a common data 
structure, and capture sequencing of events from component history that might provide capability to detect 
occurrence of a component anomaly. 

In the next sections, we show how these tasks have been tackled using a blend of system models coupled 
with natural language processing (NLP) [13, 14] and causal inference [78, 79] methods. We then propose 
a symbolic data structure to summarize the operational history of an SSC.  

 

5.1 ER Data Taxonomy 
Typically, an SSC is a part of a system (see Figure 5 [left]) where such system is designed to provide a 

specific function, that is, emergence (e.g., electric power generation for a power plant). Each SSC 
contributes to the system emergence by providing a specified functionality that is being used by other SSCs 
through a set of connections where operands (e.g., mass, energy, or data) are exchanged. The goal of a 
system health program is to monitor not only the correct operation of each component but also their health 
parameters, such as aging and degradation (indicated as 𝐹(𝑡) in Figure 5 [right]). In addition, a system 
health program is designed to perform appropriate actions to assure component functionality (indicated as 
𝑇(𝑡) in Figure 5 [right]). In this report, 𝑇(𝑡) also includes all the external stressors that contribute to altering 
component aging and degradation. 
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Figure 5. System (left) and component (right) representation. 

 

5.1.1 System Engineer Perspective 
When moving to the component level, it is vital to understand and capture the relationship between 

monitoring/testing data, MAs, and failure modes (FMs). This is typically neglected with the current state 
of practice of ER data analysis methods. Model-Based System Engineering (MBSE) [8] practices provide 
several solutions to model component from both form (i.e., which elements are part of the SSC) and 
functional (i.e., how SSC elements interact with each other, and which functions they support) points of 
view.  

These solutions are based on MBSE languages that model system/SSC form and functional elements 
through a set of diagrams. The most commonly used languages are object process methodology (OPM) [9], 
unified modeling language (UML) [10], and systems modeling language (SysML) [11]. For the scope of 
this project, we have chosen the OPM language because it provides basic modeling elements for which we 
are looking for and, more importantly, it is possible to automatically generate textual translation of the OPM 
diagrams. As indicated in Section 5.5, this textual translation will be “matched” to the content of IRs and 
WOs. 

Figure 6 provides an example of functional/form description of a generic SSC by employing an OPM 
diagram. An SSC OPM diagram provides an essential description of the SSC from both a form and 
functional perspective. This diagram explicitly indicates how SSC internal functions (𝐹𝑢𝑛𝑐! , 𝑓 = 1,… , 𝐹) 
act upon operands and how the elemental components (𝑠𝑠𝑐" , 𝑟 = 1,… , 𝑅) support these functions.  

From an equipment reliability perspective, monitoring/testing activities (i.e., 𝐹(𝑡)) act on both SSC 
functions (i.e., rotational frequency recorded for an induction motor) and form (i.e., blade corrosion of 
centrifugal pump) elements. On the other hand, degradation processes (i.e., 𝑇(𝑡)) directly alter the form-
related elements of the component (i.e., 𝑠𝑠𝑐") that consequently affect SSC functional elements (i.e., 
𝐹𝑢𝑛𝑐! ,). Typically, from a reliability perspective, component FMs are described in terms of loss of 
function; hence, in the OPM diagram, FMs are only directly linked to the functional elements of the 
component (i.e., 𝐹𝑢𝑛𝑐! ,). Lastly, note that MAs (such as component replacement, refurbishment, or 
reconditioning), indicated as 𝑀𝐴 in Figure 6, act on the form elements of components (i.e., 𝑠𝑠𝑐"). 

For the scope of this report, the OPM diagram of a component represents the key point to automatically 
understand and analyze health data 𝐹(𝑡) (e.g., IRs). In particular, it clearly links monitored/recorded data 
with FMs that might affect component performance and MAs that would restore component functionality. 
We are employing model-based data analysis methods with the goal of linking component models with data 
rather than using machine learning methods [23], which solely rely on the available data to perform 
diagnostic/prognostic operations. Note that an OPM diagram extends failure modes and effects analysis 
tables by providing a form and functional description of the considered system in a graphical form. 
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In Appendix A we are presenting a small description of main OPM diagram elements and an example 
of OPM modeling for a generic centrifugal pump. 

 

 
Figure 6. SSC representation through an OPM diagram. 

 

5.1.2 Data Scientist Perspective 
The next step is to characterize a generic component SSC from a data scientist point of view. This is 

shown in Figure 7 where three levels are identified: the component level (which would correspond to what 
is shown in Figure 6), a sensor/monitoring level (which retrieves and records portions of 𝑇(𝑡) and 𝐹(𝑡) in 
digital form), and data level. Data retrieved from 𝑇(𝑡) (i.e., 𝜃(𝑡)) can be either textual (e.g., work orders) 
or numeric (e.g., environment temperature). We indicate here with “num” the portion of 𝜃(𝑡) that is numeric 
while we indicate with “NL” the portion of 𝜃(𝑡) that is textual (NL here stands for natural language). Data 
retrieved from 𝐹(𝑡) has been portioned into two portions, component health and performance monitoring 
(𝜚(𝑡) and 𝛾(𝑡)), which can be numeric or textual in nature as well. 

Figure 8 provides the temporal evolution of SSC health: starting from its installation point (i.e., at beginning 
of life [BOL]), its operational use and external factors contribute to SSC degradation. This degradation 
process affects SSC functional operation, and it materializes when anomalies emerge from its behavior. 
When the anomalous behavior is discovered then an IR is generated to report the identified SSC degradation 
and, if appropriate, a WO is developed and executed to restore SSC condition or performance.   

 



 

 9 

 
Figure 7. System health program: component representation from a data point of view. Examples are 

reported for each element in the data level. 

 
 

 

Figure 8. Temporal presentation of SSC health data. Elements of the data level of Figure 7 are reported. 

 

5.2 Analysis of ER Data: A Causal Approach 
As indicated in Section 5.1, the goal is to extract information from plant text data (e.g., maintenance 

reports or IRs). The approach described in this report is not based on the identification of the correlation 
between data elements using machine learning methods as indicated in many literature works [75, 76, 77]. 
Instead, the goal is to identify and trace the causal relationship between events. The proposed approach is 
based on causal inference [78, 79]. Causal inference differs from classical statistical inference [80, 81] by 
the fact that it is not based solely on data, but it requires a model which provides insights on the causal 
relationship between stochastic variables.  

These models are typically graphical in nature where representation of the causal relationship between 
stochastic variables is performed though directed acyclic graphs (DAGs). DAGs consist of nodes which 
represent stochastic variables and arrows that connect nodes and represent causal relationships between the 
nodes themselves (see Figure 9). 
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Figure 9. Node representation between cause and effect using DAGs. 

 

In a typical NPP setting, several SSCs are constantly monitored, and relevant events are recorded in the 
plant M&D center. As an example, specific events (e.g., SSC failure) might be caused by a process that 
results in SSC deterioration (in condition, performance, or both); in this respect, Figure 9 can be adapted to 
a NPP setting as shown in Figure 10. 

 

Figure 10. DAG representation between cause and effect in a NPP setting between SSC health (where 
monitoring condition-based data is available) and recorded event (e.g., SSC failure). 

 

Figure 10 displays a very basic relationship between cause and effect for one single SSC. Note that 
monitoring data or the recorded event for each DAG node might not be always available from the plant 
M&D center. 

When dealing with complex systems (e.g., an NPP), multiple SSCs are linked together (see Figure 5 - 
left) to support an emergence function (e.g., electricity production for an NPP). Consequently, the DAG 
representation in this situation might be very complex. An example is illustrated in Figure 11 which shows 
a more complex scenario that involves the component cooling water (CCW) pump. The CCW pump is 
providing cooling to both reactor cooling pumps (RCPs). In this scenario, degradation of the CCW pump 
causes a partial loss of cooling in the RCP seals.  

In this context, a DAG diagram represents the causal relationship between events and SSC health: it 
recreates the “story” behind observed events and data. We are in fact moving away from current methods 
that aim to identify correlations between events and data. However, note that the DAG diagram is obviously 
not available but needs to be created. Our methods are designed to create a DAG diagram based on ER data. 
Note that to achieve this objective possessing ER data alone is not sufficient, we also need: 

1. Models that can provide insights on how SSCs operate and how they are connected to each other (see 
system engineer perspective indicated in Section 5.1.1) 

2. Links between ER data and SSC models (see system engineer perspective indicated in Section 5.1.2) 
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These elements are addressed by SSC OPM models that capture form and functional elements of SSCs, and 
by data mining methods that capture order, duration and coincidence of events. Our data analytics methods 
(that are presented in Sections 5.3-5.5) employ OPM models and advanced data mining methods to:  

1. Capture information contained in available ER data (text and numeric) 

2. Explore causal relationship between ER data elements  

3. Exploit the generated relationships for anomaly detection, diagnostic, and prognostic purposes 

The initial development of these models and methods started during FY 2021 and will continue during FY 
2022. 

 

 

Figure 11. Example of DAG representation of cause and effect in a NPP setting when multiple SSCs 
are considered. 

 
 

5.3 Analysis of ER Data 
As indicated in Section 5.1.2, equipment reliability data can be of different formats (i.e., numeric and 

textual). In addition, the events/logs that are recorded in 𝜃#$(𝑡) or 𝛾#$(𝑡) can be defined over an interval 
or at a single time instant. These two observations lead to a challenge when we analyze equipment reliability 
data: identify a common data structure that can be employed to represent numeric and textual data and 
events defined over time instants and time intervals. The advantage of having a common data structure is 
that it considerably simplifies the causal representation of events and monitoring data for condition-based 
monitoring applications. 

This challenge has been resolved by representing all elements of 𝜃(𝑡), 𝜚(𝑡), and 𝛾(𝑡) (numeric and 
textual) in symbolic form (i.e., a series of symbols). This approach has the advantage that it simplifies the 
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integration of numeric data with recorded events to identify patterns and outliers. In more detail, the method 
is structured in the following four steps: 

1. Symbolic conversion of numerical time series. This is performed using the symbolic aggregate 
approximation (SAX) method [12]. Data preprocessing (e.g., identification of anomalous behavior) 
may be required depending on the actual situation. 

2. Symbolic representation of textual data. This is performed by characterizing events and logs into a tree 
form using NLP methods [13,14]. A tree form has the advantage that it easily captures the structural 
relationship among text objects (e.g., nouns, verbs). 

3. Combine data from Steps 1 and 2 into a common symbolic data structure. In our case, this is performed 
by creating a multivariate symbolic time series. 

4. Apply model-based causal inference methods on the structure generated in Steps 3 by coupling data 
analysis methods with component OPM diagrams to infer component health, its FMs, and related 
maintenance activity that should be performed. 

A graphical description of the methods here presented is shown in Figure 12. 

 

 
Figure 12. ER data analytics workflow. Numeric and text data are initially analyzed separately and 

then merged into a common symbolic language. 

 

5.4 Analysis of Numeric Data 
 

5.4.1 Anomaly Detection from Numeric Data 
During FY 2021 work, the anomaly detection process has been performed using the auto-associative 

kernel regression (AAKR) [15] algorithm. This algorithm relies solely on data observed during normal 
conditions, and it uses such training data to estimate a reconstructed signal based on the evolution of the 
observed (i.e., real) signal and identify anomalous behaviors if they should occur. 

One of the tasks when monitoring complex systems is the validation of the measured data before it is 
actually used to infer system status. While several methods that employ advanced machine learning 
methods can be found in the literature [16,17,18,19], we have opted for methods characterized by robustness 
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and explainability. For the characteristics of this project, the AAKR method [15] fully satisfies the desired 
requirements. 

In brief, the AAKR method employs historic measured data that does not contain anomalous behaviors 
(i.e., normal conditions) and it validates this data set with currently measured data through a kernel 
regression. We indicate: 

• Ξ%&'()*: the set of 𝑁 historical observations where each observation contains 𝐽 data elements of 
different nature (e.g., pump oil temperature, vibration data) 

• Ξ%&' as the currently measured data for the considered 𝐽 data elements. 

Based on the observed data (i.e., Ξ%&'()*) and the currently measured data (i.e., Ξ%&'), the AAKR 
algorithm reconstructs through a regression the values of the	𝐽 data elements (here indicated as Ξ"+*) which, 
under normal conditions, should be very similar to Ξ%&', i.e., Ξ%&' ≅ Ξ"+*. The condition Ξ%&' ≠ Ξ"+*, 
indicates anomalous behavior. 

The basic version of the AAKR method [15] estimates the expected data Ξ"+* as follows: 

Ξ"+* =
∑ 𝑤(𝑛)	Ξ%&'()*(𝑛)#
),-

∑ 𝑤(𝑛)#
),-

 
(1) 

where: 

𝑤(𝑛) =
1

√2𝜋ℎ.
𝑒(

/0!"#(	0!"#$%&())4
'

.5'  
(2) 

The parameter ℎ is determined during the AAKR training process and it sets the regression function 
(see Equation 2). This method has been developed as a Python class and tested over several datasets. Given 
the different nature of the 𝐽 data elements (i.e., different ranges and units), the terms Ξ%&'()* and Ξ%&' are 
properly normalized. This normalization is performed in the “training” step of the AAKR method where 
the Ξ%&'()* data are provided. We performed a Z-normalization where each of the 𝐽 data elements are 
normalized by subtracting its mean (𝑚𝑒𝑎𝑛(Ξ%&'()*)) and dividing by its standard deviation 
(𝑠𝑡𝑑(Ξ%&'()*)): 

Ξ%&'()* =
Ξ%&'()* −𝑚𝑒𝑎𝑛(Ξ%&'()*)

𝑠𝑡𝑑(Ξ%&'()*)
 

(3) 

An example of anomaly detection is represented in Figure 13. The anomaly can be identified when 
observed signal Ξ%&'()* (blue line) deviates considerably from the reconstructed signal Ξ"+* (red line); the 
anomaly is identified in Figure 13 within the region highlighted in red. 

In common industrial settings, not only historic normal conditions but also recorded abnormal 
conditions Ξ%&'(6&)* 	data might be available. The goal is now to also employ the abnormal conditions data 
Ξ%&'(6&)* 	to improve anomaly detection capabilities. This was performed by creating two instances of the 
AAKR method: one instance trained on Ξ%&'()* and one trained on Ξ%&'(6&)*. The goal of the second 
instance is to confirm the detection of an anomalous behavior when similar behavior has been recorded in 
the past. 

Within the LWRS program, the development of advanced anomaly detection methods using deep 
learning methods is currently underway under the Plant Modernization pathway as indicated in [82]. The 
RIAM project is collaborating with this pathway to integrate both efforts. For more complex situations, 
where AAKR limitations might be reached, we will integrate the anomaly detection methods based on deep 
learning developed by the Plant Modernization pathway into the RIAM workflows. 
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Figure 13. Anomaly detection using the AAKR method. Anomaly is identified when observed (Ξ%&'()*) 

and reconstructed (Ξ"+*) signal differs (see region highlighted in red). 

 

5.4.1.1 AAKR Application Example 
We tested the developed method on a dataset provided by the LWRS Plant Modernization pathway. 

This dataset contains the temporal profile of two variables, 𝑢0 and 𝑦0, during both normal and abnormal 
conditions. This dataset was partitioned in two parts, a training set and a testing set: 

• A part designed to train the AAKR model and set the optimal AAKR parameter (e.g., ℎ).  

• A part designed to test the performance of trained model.  

Regarding the train data, Figure 14 shows the scatter plot of two variables (e.g., 𝑢0 and 𝑦0) for normal 
(green points) and abnormal (red) conditions. Note how normal and abnormal conditions only differ for 
very large and very small values of these two variables. 

Regarding the test data, Figure 15 shows the temporal profile of the observed variable 𝑦0 (plotted in 
red) and the reconstructed profile of the same variable using the AAKR method (plotted in green). Figure 15 
also indicates using the blue line where anomalous and abnormal behaviors should be detected (label set to 
0 for normal and to 1 for abnormal behavior). Note how initially the reconstructed 𝑦0 (green line) from the 
AAKR method is not dissimilar for the recorded one (red line). We then proceeded to analyze the temporal 
behavior of the residual of the AAKR algorithm, i.e., the difference between the observed and the 
reconstructed 𝑦0. Figure 16 shows the temporal behavior of the residual (blue line). Given the wide 
fluctuations of the residuals, we smoothed it using classical kernel density estimation methods (orange line) 
to capture trends in the residual time series. 

Based on the training data, the residual time series under normal conditions was fluctuating in the 
±0.012 interval (red lines in Figure 16) and employed this interval to detect anomalies when actual residual 
values cross this interval. Note from Figure 16, the predicted anomaly behavior (i.e., when the orange line 
escapes the ±0.012 interval) matches with the expected anomaly (when label, green line in Figure 16, 
transitions from 0.0 to 1.0). 
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Figure 14. Scatter plot of the considered two variables (i.e., 𝑢0 and 𝑦0) for normal (green points) and 

abnormal (red) conditions. 

 

 
Figure 15. Temporal profile of the variable 𝑦0 (red line) and the reconstructed profile of 𝑦0 using the 

AAKR method (green line). The blue line indicates where anomalous and abnormal behaviors should be 
detected (label set to 0 for normal and to 1 for abnormal behavior). 
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Figure 16. Anomaly detection through the analysis of the residual of the variable 𝑦0 (blue line).The 

residual is smoothed (orange line) and employed for anomaly identificaion when it crosses the provided 
boundaries (red lines). 

 

5.4.2 Symbolic Representation of Numerical Time Series 
The next step is to convert the time series into symbolic form using the SAX algorithm [12]. In short, 

this method performs a symbolic conversion of the original numerical data (i.e., it is converted as an ordered 
list of symbols [e.g., letters]). SAX is an algorithm that allows the user to represent continuous time-varying 
data 𝑆 as a series of n symbols 𝑆̿ = 𝑠̿-, 𝑠̿-, … , 𝑠̿) where 𝑠̿7 is a symbol. 

While temporal discretization is performed by partitioning the time axis into n intervals having the 
same length, the discretization of the numerical time series is typically performed by dividing the range of 
the desired variable into a equi-probable regions. Each region has a character 𝑠̿ associated to it and the 
alphabet size has cardinality3 a. The resulting conversion generates a time series of length n and an alphabet 
size equal to a. The SAX algorithm consists of the steps (also see Figure 17) described in Algorithm 1. The 
result is a phrase 𝑆̿: a timely ordered sequence of symbols. An example of discretization for the temporal 
profile of a scenario taken from [20] is shown in Figure 18. 

Typically, data generated by simulations contain the temporal profile of multiple variables; moreover, 
as also shown in Figure 17, a fixed number (i.e., n) of time intervals having equal length is not optimal to 
capture rapid changes of 𝑆. 

The issue of dealing with multiple variables can be solved by: 

• Performing Steps 2 and 4 in Algorithm 1 independently for each variable. 

• Maintaining the order of symbols for every variable in each time interval. 

 
3 Cardinality of the alphabet refers to the number of characters used. 
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Algorithm 1: SAX algorithm. 
Input: n and a 
1: Normalize the data (mean equal to 0 and standard 

deviation equal to 1) 
2: Partition the temporal interval into 𝑛 equal sized 

intervals 
3: Divide the distribution of 𝜃(𝑡) into equi-probable 

regions and assign a symbol to each region (alphabet 
has cardinality equal to a) 

4: Consider the average value 𝑠̅ of 𝜃(𝑡) in each interval 
5: For each 𝑠̅ assign its own 𝑠̿ according to the 

discretization performed in Step 4 
6: Generate a phrase 𝑆̿ as a timely ordered sequence of 

symbols  
 

 
Figure 17. Example of symbolic conversion with a = 6 and n = 5. 

Regarding the issue of identifying rapid changes of state variables, a solution is to recursively analyze 
the rate of change of the covariance matrix computed in that interval (as shown in [20]). The rationale is to 
choose time intervals such that the rate of change of the covariance matrix eigenvalues is below a fixed 
threshold (see Algorithm 2). As input, the minimum and a maximum length of the time interval are required 
to preserve accuracy and avoid extremely long phrases.  

 

a 

b 
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e 
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t

S

S

Alphabet = { a, b, c, d, e, f } 

S = ebace

s1 = e s2 = b s3 = a s4 = c s5 = e
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Figure 18. Application of the SAX algorithm [12] for a time series: raw data (top left), data normalized 
(top right), temporal discretization (bottom left) and symbol sequence generation (bottom right). SAX 

generates the sequence of symbols: “baabccdddd”. 

 

Algorithm 2: Adaptive time discretization. 
1. Input: maximum value for the rate of change of the 

eigenvalues of the covariance matrix, 𝜆̇869; minimum and 
maximum length of the time discretization, i.e., tMin and tMax 

2. Divide the time scale into intervals having length tMax 
3. Evaluate the covariance matrix of the data points contained 

in that interval and determine its eigenvalues 𝜆7 
4. Determine the highest eigenvalue relative variation 𝜆̇̅ 
5. If 𝜆̇̅>𝜆̇869 then split the interval into 2 intervals of equal 

length 
6. Repeat Steps 3 and 4 for all intervals 
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5.5 Analysis of Text Data 
Most methods found in the literature [21,22] perform processing of text reports using supervised 

learning [23] to predict the report nature (e.g., failure, operating). In this report, we are following a different 
path: the goal is to analyze the sentence structure of logs and reports, organize information in a structured 
form, and create a structural relationship among text objects (i.e., understand who/what did what, when, 
why, where). This is being accomplished by employing NLP methods4 to perform two main tasks, syntactic 
and semantic analysis tasks. 

As a starting point, we are characterizing the content of a generic IR or a maintenance report. Note that 
a maintenance report content is fairly straightforward since it basically reports component replacement or 
restoration activity. In addition, it does not really contribute to the causal reasoning since it represents the 
last node in the DAG scheme. 

On the other hand, IRs (along with SSC monitoring data, see Sections 5.1 and 5.4) provide insights on 
the nodes of the DAG diagram. In other words, an IR describes a portion of a DAG: a node, or the causal 
relation between two nodes. Thus, two classes of IRs can be defined: 

1. Class 1 IR: When the IR reports a DAG node, this node can be either an event (e.g., SSC malfunction) 
or data regarding the health of the component (e.g., excessive corrosion on pump impeller). 

2. Class 2 IR: When the IR reports a causal relation between two nodes, the content of these nodes can be 
any combination between events and SSC health information linked by a causal relationship. 

Note that this classification scheme defined by these two mutually exclusive classes needs to be 
validated with NPP actual data to measure its validity (i.e., the degree to which the two classes are in 
actuality mutually exclusive). In the validation process we can measure the percentage of actual NPP IRs 
that falls in each class and, more importantly, the percentage of IRs that do not fall in either of the two 
classes. Note that the classification provided above are relevant to IRs related to plant equipment 
performance. Since IRs can be written on a wide variety of topics (e.g., issues related to programmatic 
performance, human performance, etc., it is expected that a substantial fraction of IRs would be classified 
as not being one of the two classes related to plant system and equipment health defined above.  

Section 5.5.1 describes the general NLP pipeline to analyze IRs. Then, steps required to extract 
information from each of the two classes of IRs are described in Sections 5.5.2 and 5.5.3. 

 

5.5.1 IR Analysis Pipeline 
The first step in the analysis of text data is to perform syntactic analysis [24,25] of the raw text by 

employing the rules of formal grammar. It is here assumed that the text is in a digital form (typically in a 
string form). The syntactic analysis is performed through the following main steps (see Table 2 presented 
below for a more detailed list of analysis steps): 

1. Sentence segmentation and word tokenization: each sentence is translated into a list of string elements 

2. Part of speech (POS) tagging: identification of grammatic elements of each string (e.g., nouns, verbs). 
Here we relied of the POS tags developed in the Penn Treebank project5 (see Table 3) 

 
4 In this work, we are employing three main Python libraries: STANZA (https://stanfordnlp.github.io/stanza/), NLTK 

(www.nltk.org), and SPACY (https://spacy.io). 
5 Penn Treebank project official website: https://catalog.ldc.upenn.edu/LDC99T42  
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3. Named entity recognition: classify text entities (e.g., names, dates, events) and identify them (e.g., 
component ID, event occurrence time) 

4. Relation extraction: create a knowledge graph where entities identified in Step 3 are linked together in 
a graph that reflects the structure of the original sentence 

Steps 1 to 8 listed in Table 2 are common in any NLP analysis [13,14]. Our approach deviates from standard 
NLP method in Steps 9 and 10.  

In Step 9 we identify in the text the elements of the SSC OPM model (i.e., operands, forms or functions 
as indicated in 5.1.1). From each SSC OPM model we can generate a set of OPL textual elements which 
lists not only all OPM elements but also their relationship. Appendix A presents a detailed OPM model (see 
Figure 47) for a centrifugal pump and its corresponding OPL elements (see Table 29). 

In Step 10 we infer the causal relationship between elements of the IR. These relationships are in the 
form of cause and consequence. Here, we exploit the observations reported in the IR by plant system 
engineers and trace back causal relationship with other IRs using the SSC OPM models. 

 

Table 2. NLP analysis pipeline. 

ID Steps Data generated Note 
1 Retrieve raw text Raw text data   

2 Cleaning Cleaned text data Process of cleaning raw text data from 
not text related elements6  

3 Segment sentence List of strings  Each sentence is analyzed separately 
4 Clean punctuation List of strings Punctuation is removed 

5 Tokenize sentence  List of lists of strings Each sentence is split into a set of 
words 

6 Stemming and 
lemmatization List of lists of strings Each word is converted into its own 

dictionary form or to its stem/root form 

7 Part of speech tagging List of lists of tuples 
Process of marking each word as 
corresponding to a particular part of 
speech using grammatical rules 

8 Entity recognition List of lists of tuples 

Process designed to identify and 
classify named entities into predefined 
classes such as: SSC type, systems, 
locations, time values 

9 OPM entity recognition List of lists of tuples Process designed to identify OPM 
elements (functions or forms)  

10 Information Extraction List of lists of tuples 
Process of extracting information 
content from text (see Section 5.5.2 
and 5.5.3). 

 

 

 
6 For this task we have employed Beautiful Soup (https://www.crummy.com/software/BeautifulSoup/bs4/doc/) 
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Table 3. Alphabetical list of POS tags developed in the Penn Treebank project. 

Number Tag Description 
1 CC Coordinating conjunction 
2 CD Cardinal number 
3 DT Determiner 
4 EX Existential there 
5 FW Foreign word 
6 IN Preposition or subordinating conjunction 
7 JJ Adjective 
8 JJR Adjective, comparative 
9 JJS Adjective, superlative 
10 LS List item marker 
11 MD Modal 
12 NN Noun, singular or mass 
13 NNS Noun, plural 
14 NNP Proper noun, singular 
15 NNPS Proper noun, plural 
16 PDT Predeterminer 
17 POS Possessive ending 
18. PRP Personal pronoun 
19 PRP$ Possessive pronoun 
20 RB Adverb 
21 RBR Adverb, comparative 
22 RBS Adverb, superlative 
23 RP Particle 
24 SYM Symbol 
25 TO to 
26 UH Interjection 
27 VB Verb, base form 
28 VBD Verb, past tense 
29 VBG Verb, gerund or present participle 
30 VBN Verb, past participle 
31 VBP Verb, non-3rd person singular present 
32 VBZ Verb, 3rd person singular present 
33 WDT Wh-determiner 
34 WP Wh-pronoun 
35 WP$ Possessive wh-pronoun 
36 WRB Wh-adverb 

 

A missing task, which will be investigated during FY 2022, is the process of coreference resolution. 
This process is tasked to find the expressions that refer to the same entity in the text. This is particularly 
relevant where the text includes several sentences and a reference to an entity is indicated not with its proper 
name but with a pronoun. An example is provided in Figure 19 where coreference in the second sentence, 
the pronoun “its”, needs to be linked to the entity “pump”. Note that this resolution might occur both within 
and between sentences. 
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Figure 19. Example of coreference resolution (dashed line) for the text: “Pump was found out of service. 

Its power-unit was burnout”. The pronoun “its” references the noun “pump”. 

 

5.5.2 Information Extraction from Class 1 IRs 
The methods designed to extract information from IRs that belong to Class 1 has been structured in a 

similar way to the one presented in [72]. We, in fact, based our methods on a new set of rule templates 
based on specific trigger words and relations. During FY 2021, our work focused on the development of 
status nouns and verbs which would indicate degradation of SSC functions or SSC internal elements. 

The chosen set of status words includes verbs, adjectives, and nouns obtained again from the WordNet7 
database.  For Class 1 IRs, we have identified three categories of status words (negative, anomalous, and 
positive) and they are shown in Table 4, Table 5, and Table 6. Table 7 provides an initial list of status 
relations encoded using STANZA. 

 
Table 4. Set of negative status nouns, verbs and adjectives. 

Status nouns Status verbs Status adjectives 
Failure 

Degradation 
Breach 
Fracture 
Decline 
Decay 
Loss 

Fail 
Degrade 
Break 

Decline 
Go bad 
Rupture 
Breach 
Reduce 
Increase 
Decrease 
Fracture 

Aggravate 
Worsen 

Lose 

Unable 
Ineffective 
Anomalous 

 
Table 5. Set of positive status nouns, verbs and adjectives. 
Status nouns Status verbs Status adjectives 

Operation 
Functioning 

 

Function 
Work 

Operate 
Run 

Operating 
Operational 
Functional 

Usable 
 

 
7 WordNet official website: https://wordnet.princeton.edu/  
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Table 6. Set of anomalous status nouns, verbs and adjectives. 
Status nouns Status verbs Status adjectives 
Observation 
Detection 

Find (out) 
Observe 
Detect 

Determine 
Discover 

Get 
Notice 

Become 
Record 
Register 

Show 

Unchanged 
Unaltered 
Constant 

Consistent 
Stable 

Unaffected 

 
Table 7. Set of status relations. 

Relation 
A (noun) “status verb” “status adjective” 
A (noun) “status verb” “status verb-ing” 
“Status adjective” B (noun) “status verb” 
“Status noun” “status verb” prep. B (noun) 

 
These status relations were coded in a Python based code which relies on the Stanford NLP library STANZA. 
Once the IR has been processed using all steps listed in Table 2, a set of tuples is created from each sentence 
in the form (SSC, form/function, health status). These tuples are designed to represent in digital form the 
DAG node as follows:  
 

SSC; subject = ‘OPM function/form’; health status = ‘ok, ‘degraded’ or ‘anomalous’ 
 
As an example of Class 1 IR is provided as follows:  

Oil puddle was found in proximity of CCW Pump 1B. 

By using the NLP analysis steps 1 through 7 listed in Table 2 using STANZA and NLTK Python libraries, 
the resulting grammatical structure of the IR is shown in Figure 20. This figure shows the POS tags (see 
Table 3) represented on top of each word, and the grammatical dependencies8 between words (represented 
with arrows). 

 
Figure 20. Grammatical decomposition and analysis of the example class 1 IR. 

 

Step 8 in Table 2 is accomplished by looking in the IR for specific SSC tags (i.e., CCW pump 1B). It 
is here assumed as well that SSC tags are unique and given. Once the SSC has been identified, its OPM 

 
8 Refer to https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf for a complete description of each Stanford 

dependency. 
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model (see Appendix A) is employed to identify OPM elements in the sentence that refer to such model 
(see Step 9 in Table 2). In this case, the word “oil” is linked to the OPM form element “ISO VG100 oil”.  

Next, Step 10 of Table 2 is performed where the verb “find” is identified (i.e., verb being part of 
anomalous status, see Table 6). The following tuple is constructed: 

(SSC=CCW Pump 1B; subject=ISO VG100 oil; health status=anomalous) 

Note that now the OPM model is employed to propagate anomalous behavior contained in the IR to other 
OPM elements such as: 

Motor → rotating → pump → accelerating function 

 

5.5.3 Information Extraction from Class 2 IRs 
For the extraction of the causal relationship between elements of a sentence, we identified the works 

presented in [72, 73, 74] as candidates to effectively perform such task. From our literature overview, this 
area of research is fairly new but very active. In addition, all developed NLP methods do not guarantee a 
100% success rate at analyzing text data and extract information.  

 
As a first attempt, we followed the methodology presented in [72] since it provides robust and 

explainable analysis results. This method is based on a set of rule templates based on specific trigger words 
and relations. The chosen set of words includes verbs and nouns obtained from the WordNet database9 and 
is shown in Table 8. 
 

Table 8. Set of trigger causal verbs and nouns [72]. 

Causal nouns Causal verbs 
Result 
Reason 
Cause 

Cause 
Stimulate 

Make 
Derive 
Trigger 
Result 
Lead 

Increase 
Decrease 

 
Similarly, the chosen set of causal relations has been constructed from common English syntactical 

rules as indicated in Table 9. These causal relations were coded in a Python based code which relies on the 
Stanford NLP library STANZA10. This library provides a set of algorithms to perform linguistic analysis 
that can be used to construct fairly complex NLP analysis pipelines. 

Once the IR has been processed using all steps listed in Table 2, a set of tuples is created from each 
sentence in the form (cause=A → consequence=B). These tuples are designed to represent in digital form 
the DAG node indicated in Figure 9:  

(SSC, OPM form/function, health status) → (SSC, OPM form/function, health status) 

 

 
9 WordNet official website: https://wordnet.princeton.edu/  
10 STANZA official website: https://stanfordnlp.github.io/stanza/  
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As an example of class 2 IR is provided as follows: 

Bearing failure of CCW Pump 1B caused reduced flow. 

By using the NLP analysis steps 1 through 7 listed in Table 2 using STANZA and NLTK Python libraries, 
the resulting grammatical structure of the IR is shown in Figure 21. This figure shows the POS tags (see 
Table 3) represented on top of each word, and the grammatical dependencies between words (represented 
with arrows). 

 

Table 9. Set of causal relations [72]. 

Relation 
A (noun) “causal verb” B 
A (verb) “causal verb” B 
B was “causal verb” A 
A is a “causal noun” of B 
B was “causal verb” by A (verb) 
A “causal verb” in/to/from B 

 

 
Figure 21. Grammatical decomposition and analysis of the example class 1 IR. 

 
Step 8 in Table 2 is accomplished by looking in the IR for specific SSC tags (i.e., CCW pump 1 B). 

Again, it is here assumed that SSC tags are unique and given. Once the SSC has been identified, its OPM 
model (see Appendix A) is employed to identify OPM elements in the sentence that refer to such model 
(see Step 9 in Table 2). In this case, these OPM elements in the text have been identified: “bearing” and 
“flow”. 

Next, Step 10 of Table 2 is performed; here, the causal verb “cause” (see Table 8) is identified which 
indicates a causal relationship as follows: 

 
(CCW Pump 1B, bearing, degraded) → (CCW Pump 1B, high internal v flow, degraded) 

 
 

5.5.4 Symbolic Representation of Text Data 
At this point, a generic IR has been characterized (see Sections 5.5.2 and 5.5.3). The next step is to 

capture timing and ordering of events. An example is given in Figure 22; note that this example is directly 
linked to the DAG diagram represented in Figure 11. Figure 22 shows timing and ordering of events in a 
graphical form. The goal now is to create a digital structure that allows us to data mine duration, 
coincidence, and order of events.  

In this respect, the time series knowledge representation (TSKR) algorithm [14] offers a flexible way 
to solve this problem. TSKR is a hierarchical language for expressing temporal knowledge in symbolic 
data. The term hierarchical refers to the fact that the symbolic conversion is performed in three levels (see 
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Figure 23) that describes the concept of duration (through tones), coincidence (through cords), and order 
(through phrases). 

 

 
Figure 22. Example of temporal discrete events for the events shown in Figure 11. 

 

 
Figure 23. Generation of a phrase from a sequence of tones. 

 
A few definitions are need before presenting the actual algorithm: 
• Tone: Tone is the elemental component of time interval analysis. It is described by the triple {𝜎, 𝑠, 𝑒} 

where 𝜎 is the symbol associated to the time interval [𝑠, 𝑒] 
• Chord: A chord pattern describes a time interval where 𝑘 > 0 tones coincide 
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• Phrase: A phrase is a sequence of 𝑘 > 1 nonoverlapping chords. 

The algorithm structure is presented in Algorithm 3 below. 

 

Algorithm 3: TSKR algorithm 
1: Mining aspects: given a set of d-dimensional time series, 

select and label k aspects 
2: Mining tones: generate a series of tones from the k aspects 

generated in Step 1 
3: Mining marginally interrupted tones: find and filter small 

temporal gaps in order to avoid generation of chords 
having small temporal intervals 

4: Mining chords: given k tones, generate a set of chords 
5: Mining phrases: generate a symbolic interval ordered 

sequence representing occurrences of the set of chords 
determined in Step 4 

 

Note that a set of k not overlapping tones still produces k chords, each of them containing a single tone. 

 

5.6 Construction of Common Data Structure 
At this point, the numeric (see Section 5.4) and text data (see Section 5.5) need to be “merged” together 

in a single time series. This is performed by following the same philosophy behind the TSKR algorithm 
(see Section 5.5.4), where the recorded events (which are tree structures) are inserted in the corresponding 
cells of the time series symbolic array. As an example, in Figure 24 we are focusing on a time series where 
three events are recorded from text data: events E1 and E3 are defined over a time instant while E2 is defined 
over an interval. The tree structure for each event (e.g., type of event, component ID, date) is then associated 
with the corresponding cell generated by the SAX algorithm. 

 

 
Figure 24. Symbolic conversion of numerical (time series in the plot on the left) and textual data (events 

E1, E2, and E3) into a single data structure. 
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5.6.1 Data Analysis Methods 
At this point, the data structure shown in Section 5.6 is fairly flexible to analyze by employing standard 

methods [9] (such as Markov models, decision trees, and suffix trees) but also more advanced symbolic 
analysis methods [17]. However, the most relevant approach is based on subseries clustering: the symbolic 
time series (as generated in Section 5.6) can be partitioned into subseries and can identify those subseries 
that occur frequently (i.e., motif discovery), those that have never been recorded in the past (i.e., anomaly 
detection), and those that are close to a newly recorded subseries (data forecast). As a final comment, note 
that the memory requirements for the data structure shown in Section 3 are very small; numeric values 
occupy more memory than a string or a chart. This guarantees fast performances for diagnosis and prognosis 
applications. 

The core development of analysis methods for symbolic data structures will be performed during FY 
2022.  

 

5.7 Evaluation of Data Analytics and Machine Learning to Support 
SFCP Evaluations 

One element of achieving cost reductions at operational NPPs in the United States is for plant owner/ 
operators to adopt approved risk-informed applications that permit NPPs to address operational and 
maintenance issues more efficiently by consideration of the affected SSC’s contribution to plant safety. 
Several of these risk-informed approaches have been developed by industry and approved for 
implementation by the U.S. Nuclear Regulatory Commission (NRC). These applications include the 
following (references indicate approved industry implementation guidance documents): 

• Risk-informed Categorization and Treatment of Structures, Systems, and Components (10 CFR 50.69) 
[26, 27] 

• Risk-Informed Technical Specifications Initiative 4B, Risk-Managed Technical Specifications [28] 

• Risk-Informed Technical Specifications Initiative 5B, Risk-Informed Method for Control of 
Surveillance Frequencies [29]. 

An operating plant may adopt these risk-informed programs by obtaining an amendment to their 
operating license. Once the amendment is obtained, application of the program is controlled by plant 
processes and procedures that implement industry guidance specified in application specific documents that 
have been endorsed by the NRC. 

Although each of the risk-informed applications cited above have unique objectives and requirements, 
they all possess the characteristic that their implementation requires the retrieval and evaluation of historical 
plant data. Performance of these activities requires significant effort from plant staff to identify, retrieve, 
and evaluate the relevant data. Due to both the volume and diversity of these data, this effort can be time 
consuming and resource intensive. Application of computational techniques using data analytics (DA) and 
machine learning (ML) approaches has the potential to substantially reduce the time and effort necessary 
to perform these activities, thus providing additional economic benefits from the adoption of various risk-
informed initiatives.   

The research detailed in this section describes areas where an initial proof of concept to apply DA/ML 
techniques could be applied to one of the risk-informed applications identified above―Risk-Informed 
Technical Specifications Initiative 5B. Because the original surveillance frequencies specified in the plant 
Technical Specifications were conservatively chosen, these frequencies are considered by regulatory 
authorities to provide an adequate level of plant safety. However, because these task frequencies were 
chosen to be conservative, subsequent plant operating experience has shown that cost savings could be 
obtained by extending many of these activities without incurring any degradation in SSC performance or 
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plant safety. As a result of approval of Risk-Informed Technical Specifications Initiative 5B, many U.S. 
NPPs have obtained license amendments permitting licensee control of plant surveillance intervals for 
critical safety-related SSCs. In addition, between 2011 and 2012, the NRC updated the published Standard 
Technical Specifications for each of the reactor types in use in the U.S. to reflect adoption of this risk-
informed initiative (see References [30–34]).  

Plants that have adopted a risk-informed approach to control the frequencies of required surveillance 
activities must implement a surveillance frequency control program (SFCP). Once the plant license 
amendment is approved, the SFCP is implemented in accordance with industry guidance contained in NEI 
04-10 [29]. The plant license amendment that applies this guidance permits licensee control of surveillance 
test frequencies for required surveillance activities that are specified in the plant technical specifications. 
In this licensee-controlled process, existing surveillance frequencies are removed from the technical 
specifications and a paragraph is added to the Administrative Controls section that refers to the NEI 04-10 
[29] document for the control of surveillance frequencies. The surveillance test requirements (test methods) 
themselves are not changed and remain in the plant technical specifications. 

The methodology described in NEI 04-10 [29] applies a risk-informed, performance-based approach 
for the modification of surveillance frequencies as specified in the plant technical specifications. The 
approach is consistent with the philosophy described in NRC Regulatory Guide 1.174 [35]. In the approach, 
probabilistic risk assessment (PRA) methods are used to evaluate the risk impacts of proposed revisions to 
the testing intervals with sensitivity studies used to address the impact of uncertainties. Additionally, a 
multi-disciplinary integrated plant decision making panel (IDP) performs a comprehensive review of the 
potential impacts that could result from the proposed revisions that accounts for operating experience (both 
plant-specific and industry), test history, manufacturer recommendations, applicable codes and standards, 
and other factors, as well as the risk insights obtained from the PRA evaluations. 

As a result of implementation of these programs at many plants, the industry has accumulated 
significant experience in the execution of this risk-informed application. An important feature of this 
application is that, once the license amendment has been approved, the plant owner/operator has discretion 
over which particular SSCs will be evaluated for surveillance frequency extensions and the timing of 
implementation of those extensions. As a result, NPPs that have implemented this risk-informed program 
generally have applied it to those SSCs where the application of the process was expected to be 
straightforward and relatively simple. However, even for these cases, experience indicates that collection 
and evaluation of the necessary data required to support the desired surveillance frequency extensions is 
time consuming and resource intensive.  

Because of this experience, it is postulated that this application would serve as a useful case to evaluate 
the use of DA/ML to support utility implementation of risk-informed programs. In the conduct of SFCP 
analyses, plant data used in the various engineering evaluations and reviews (SSC failure data, instrument 
calibration data, etc.) typically require manual collection, processing, and evaluation. These activities are 
labor intensive and potentially could be performed more efficiently using DA/ML techniques. The initial 
research described in this report is intended to identify which DA/ML techniques would be most applicable 
(e.g., use of image recognition to characterize instrument calibration “As Found”/“As Left” data from 
completed surveillance tests that are used to evaluate instrument drift rates) and to develop a future DA/ML 
application for pilot demonstration at a host NPP.  

The process of extending surveillance intervals within the conduct of a plant SFCP requires the 
evaluation of both the impact of the surveillance extension on plant risk (as determined in the plant PRA) 
and operational experience related to the specific SSCs that are tested. The first of these evaluations is 
predominantly a theoretical evaluation that uses the existing plant PRA model to develop insights related 
to the potential impact on risk due to the postulated surveillance frequency change. The second evaluation 
consists predominantly of obtaining and analyzing relevant operational history associated with the 
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particular SSCs that are impacted. Each of these two evaluations are addressed below with potential areas 
where DA/ML techniques could be applied to obtain more efficient and cost-effective results. 

Although reviews of the impact on plant risk to support SFCP determinations can be resource intensive 
and time consuming, they generally are well defined and relatively straightforward to accomplish with 
requirements specified in NEI 04-10 [29]. Specific requirements include the following: 

• Ensure plant PRA models meet the requirements specified in NRC Regulatory Guide (RG) 1.200 [36] 
for model scope, completeness, and quality (Step 5 in NEI 04-10). Of particular importance to a plant 
SFCP are items related to evaluating key modeling assumptions and sources of uncertainty, which serve 
as inputs to performing appropriate sensitivity evaluations related to the proposed surveillance 
frequency changes.  

• Review plant PRA models to determine whether the SSCs tested in the surveillance are modeled (Step 
8 in NEI 04-10). 

• If the SSCs tested in the surveillance are not modeled in the PRA, assess the feasibility of modifying 
the model to include them (Step 9 in NEI 04-10). If such PRA model modifications are feasible, they 
are implemented (Step 11 in NEI 04-10); if they are not feasible then a determination is made whether 
a qualitative analysis would be sufficient or, alternatively, if a bounding analysis can be performed to 
ensure the risk impact in terms of core damage frequency (CDF) and Large Early Release Frequency 
(LERF) of the proposed frequency change are acceptable (Step 10 in NEI 04-10).  

• In addition, review the PRA models to ensure that the total cumulative effect on risk (CDF and LERF) 
that is accrued by all frequency changes incorporated as part of the SFCP are acceptably small. 

• Conduct sensitivity studies to assess the potential impact of uncertainties (Step 10 in NEI 04-10). This 
process is accomplished by modifying the unavailability terms in the basic events that represent the 
SSCs addressed in the surveillance activity. Generally, a factor of 3 is considered to be an appropriate 
value as a 95th percentile upper bound applicable to distributions of reliability for SSCs in operating 
NPPs.   

The results of these evaluations are summarized and presented to the IDP for review and approval of the 
proposed surveillance frequency change. 

A fundamental characteristic of the activities described above is that they all utilize the plant PRA 
model. A key area where DA/ML techniques could provide cost and resource savings is in the activity that 
reviews the plant PRA model to determine whether SSCs tested in the surveillance activity are included in 
the model. This generally requires identification of which basic events (if any) correspond to the specific 
SSCs and the functions they provide that are tested in the surveillance. For these evaluations, DA/ML could 
be applied to search the PRA model using a combination of NLP techniques to identify if and where the 
specific SSCs occur in the model. In addition, since most safety-related SSCs in NPPs are present in more 
than one train, if SSCs from one train are found, the similar SSCs for these trains also should exist in the 
model. This is true both for mechanical equipment (e.g., four trains of residual heat removal [RHR] pumps, 
valves, and piping) and actuation/control instrumentation (e.g., four loops of containment pressure sensing 
instrumentation to actuate emergency core cooling system [ECCS] and containment isolation functions). 
As a result, use of clustering or nearest neighbor algorithms may be useful to limit the time and cost of 
searches (i.e., perform a detailed search through the model for one instance of the SSCs and a more limited 
search to identify the basic events for the other instances of the related SSCs that perform identical functions 
for the other trains). Additionally, although not specifically a DA/ML approach, development of 
computational scripts could be used to automate generation of data (via repeated runs of the PRA model 
with varied failure rates for the SSCs impacted by the surveillance frequency change) used in the conduct 
of the required sensitivity studies; thus, potentially further reducing analysis cost and time.    
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Although the application of DA/ML approaches may provide improved efficiencies in the conduct of 
SFCP evaluations, a much more fruitful area for use of these techniques could be in obtaining and analyzing 
the operational history associated with the particular SSCs under consideration. There are two reasons for 
this. First, tasks related to this portion of a SFCP assessment are much broader in scope than that related to 
reviews and analyses of plant PRA models. Second, experience with SFCPs at operating plants has shown 
that the data needed to perform the required evaluations often are contained in multiple locations (e.g., 
different databases) and often in different formats; this situation is a major reason that performance of SFCP 
reviews can be resource intensive and time consuming. 

As discussed previously, the evaluation of the risk impacts of postulated frequency extensions 
represents a relatively straightforward application with most of the necessary data and analysis being 
contained in a single software application (i.e., the plant PRA model contained in the PRA software). 
Additionally, the analyses performed generally are well defined with straightforward acceptance criteria. 
In contrast, the engineering evaluations are much broader in scope with less well-defined criteria for 
acceptance. For these evaluations, a wide range of information is collected and reviewed. This includes: 

• Bases for the surveillance frequency that was prescribed in the plant Technical Specifications or 
described in the plant final safety analysis report (FSAR). 

• Commitments made to external agencies regarding the surveillance interval. In addition to 
commitments made to the NRC, these also can include commitments made to other governmental 
agencies (at the federal, state, or local level) as well as commitments to other organizations, such as 
industrial insurance carriers (such as American Nuclear Insurers [ANI] or Nuclear Electric Insurance 
Limited [NEIL]). 

• Previous surveillance history associated with the SSCs for which the surveillance frequencies are being 
considered for extension as well as surveillance history associated with other similar equipment. 

• Operational and maintenance history associated with the SSCs for which the surveillance frequencies 
are being considered for extension as well as surveillance history associated with other similar 
equipment used at the plant. This typically would include reviews of work orders as well as any issues 
or adverse performance trends that have been identified in the plant maintenance rule program or 
corrective action program (CAP). 

• Review of applicable industry information related to performance issues related to the SSCs for which 
the surveillance frequencies are being considered for extension. This would include information 
contained in the Institute of Nuclear Power Operations (INPO) operating experience (OPEX) database, 
NRC-related publications (generic letters [GLs], NUREGs, etc.), and vendor-supplied information.    

Once these data are obtained and reviewed, the results typically are summarized to support the 
engineering evaluations that determine whether the desired surveillance frequency extension is feasible. 
Experience has shown that the collection and analysis of the data described above can be labor intensive 
and time consuming. Therefore, at many plants the application of SFCP has been limited to plant 
surveillances for which it is easily determined that implementation of the frequency extension is cost 
beneficial.      

As is evident from these examples, such reviews utilize a wide range of information that is obtained 
from a variety of data sources. Once the data are collected, they must be put into a form that facilitates 
appropriate engineering analyses to support the surveillance frequency change. This represents a second 
area that has been found to be time consuming and labor intensive. A common example of this occurs in 
evaluation of operational experience to determine if the occurrence of calibration drift over the proposed 
extended surveillance interval would result in an unacceptable increased likelihood of the SSC not 
providing its intended function when required. Such a determination can be made using information 
obtained from previous surveillances (e.g., calibration “as found”/“as left” records) and work 
order/Maintenance Rule/CAP data. However, experience indicates that the historical data related to plant 
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calibration records at many plants have not been digitized and are obtained from paper records (either within 
a “hard copy” of the surveillance instruction itself or on instrument/loop calibration sheets). As a result, 
significant time can be spent obtaining the records, translating the relevant data from the “hard copy” into 
a suitable electronic format (e.g., spreadsheet or data base), and then performing relevant engineering 
analyses (e.g., calculation of instrument drift rates and uncertainties) to demonstrate that the new proposed 
task frequency would be acceptable. 

Because the operational experience based data that need to be collected and reviewed to support a 
surveillance frequency extension are broad and diverse, use of DA/ML approaches could substantially 
reduce the effort required to obtain this information as well as perform an initial review/characterization of 
it. Potential application areas along with the respective DA/ML techniques are identified below. 

• As indicated previously, an essential activity in the conduct of SFCP evaluations is to identify the bases 
for the specific surveillance activities and their frequencies. NLP techniques could be used to search 
the relevant sources such as plant Technical Specifications, FSAR, or other design basis documents to 
identify these bases.  

• In the evaluation of plant surveillances, an important activity is to identify uniquely tested components 
(i.e., a component whose function is being tested in the surveillance being considered for frequency 
extension as well as any other surveillances which are performed less frequently). To identify these 
components, use of NLP techniques could be employed to evaluate the procedures in the plant 
surveillance program to determine (1) which specific test procedures test these components, (2) at what 
frequency each is tested, and (3) identify the test procedure(s) that test the component most frequently. 
For components that perform multiple safety-related functions or possess multiple success criteria, NLP 
also could be used to identify these characteristics at the individual function level (to the extent that 
this information is provided in the specific surveillance test procedures). 

• Similarly, NLP techniques can be combined with structured data in plant work order (and other 
databases such as Maintenance Rule and CAP) using Bayesian classifiers to identify specific issues 
related to historical performance of the plant SSCs (equipment failures, instances, or trends of degraded 
performance, etc.) that are tested in the particular surveillance activity. Then, other DA/ML techniques, 
such as cluster analysis, could be applied to perform preliminary evaluations of the impact of these 
issues to plant safety, production, and economics. 

• As indicated previously, industry experience has found that historical data related to plant calibration 
records often have not been digitized and are only found on paper records. In this case, application of 
image conversion and character recognition algorithms could be used to convert calibration data from 
“hard copy” to electronic format suitable for performing engineering evaluations. 

However, much of the information that can be obtained from external sources (such as NRC, INPO, 
vendors) is not likely to be available in a format suitable for direct use of DA/ML applications. For example, 
relevant NRC reports (GLs, NUREGs, etc.) generally are electronically available in Adobe Acrobat (.pdf) 
format. Although use of various techniques, such as a combination of image conversion and character 
recognition, could be used to convert these records into a format amenable to use by other DA/ML 
techniques (such as NLP), it is an open question to what extent such an approach would be cost effective. 
As a result, these reviews may be more cost effective to perform manually.      

The most critical step in the SFCP process is review and approval by the IDP to modify a particular 
surveillance interval. Per industry SFCP implementation guidance provided in NEI 04-10 (Step 16) [26], 
the IDP is “is charged with the task of reviewing the proposed STI for both qualitative considerations and 
the quantitative results.” In addition, the IDP develops recommendations related to how the revised 
surveillance intervals are implemented (e.g., implementation using a phased approach where the 
frequencies are extended gradually over a specified period of time). The IDP also is responsible for 
reviewing the cumulative impact of all changes implemented via the SFCP, monitoring the impact of 
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changes on SSC failure rates, and ensuring appropriate documentation is developed and maintained. Within 
the context of application of DA/ML techniques to support the SFCP, the IDP should be familiar with the 
techniques that are used, their potential limitations, and metrics used to evaluate their effectiveness in 
supporting decision making. In particular, the IDP should be cognizant of some standard performance 
criteria used for the evaluation of performance of DA/ML algorithms, such as: 

• True/False Positives and True/False Negatives 

• Precision and Recall 

• Sensitivity and Specificity [37].  

These metrics measure different but interrelated aspects of the performance of DA/ML applications. 
Of particular importance is that the IDP understands that DA/ML applications apply statistical processes, 
and that performance measured against the various indicators represents a tradeoff. For example, although 
the ideal objective would be to have both no false positive and no false negative occurrences for 
identification of a particular item, achieving this ideal is not possible using DA/ML approaches. This is due 
to the characteristics of statistical hypothesis testing where a decrease in the rate of occurrence of a Type 1 
error necessarily results in the increase in the rate of occurrence of Type 2 errors (see Herroelen, et al.’s 
1998 journal article, pp. 411-416 [38]). Note that the information related to characterization True/False 
Positives and True/False Negatives of typically is displayed in a 2 × 2 matrix format called a “confusion 
matrix” [39].   

Based on the discussion above, the following list provides a summary of areas where research could be 
conducted to determine the extent to which DA/ML techniques would enhance the cost effectiveness of 
performing SFCP evaluations. These areas include applying the following: 

• DA/ML to search plant PRA models to identify where specific SSCs for which frequency extensions 
are under consideration occur in the model. 

• NLP techniques to identify the bases for specific surveillance activities and their frequencies from 
relevant sources such as plant technical specifications, FSAR, or other design basis documents. Similar 
techniques also can be applied to identify commitments associated with SSCs for which frequency 
extensions are under consideration.  

• NLP techniques to structured plant data using Bayesian classifiers to evaluate historical performance 
of plant SSCs. 

• Image conversion and character recognition algorithms to convert calibration data from “hard copy” to 
electronic format suitable for performing engineering evaluations. 

In addition, development of overview training for the IDP to provide an understating of DA/ML 
techniques with particular emphases on the potential benefits and limitations for various ML techniques 
and standard performance monitoring metrics and what they signify would be needed to support effective 
deployment of these techniques in this application.  

 

5.8 Evaluation of Effect on PRA Due to Variation of Component 
Surveillance Frequency 

As indicated in Section 5.7, a thorough analysis of ER data can be used to support risk informed 
applications such as SFCP. This section provides a direct application on how the analyzed ER data can be 
integrated into existing plant PRA models to support SFCP decisions. Here we are looking at how a change 
in surveillance frequency for a specific SSC affects the probability of the basic event(s) associated with that 
SSC. 
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Surveillance of standby components is performed to gain confidence that a standby plant SSC will 
operate as necessary in the event of a need. There are two models used to evaluate the probability of failure 
for a surveillance test, one for the demand of the SSC to start and the other is for the operating during the 
test. For the purposes of this report, the evaluations will be conducted assuming that the standby SSC is a 
pump such as are used in NPP emergency core cooling systems.  

The binomial model is used to perform a Bayesian inference for a demand-based component and the 
most common prior distribution is in the form of a Beta distribution. The parameter of interest for the 
binomial model is the probability of failure (here indicated as 𝑝). Nuclear industry performance parameters 
for centrifugal pumps are expressed as a Beta distribution. The Beta distribution is a conjugate distribution 
to the binomial distribution which means that the math of the Bayesian inference works out to provide a 
posterior result of a Beta-Binomial Bayesian update as a closed-form Beta distribution with exact 
parameters (i.e., 𝛼 and	𝛽 for a beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽)), the parameter of interest for the mean and the 
moments is 𝑝.  

The Poisson model is used to perform a Bayesian inference for the failure rate of a running component 
and the most common prior distribution is in the form of a Gamma distribution. The parameter of interest 
for the binomial model is the rate of failure (here indicated as 𝜆). Nuclear industry performance parameters 
for centrifugal pumps are expressed as a Gamma distribution. The Gamma distribution is a conjugate 
distribution to the Poisson distribution, therefore producing a closed-form Gamma distribution with exact 
parameters (i.e., 𝛼 and	𝛽 for a gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)) as the Bayesian inference posterior, the 
parameter of interest for the mean and the moments is	𝜆. 

There are pump trains for safety systems such as high-pressure safety injection that are normally on 
standby and are operated outside of operational need only during surveillance (or in response to a plant 
initiating signal signifying the onset for a transient or accident condition). Other pump trains are operated 
continuously such as for service water. For these systems where redundancy exists (e.g., a service water 
system that has three installed pumps with only two required to be in service to provide full system function) 
it is common practice at many nuclear power plants to rotate the trains of normally operating pumps from 
operating continuously to standby, thereby keeping all trains at the same level of run times. All failure rates 
for pumps are determined empirically through a Bayesian update from operational data. The surveillance 
frequency of normally standby pumps is typically monthly for turbine driven pumps and quarterly for motor 
driven pumps. There is not a surveillance frequency for rotated normally operating pump trains because the 
rotation frequency acts as a surveillance. 

If surveillance is performed at regular intervals, the probability of failure on demand is assumed to be 
consistent because the operating conditions generally are the same for all components. Increasing the 
intervals introduces the possibility of increasing the probability of failure for those failure modes that occur 
when the component is idle. The increase in failure probability with increased time to surveillance can be 
modeled by a distribution that fits the data. One proposed distribution is a logistic-normal distribution where 
the slope is constant. Another is a Weibull distribution where the slope increases with time as is the case 
when continuously running components experience wear-out, or end-of-life. The proper distribution needs 
to be fit from experimental data. A logistic-normal distribution is used here as an example. A fleet of 70 
standby pumps that are normally surveilled at a 30-day frequency is run through a testing program where 
the frequency is increased by ten days for three surveillance periods. The resulting data for 40, 50, and 60 
days is used to predict the failure probability for these surveillance periods and also 70, 80, and 90 day 
surveillance periods. The posterior distributions for periods with data is a numerical result from a Bayesian 
update using a logistic link function as a prior with uninformed parameters. This allows the data to drive 
the posterior. The resulting logistic link function parameters are then used to predict failure probabilities 
for the ensuing surveillance periods, thus eliminating the need for running further testing program 
surveillance periods. 
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Assume that a testing program was run on an ensemble 75 identical turbine driven centrifugal pumps 
that are normally in standby and are currently surveilled at 30-day intervals. Historical data is placed in the 
30-day data and the new data are populated from the test for 40, 50, and 60 days as is shown in Table 10. 

 

Table 10. Component failure to start: events recorded for different surveillance periods. 

Surveillance period (days) Failures Demands 
30 146 26557 
40 1 75 
50 1 75 
60 2 75 

 

Here we employ the logistic link function 𝑙𝑛 a :[7]
-(:[7]

b = 𝑎 + 𝑏𝑖, where 𝑝[𝑖] represents the probability 
for the i-th surveillance period, and parameters for intercept and slope (i.e., 𝑎 and 𝑏) are the linear 
parameters for the logistic linear function. 

The Bayesian inference formula for this update is then the following: 

ѡ(𝑝[𝑖]) =
f)9g𝑝[𝑖]

9(1 − 𝑝[𝑖]))(9 ∗ 𝑙𝑛 i 𝑝[𝑖]
1 − 𝑝[𝑖]j

∫f)9g𝑝[𝑖]
9(1 − 𝑝[𝑖]))(9 ∗ 𝑙𝑛 i 𝑝[𝑖]

1 − 𝑝[𝑖]j 𝑑𝑝
 (4) 

where: 

• 𝑛 is the number of pumps in the study 

• 𝑥 is the number of failures in the i-th surveillance period 

• ѡ(𝑝[𝑖]) is the posterior probability 

• f)9g𝑝[𝑖]
9(1 − 𝑝[𝑖]))(9 is the aleatory model likelihood 

• 𝑙𝑛 a :[7]
-(:[7]

b is the prior 

Simplified, the Bayesian formula is as follows: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(Ѳ|𝑑𝑎𝑡𝑎) =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑑𝑎𝑡𝑎|Ѳ) ∗ 𝑃𝑟𝑖𝑜𝑟(Ѳ)

∫ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟	𝑑Ѳ
 (5) 

where: 

• Ѳ is the parameter of interest, in our case p 

• 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = Binomial distribution 

• 𝑃𝑟𝑖𝑜𝑟 = logistic linear function 

• 𝑑𝑎𝑡𝑎 = the results of the 30, 40, 50, and 60 day surveillance tests 

A Bayesian inference was run using a Markov Chain Monte Carlo (MCMC) program to produce the 
posterior results and, in this respect, the posterior distribution for the logistic link function parameters 𝑎 
and 𝑏 are described by the moments listed in Table 11. We then proceed to propagate the posterior 
distributions of 𝑎 and 𝑏 to the component probability of failure corresponding for different surveillance 
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intervals as indicated in Table 12. The box plot of the distributions of the component probability of failure 
to start for each surveillance period (see Figure 25) shows the growth in uncertainty for the predicted 
reliability data for 70, 80, and 90 days. 

 

Table 11. Moments of the posterior distribution for the logistic link function parameters 𝑎 and 𝑏. 

Logistic link 
function parameter Mean 5th percentile Median 95th percentile 

a -5.68 -6.06 -5.69 -5.24 
b 0.48 0.08 0.48 0.81 

 

Table 12. Moments of the posterior distribution for the component probability of failure to start for 
different surveillance intervals. 

Surveillance 
(days) Mean 5th percentile Median 95th percentile 

30 5.50E-3 4.78 E-3 5.49E-3 6.27E-3 
40 9.00E-3 5.90E-3 8.94E-3 1.23E-2 
50 1.54E-2 6.43E-3 1.46E-2 2.70E-2 
60 2.69E-2 6.97E-3 2.36E-2 5.83E-2 
70 4.79E-2 7.55E-3 3.80E-2 1.22E-1 
80 8.36E-2 8.17E-3 6.08E-2 2.38E-1 
90 1.38E-1 8.85E-3 9.58E-2 4.13E-1 

 

 
Figure 25. Box plots of the posterior distribution for the component probability of failure to start for 

different surveillance intervals. 
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There are similar increased failure mechanisms for running pumps immediately after they are started 
from a standby condition.  The first hour of a pump starting up and running from standby is considered a 
loading hour where the pump experiences an initial increase in failure rate. This increased failure rate from 
a normally operating pump can be attributed to failure modes that occur when the component is idle. After 
the first hour, the pump can be considered to follow the failure rate for continuously running pumps. An 
increase in failure rate is logically assumed to increase further with the longer proposed surveillance time. 
This increased 𝜆 can be modeled using a loglinear distribution for a constant slope or a Weibull distribution 
if the slope increases with time. The proper distribution needs to be fit from experimental data. A Loglinear 
example is provided here. 

Assume that the same testing program runs each of the 75 turbine driven centrifugal pumps that are 
normally in standby and are currently surveilled at 30-day intervals for four hours, for a total of 300 hours 
for the pump population. Historical data are placed in the 30-day data and the new data are populated from 
the tests for 40, 50, and 60 day surveillance intervals. 

 

Table 13. Component failure to run: events recorded for different surveillance periods. 

Surveillance Period (days) Failures Hours 
30 10 1922 
40 2 300 
50 2 300 
60 3 300 

 

Here we employa loglinear link function 𝑙𝑛(𝜆[𝑖]) = 𝑎 + 𝑏𝑖 , where	𝜆[𝑖] is the failure rate for the ith 
surveillance period and parameters 𝑎 and 𝑏 are the linear parameters for the loglinear function. 

Using the loglinear link function model, the math is similar to above, only that the Poisson distribution 
is used for the likelihood and the loglinear link function is used as the prior. A Bayesian inference was run 
using an MCMC program to produce the posterior results below. 

The posterior distribution for the loglinear link function parameters 𝑎 and 𝑏 are described by the 
moments listed in Table 11. 

 

Table 14. Moments of the posterior distribution for the logistic link function parameters 𝑎 and 𝑏. 

Loglinear link 
function 

Parameter 
Mean 5th percentile Median 95th percentile 

𝑎 -5.48 -6.26 -5.461 -4.73 
𝑏 0.175 -0.19 0.18 0.51 

 

We then proceed to propagate the posterior distributions of 𝑎 and 𝑏 to the component probability of failure 
corresponding for different surveillance intervals as indicated in Table 15. The box plot of the distributions 
of the component probability of failure to start for each surveillance period (see Figure 26) shows the 
growth in uncertainty for the predicted reliability data for 70, 80, and 90 days. 
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Table 15. Moments of the posterior distribution for the component probability of failure to run for 
different surveillance intervals. 

Surveillance 
(days) Mean 5th percentile Median 95th percentile 

30 5.22E-3 2.94 E-3 5.06E-3 8.06E-3 
40 6.13E-3 3.86E-3 6.01E-3 8.80E-3 
50 7.50E-3 3.84E-3 7.26E-3 1.20E-2 
60 9.57E-3 3.37E-3 8.76E-3 1.85E-2 
70 1.27E-2 2.87E-3 1.05E-2 2.98E-2 
80 1.75E-2 2.41E-3 1.27E-2 4.86E-2 
90 2.50E-2 2.02E-3 1.52E-2 8.00E-2 

 

 
Figure 26. Box plots of the posterior distribution for the component probability of failure to run for 

different surveillance intervals. 

 

6. RELIABILITY MODELING 
Current reliability models are based on Boolean logic structures [40] (e.g., fault trees [FTs]), which 

describe the deterministic functional relationship between SSCs and human interventions. Each basic event 
in a reliability model represents a specific elemental occurrence (failure of a component, failure to perform 
an action by the plant operators, recovery of a safety system, etc.), and a probability value is associated 
with each basic event, which represents the probability that the basic event can occur. However, 
maintenance and surveillance operations are typically not explicitly integrated into a PRA structure. 
Therefore, a probability value associated with a basic event is a representation of the past operational 
experience for associated component, and it does not incorporate information about the SSC’s present 
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health status (i.e., from diagnostic and condition-based data) and health projections (when available from 
prognostic data) on anticipated changes in SSC’s condition and performance in the near future. 

A possible alternate path can start by redefining the word “reliability” to encompass a broader meaning 
that better reflects the needs of a system health and asset management decision making process. Rather than 
focusing on how likely an event is to occur (in probabilistic terms), we think in terms of how far this event 
is from occurring. This new interpretation of risk transforms the concept from one that focuses on the 
probability of occurrence to one that focuses on assessing how far away (or close) an SSC is to an 
unacceptable level of performance or failure. This transformation has the advantage that it provides a direct 
link between the SSC health evaluation process and standard plant processes used to manage plant 
performance (e.g., the plant maintenance and budgeting processes). The transformation also places the 
question into a form that is more familiar and readily understandable to plant system engineers and decision 
makers. When dealing with condition-based data (actual and past/archived data), margin 𝑀q  is defined here 
as the distance between SSC conditions (e.g., oil temperature, vibration spectrum) that lead to failure and 
the current observed SSC condition (see Figure 27). 

 

 
Figure 27. Margin in a condition-based maintenance context: evolution of an SSC condition as a function 

of time and margin definition. 

Consider two components (𝐴 and 𝐵). The 𝑀q  for both components can be visualized in a 2-dimensional 
space, as shown in Figure 28. Starting with brand-new components (i.e., 𝑀q=, 𝑀q> = 1), aging degradation 
that affects both can be represented by the blue line in Figure 28, which parametrically represents the 
combination of the normalized margins (𝑀q=(𝑡),𝑀q>(𝑡)) as a point in time t. Note that if no maintenance 
(whether preventive or corrective) was ever performed on either component, this path would move from 
the coordinates (1,1), components 𝐴 and 𝐵 at the beginning of life, to the coordinates (0,0) where both 
components had failed. We can identify these regions in Figure 28: the occurrence of both events where 
𝑀q= = 0 and 𝑀q> = 0 and the occurrence of either event when 𝑀q= = 0 or 𝑀q> = 0. Now we can calculate 
the 𝑀q	for the events listed above. This is accomplished by following the definition of margin: by measuring 
the distance between the actual condition of components 𝐴 and 𝐵 and 𝑀q  conditions identified by the event 
under consideration (e.g., the occurrence of both or either events): 

𝑀q(𝐴	𝐴𝑁𝐷	𝐵) = 𝑑𝑖𝑠𝑡[(𝑀q=, 𝑀q>), (0,0)] 

𝑀q(𝐴	𝑂𝑅	𝐵) = 𝑚𝑖𝑛f𝑀q=, 𝑀q>g 
(6) 

The function 𝑑𝑖𝑠𝑡[𝑋, 𝑌] is designed to calculate the Euclidean distance between points 𝑋 and 𝑌. 
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Hence, exact solutions can be obtained extremely fast. More precisely, reliability calculations using 𝑀q-
based data can be performed by completing these four steps: 

1. Construct the FT; at this point, an FT contains only deterministic information about the architecture of 
the system under consideration (i.e., it simply models how the basic events are related to each other 
from a functional perspective). 

2. Generate the minimal cut sets (MCSs) from the FT; as also indicated in Step 1, an MCS still represents 
the minimal combinations of basic events (BEs) that lead to the top event (TE). 

3. Assign 𝑀q	to each basic event. 

4. Calculate the 𝑀q	of the union of the MCSs. 

As part of system reliability modeling, it is always important to determine the importance of each basic 
event. In a PRA setting, this is performed by relying on risk importance measures, such as Birnbaum or 
Fussell-Vesely. Given the different nature of 𝑀q , it is possible to perform a risk importance ranking by 
relying on a classical sensitivity measure (derivative based) for each basic event 𝐵𝐸 defined as: 𝑆>? =
@	8A(B?)
@	8A(>?)

. In other words, 𝑆>? indicates how a small variation of 𝑀q(𝐵𝐸) directly affects 𝑀q(𝑇𝐸). 

 
Figure 28. Graphical representation of event occurrences based on a margin framework. 

 

6.1 Margin Models 
A margin model described here is intended to be the front-end computational model which provides a 

numeric margin value given the set of historic and current ER data (e.g., generated by plant condition-based 
(CB) or plant health management [PHM] program). Without loss of generality, the format of CB or PHM 
data that are gathered at a specific time instant can be: 

• Static: point value measurement of the SSC parameter of interest (e.g., pump shaft temperature) 

• Time dependent: time series measurement of the SSC parameter of interest (e.g., vibration 
measurement). 

The initial set of models that have been developed focus mainly on the first class (i.e., static data); 
however, time-dependent data can be translated into a series of static data points (e.g., through fast Fourier 
decomposition or statistical moment decomposition).  
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The definition of margin for a generic component cannot be generalized since it depends on the 
component class under consideration and the type of CB or PHM data that can be gathered (see Table 16). 

 

Table 16. Example of CB/PHM data for centrifugal pumps. 
CB/PHM data Data format 

Bearing temperature Numeric scalar  
Shaft vibration data Spectrum data 
NPSH available Numeric scalar  
Visual inspection Images, sound recordings 

 
 

6.1.1 Margin Calculation from Static Data 
This section presents the mathematical description behind the calculation of margin provided actual 

data and data representing failing conditions. We are using the following notation for these two datasets: 

• Actual data: 𝑅 data points	𝒚" ⊆ ℝ#(𝑟 = 1,… , 𝑅) → 𝒀 = [𝒚-; … ; 𝒚C] is a matrix of dimension 𝑅 × 𝑁 

• Failure data: 𝑄 data points 𝒙D ⊆ ℝ#(𝑞 = 1,… , 𝑄) → 𝑿 = �𝒙-; … ; 𝒙E� is a matrix of dimension 𝑄 × 𝑁. 

Here we are assuming that we are dealing multiple data points for both failure and actual data (i.e., 
multiple measurement performed for the same SSC parameter of interest). 

The goal now is to determine the SSC margin 𝑀(𝒀|𝑿) given actual data 𝒀 and failure data	𝑿: 
𝑀(𝒀|𝑿) = ⟨𝑿−𝒀⟩. The actual algorithm is described in detail below. 

 

Algorithm 4. Margin calculation for static data given actual data 𝒀 and 
failure data	𝑿. 

1. Determine a matrix ∆= �𝑑D,"� (𝑅 × 𝑄) 
a. 𝑑D," = 𝑑𝑖𝑠𝑡(𝒙D − 𝒚") 
b. Each element 𝑑D," represents the distance between failed data 

point and actual data point (Euclidean distance) 
c. If 𝑑D," < 0, then actual data point 𝒚" has passed the failed 

data point 𝒚" , in other words margin = 0 
2. Based on 1.c, define ∆�= �𝑑�D,"� such that  

𝑑�D," = �	
0								if	𝑑D," < 0
𝑑D," 			if	𝑑D," ≥ 0 

a. Each element 𝑑�D," represents now the margin the between 
failed data point and actual data point (compare to 1.b) 

3. Determine margin between 𝑀(𝒀) = 𝑚𝑒𝑎𝑛(∆�) 
 

The margin calculation shown above has been coded inside SR2ML as part of the MarginModel. The 
code snippet shown in Figure 29 provides an example of definition of such model within the RAVEN input 
file where the margin is defined in a 2-dimensional space where failure times (e.g., failTime) are recorded 
for different values of operational temperature conditions (e.g., failTemp). Given actual lifetime and current 
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temperature operational conditions (e.g., actualTime and actualTemp, respectively), the model produced 
the margin value according to Algorithm 1. 

 
 <Models> 
  <ExternalModel name="PointSetMargin" subType="SR2ML.MarginModel"> 
   <variables>actualTime,actualTemp,marginPS1</variables> 
   <MarginModel type="PointSetMarginModel"> 
    <failedDataFileID>failureData.csv</failedDataFileID> 
    <marginID>marginPS1</marginID> 
    <map var='failTime'>actualTime</map> 
    <map var='failTemp'>actualTemp</map> 
   </MarginModel> 
  </ExternalModel> 
 </Models> 

Figure 29. Margin model input file. 
 
 

6.1.2 Margin Analysis Code  
The actual implementation of a computational engine that can perform margin-based reliability analysis 

has been completed during FY 2021. The code is based on the MarginSolver model available in SR2ML. 
This model requires: 

• The set of minimal cut sets which can be generated by existing PRA codes such as CAFTA [41], RISK 
SPECTRUM [42], or SAPHIRE [43] 

• The margin associated to each basic event. 
This model generates in output the margin value associated to the union of the provided minimal cut sets. 
An example of margin-based solver input structure is indicated in Figure 30. 

 
 <Models> 
  <ExternalModel name="MCSmodel"subType="SR2ML.MCSSolver"> 
   <variables>statA,statB,statC,statD,statE,TOP</variables> 
   <solver type='margin'> 
    <metric>2</metric> 
   </solver> 
   <topEventID>TOP</topEventID> 
   <map var='statA'>A</map> 
   <map var='statB'>B</map> 
   <map var='statC'>C</map> 
   <map var='statD'>D</map> 
   <map var='statE'>E</map> 
  </ExternalModel> 
 </Models> 

Figure 30. Margin-based solver input file. 
 

The component margin models (see Section 6.1.1) can be directly linked to the MarginSolver model 
as part of a multi-entity model using the RAVEN EnsembleModel capability. 

 

6.1.3 Cut Sets vs. Path Sets for Margin Analysis 
In the context of margin-based reliability modeling, rather than considering the system cut sets, it would 

be more suited to rely on the concept of path sets [44]. From a reliability standpoint, these two concepts are 
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strongly related to each other. In a system composed by an arbitrary set of elements, it is possible to define 
these terms as follows: 

• Cut set: it represents a subset of components of a system that, when failed, cause the overall system to 
fail 

• Path set: it represents a subset of components of a system that, when functioning, guarantee the overall 
system to function. 

In other terms, while cut sets focus on ways that the system can fail, path sets focus on ways that the system 
can operate correctly (i.e., success paths).  

Assuming the system is composed by a set of 𝑁	components where each component 𝑖 is characterized 
by the state variable 𝑠7 as follows [45]:  

𝑠7 = �	1 if the component is operating
	0 if the component has failed  (7) 

The system state vector 𝒔 is here defined as: 

𝒔 = (𝑠-, 𝑠., … , 𝑠#) (8) 

It is now possible to define the system state Φ(𝒔) as: 

Φ(𝒔) = (𝑠-, 𝑠., … , 𝑠#) (9) 

where: 

Φ(𝒔) = �	1 if the system is operating
	0 if the system has failed  (10) 

From a reliability modeling perspective, Φ(𝒔) is typically constructed by employing fault trees. By 
employing Boolean logic operations, the minimal cut sets can be obtained. Note the Φ(𝒔) describes from a 
functional perspective the component dependencies at the system level. Now, the generation of minimal 
path sets can be constructed from	Φ(𝒔)	by solving NOT[Φ(𝒔)]. 

The concept of margin is designed to measure the health of an SSC; hence, it focuses on the operability 
aspect of such SSC. When focusing on continuously operating systems (e.g., secondary side of NPPs), it is 
relevant, from a decision making point of view, to identify the ways that guarantee the system to work 
reliably. Hence, path sets coupled with margin-based calculations are more suitable for analyses under these 
conditions.  

 

6.2 Plant Models: VERT 
VERT is a generation risk assessment (GRA) software application available in the GitLab repository 

focused on simplifying, while improving, the process of evaluating NPP electricity generation (see 
Figure 31). VERT uses GRA methods to examine how component reliability and degradation impact the 
ability for an NPP to generate electricity (see Figure 32 for a tree representation of the VERT repository 
structure). Whereas PRA uses fault trees to focus on scenarios impacting plant nuclear safety, GRA uses 
fault trees to focus on scenarios impacting plant electricity generation, including temporary plant power 
output derating (see Table 17 for a summary of VERT targeted use cases). Combining GRA with a price 
model allows for direct economic analyses.  
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VERT models require in input health information of SSCs (either probabilistic or margin data [see 
Section 6.1]) and they determine the risk associated with loss of power generation. From here it is then 
possible to identify the highest contributors (i.e., SSC) to power generation risk. 

 

 
Figure 31. GRA role in power plant asset management. 

 

 

 
Figure 32. Folder tree of the VERT repository. 

 

VERT couples the INL-developed SAPHIRE fault tree evaluation software and RAVEN, which 
provides a framework for parametric variability along with automated results production and analysis (see 
Figure 33). Using component reliability data and degradation models, VERT can identify SSCs that 
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significantly contribute to plant electricity generation loss over time (see Figure 34). The identified high-
risk equipment can then be targeted for reliability and condition improvements. Similarly, VERT can be 
used to identify components that are not significant contributors to a reduction in electricity generation. 
This equipment may be subject to over-conservative reliability and condition improvement activities (e.g., 
preventive maintenance actions). Insights from VERT support the optimization of maintenance, inspection, 
and other electricity generation improvement strategies. Note that the functionality and structure of VERT 
have been provided in a previous report (see [5]). Table 18 provides a basic summary of the VERT 
repository in terms of development language, license, and GitHub repository. The VERT regression tests 
are in the final stages of approval to ensure quality performance of the application. 

 

 
Figure 33. VERT conceptual schematic. 

 

 

 
Figure 34. VERT risk methodology diagram. 
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VERT was used to perform an analysis on U.S. NPPs using plant operation data from 1980-2020. The 
analysis results confirmed that NPP operational performance has been improving since 1980. The results 
also identified NPP equipment that impacts plant performance, both positively and negatively. A 
description of the analysis and its results were presented at the 28th International Conference on Nuclear 
Engineering (ICONE) and published in the conference proceedings. A detailed report on the need for a 
generation risk assessment tool, and how VERT meets that need, will be presented at and published in the 
proceedings of the American Nuclear Society’s 2021 International Topical Meeting on Probabilistic Safety 
Assessment to be held in November 2021.  

A case study based on maintenance optimization strategies using VERT is currently being pursued. 
VERT will be utilized to provide crucial information to the processes involved with the International 
Atomic Energy Agency (IAEA) maintenance optimization program for NPPs. Many entities including the 
Electric Power Research Institute (EPRI) and operating utilities regularly implement these strategies for the 
support of nuclear power generation. The time and labor requirements for procedures deemed important for 
maintenance optimization can be reduced using VERT. For example, classification is essential for grouping 
components in certain maintenance strategy regimes. The classification process requires information on 
production losses if the components were unavailable. VERT automatically quantifies the estimated 
production losses of components due to failure and maintenance unavailability. The VERT case study will 
demonstrate this capability among others to reduce costs and increase effectiveness of maintenance 
optimization strategies. 

 

Table 17. List of VERT models and methods and their corresponding use case. 

Model/Method Use Case 

GUI for GRA model construction 
Automated creation of PWR/BWR GRA 
models and interface with SAPHIRE and 
RAVEN  

Generic LWR GRA models Reference GRA models for generic PWR 
and BWR for benchmarking purposes 

Generic LWR PRA models Reference PRA models for generic PWR 
and BWR for benchmarking purposes 

 

Table 18. Summary of VERT architecture. 

Development language Python 
Dependencies RAVEN, SAPHIRE 
Repository site https://hpcgitlab.inl.gov/mandd/vert 
License NDA agreement (to be released open-source soon) 
Supported operating system Windows  

 

Two generic SAPHIRE GRA models have been developed for use with VERT. The models represent 
a generic boiling and pressurized water reactor (BWR and PWR respectively) NPP simplified at the super-
component level. The super-component approach groups components within a system to represent a single 
basic event. For example, all main feedwater piping is grouped into the same super-component. The models 
include all SSCs that are required for power generation in LWRs. The fault tree structures were developed 
to represent NPP layouts. Using common PRA methodologies, the generic models include the SSCs present 
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in the reactor, steam turbine, generator, and balance of plant systems of NPPs. These main systems are then 
broken down into their constituent sub-systems (see Figure 35 for balance of plant sub-systems) and then 
into the super-components. The GRA models have 134 fault trees, 1535 basic events, and 171 gates. 
Table 19 provides a listing of the system fault trees and linkage for the VERT generic GRA models. The 
BWR and PWR fault trees are structured differently according to their representative plant design types.  

 

 
Figure 35. Balance of plant sub-systems in generic LWR GRA models. 

 

Table 19. Summary of VERT fault trees for generic GRA models. 

Fault tree 
ID System Description Link to fault trees 

2010-2090 Reactor Core and Fuel Input to reactor fault tree and top event to 
cause codes 2010-2090 

2010-2999 Reactor Failure of Nuclear Reactor Input to system fault tree and top event to 
all other reactor fault trees 

2110-2160 Reactor Control Rods and Drives 
Failures 

Input to reactor fault tree and top event to 
cause codes 2110-2160 

2170-2199 Reactor Reactor Vessel and Internals 
Failures 

Input to reactor fault tree and top event to 
cause codes 2170-2199 

2200-2399 Reactor Reactor Coolant System 
Failures 

Input to reactor fault tree and top event to 
cause codes 2200-2399 

2400-2599 Reactor Steam Generators and Steam 
System Failures 

Input to reactor fault tree and top event to 
cause codes 2400-2599 

2600-2649 Reactor Core Cooling/Safety 
Injection Failures 

Input to reactor fault tree and top event to 
cause codes 2600-2649 

2650-2699 Reactor Electrical Safety Systems 
Failures 

Input to reactor fault tree and top event to 
cause codes 2650-2699 

2700-2799 Reactor Containment System Input to reactor fault tree and top event to 
cause codes 2700-2799 

2805-2819 Reactor 
Chemical and Volume 
Control/Reactor Water 
Cleanup 

Input to reactor fault tree and top event to 
cause codes 2805-2819 
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Fault tree 
ID System Description Link to fault trees 

2820-2839 Reactor Nuclear Cooling Water 
Systems 

Input to reactor fault tree and top event to 
cause codes 22820-2839 

2840-2890 Reactor  Auxiliary Systems (Reactor) Input to reactor fault tree and top event to 
cause codes 2840-2890 

2900-2999 Reactor Miscellaneous (Reactor) Input to reactor fault tree and top event to 
cause codes 2900-2999 

3110-3199 Balance of 
Plant Condensing System Input to balance of plant fault tree and top 

event to cause codes 3110-3199 

3110-3999 Balance of 
Plant Balance of Plant Failures Input to system fault tree and top event to 

all other balance of plant fault trees 

3210-3299 Balance of 
Plant Circulating Water Systems Input to balance of plant fault tree and top 

event to cause codes 3210-3299 

3310-3399 Balance of 
Plant Condensate System Input to balance of plant fault tree and top 

event to cause codes 3310-3399 

3401-3499 Balance of 
Plant Feedwater System Input to balance of plant fault tree and top 

event to cause codes 3401-3499 

3501-3509 Balance of 
Plant Heater Drain Systems Input to balance of plant fault tree and top 

event to cause codes 3501-3509 

3520-3529 Balance of 
Plant Extraction Steam Input to balance of plant fault tree and top 

event to cause codes 3520-3529 

3600-3689 Balance of 
Plant Electrical  Input to balance of plant fault tree and top 

event to cause codes 3600-3689 

3810-3899 Balance of 
Plant Auxiliary Systems    Input to balance of plant fault tree and top 

event to cause codes 3810-3899 

3950-3999 Balance of 
Plant 

Miscellaneous (Balance of 
Plant) 

Input to balance of plant fault tree and top 
event to cause codes 3950-3999 

4000-4099 Steam 
Turbine High-Pressure Turbine Input to steam turbine fault tree and top 

event to cause codes 4000-4099 

4000-4499 Steam 
Turbine Steam Turbine Failures Input to system fault tree and top event to 

all other steam turbine fault trees 

4100-4199 Steam 
Turbine 

Intermediate Pressure 
Turbine 

Input to steam turbine fault tree and top 
event to cause codes 4100-4199 

4200-4250 Steam 
Turbine Low Pressure Turbine Input to steam turbine fault tree and top 

event to cause codes 4200-4250 

4260-4269 Steam 
Turbine Valves Input to steam turbine fault tree and top 

event to cause codes 4260-4269 

4270-4279 Steam 
Turbine Piping Input to steam turbine fault tree and top 

event to cause codes 4270-4279 

4280-4289 Steam 
Turbine Lube Oil Input to steam turbine fault tree and top 

event to cause codes 4280-4289 

4290-4309 Steam 
Turbine Controls Input to steam turbine fault tree and top 

event to cause codes 4290-4309 
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Fault tree 
ID System Description Link to fault trees 

4400-4499 Steam 
Turbine 

Miscellaneous (Steam 
Turbine) 

Input to steam turbine fault tree and top 
event to cause codes 4400-4499 

4500-4580 Generator Generator Input to generator fault tree and top event 
to cause codes 4500-4580 

4500-4899 Generator Generator Failures Input to system fault tree and top event to 
all other generator fault trees 

4600-4609 Generator Exciter Input to generator fault tree and top event 
to cause codes 4600-4609 

4610-4650 Generator Cooling System Input to generator fault tree and top event 
to cause codes 4610-4650 

4700-4750 Generator Controls Input to generator fault tree and top event 
to cause codes 4700-4750 

4800-4899 Generator Miscellaneous (Generator) Input to generator fault tree and top event 
to cause codes 4800-4899 

SYSTEM Entire 
System 

BWR or PWR Power Plant 
Failures Top event for the GRA model 

 

 

7. PLANT RESOURCES MANAGEMENT 
The last step in an integrated plant system and asset health management program is to manage plant 

resources based on the system health analysis indicated in Sections 4 and 5. 

 

7.1 Project/Option Selection 
The FMs with higher 𝑆>? (see Section 6) are the ones selected as candidates to be subject to MAs (see 

Figure 6). A list of possible options to address each failure mode is available where costs (i.e., procurement 
costs for a new or refurbished component) and benefits (i.e., increased margin for loss of production) are 
readily available or can be numerically determined. Given the candidate MAs and their options, we can 
now identify the best set of activities and options that give “the most bang for the buck.” 

This is accomplished by identifying the Pareto frontier [46] out of all the possible MAs and options. 
Let us assume that a decision can be taken from a set of options by considering the utility and cost of each 
option. Using a graphical representation (see Figure 36) it is possible to plot each option as a point in a 2-
dimensional space, cost versus utility11: 

• Cost. This axis represents the cost associated with each option ranging from 0 (e.g., cheapest option) 
to a maximum value 𝐶G69 (e.g., the most expensive option) 

• Utility. This axis represents the added value (or the performance) associated with each option ranging 
from 0 (i.e., lowest performance option) to a maximum value 𝑈G69 (i.e., option with highest 
performance). 

 
11 As indicated earlier, the number of attributes considered in complex settings can be 𝑁 > 2. Thus, in such cases, the space would 

be 𝑁-dimensional. 
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Figure 36. Pareto frontier obtained from a set of options plotted in a cost vs. utility space and imposition 

of cost and utility constraints (right). 

Once the complete set of options has been generated and the utility and cost values have been 
determined for each option, the next step is to the determine the Pareto optimal frontier, which is 
fundamentally an envelope of options that dominates (in terms of both utility and cost) the set of remaining 
options (see Figure 36). 

Multi-objective optimization is widely used to design plant/system configuration by balancing cost and 
performances. An application of the developed tools is indicated in Section 7.1.1 to determine the optimal 
sensor configuration applied to a generic SSC. 

 

 

7.2 Long-Term Decisions: Project Scheduling Given Budget 
Constraints 

The method described in Section 7.1 does not explicitly take into consideration project actuation 
scheduling but instead focuses on the optimal subset of projects that provide higher value through a multi-
objective optimization lens. In practical settings, project scheduling is done in phases (e.g., monthly, 
quarterly) wherein each phase’s budget is allocated, and the goal now is to choose an optimal project 
actuation schedule that minimizes costs and satisfies budget constraints [47]. Due to limited resources, we 
can only select a subset from a list of several candidate capital projects. Our goal is to maximize overall 
NPV associated with the selected subset. In doing so, we must respect resource limits and capture key 
structural and stochastic dependencies of the system, although here we start with the simpler deterministic 
case, ignoring randomness.  The notation and formulation are as follows: 

Indices and sets:  
𝑖	 ∈ 𝐼 candidate projects 
𝑗	 ∈ 𝐽7 options for selecting project 𝑖 (e.g., initiate project 𝑖 in year 𝑡 or 𝑡 + 2 and in a 

standard (three year) or in an expedited (two year) manner) 
(𝑖′, 𝑗′) 	 ∈ 𝐼𝐽7H piggybacking situations, i.e., option 𝑗′ for project 𝑖′ can be selected only if option 𝑗 is 

selected for project 𝑖 
𝑘	 ∈ 𝐾 types of resources, e.g., capital funds, O&M funds, labor-hours, time during outage 
𝑡 ∈ 𝑇 time periods (years) 
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Data: 
𝑎7H reward (revenue less financial cost) of selecting project 𝑖 via option 𝑗   
𝑏IJ available budget for a resource of type 𝑘 in year 𝑡   
𝑐7HIJ consumption of resource of type 𝑘 in year 𝑡 if project 𝑖 is performed via option 𝑗 

 

Decision variables: 

𝑥7H = �	1 if project 𝑖 is selected	
	0 otherwise

	
	 (11) 

 

Optimization model formulation: 

max
9

� 𝑎7H 	𝑥7H 	
7∈L,H∈M(	

 (12) 

s. t. � 𝑥7H
H∈M(	

	= 1, 𝑖 ∈ 𝐼 (13) 

� 𝑐7HIJ	𝑥7H
7∈L,H∈M(	

		≤ 𝑏IJ , 𝑘	 ∈ 𝐾, 𝑡 ∈ 𝑇 (14) 

𝑥7)H) 	≤ 𝑥7H , (𝑖N, 𝑗N) ∈ 𝐼𝐽7H 	, 𝑗 ∈ 𝐽7 , 𝑖 ∈ 𝐼 (15) 

𝑥7H ∈ {0,1}, 𝑗 ∈ 𝐽7 	, 𝑖 ∈ 𝐼 (16) 
 
The decision variables, 𝑥7H, indicate whether we choose to do project 𝑖 by means	𝑗. The set of available 

options, 𝑗 ∈ 𝐽7, can explicitly include the “do-nothing” option, and the first constraint ensures that we choose 
exactly one option from the available set for each project, including the possibility of selecting the do-
nothing option. The second structural constraint ensures that the budget of each resource	𝑘 is respected in 
each year 𝑡. The third structural constraint captures piggybacking situations in which option 𝑗′ for project 
𝑖′ (which may have cheaper costs) may be selected only if project-option pair (𝑖, 𝑗) is also selected. The 
objective function includes the NPV for each project-option pair, 𝑎7H	, and the correct NPV is selected by 
the 0-1 decision variable, 𝑥7H. 

 
 

7.3 Short-Term Decisions: Maintenance Activity Scheduling Given 
Personnel Constraints 

NPPs have personnel trained and tasked to perform certain maintenance jobs. A plant manager is 
responsible for all aspects of safe and reliable station operation. A plant’s maintenance department includes 
mechanical, electrical, and instrumentation and control technicians. A plant’s operations department 
operates the reactor and other plant controls. Within the context of maintenance, staff from operations 
authorize work to commence, align systems for work, and provide for worker and system safety during 
maintenance by tagging components (e.g., breakers, valves, and dampers) to prevent their operation as well 
as to isolate them from other systems (e.g., electrical power and pressurized fluid systems). Operators are 
frequently the first to identify deficiencies in equipment. Because operators best understand system 
interactions and the relative importance of each piece of equipment, they have a strong voice in prioritizing 
such deficiencies for work. Staff from scheduling coordinate work efforts and interface with different 
organizations at the plant. Generally, scheduling occurs in several phases. A long-range schedule, which 
provides general opportunities for maintenance on pre-specified systems, is used for rough planning. 
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Several weeks before work starts, a finer-grain job schedule is developed to allow parts to be delivered, 
tags to be prepared, and scaffolds and other support work to be organized. Finally, a detailed schedule, 
which includes work sequences to coordinate the jobs with other station jobs, is developed. Schedulers are 
sometimes separated into two teams for online and outage scheduling. The work control group administers 
much of the maintenance process by controlling the flow of documentation, from problem identification to 
work completion.  

An important part of the efficient functioning of the described groups is having an optimal schedule for 
executing jobs. We consider a relatively general problem of job scheduling involving multiple modes of 
operation, multiple resources, and alternative objectives, all in the context of scheduling maintenance or 
surveillance activities during normal operation, or scheduling activities during an outage. We will refer to 
all such activities as “jobs.” 

 

7.3.1 Full Version of the Model Formulation 
We consider a project that consists of a set of	𝐽 jobs (or tasks). Due to technological requirements, 

precedence relations among some of the jobs enforce that job 𝑗 = 2,3, … , 𝐽 may not be started before all its 
predecessors, denoted by 𝒫H, are finished. Here, 𝑗 = 1 indexes an artificial job with zero duration, which 
precedes all jobs that can start at time zero, and 𝑗 = 𝐽 indexes an artificial final job, again with zero duration, 
which represents the end of the project. (For work on plant SSCs, one could consider these to represent j = 
0 as the point in time at which Operations authorizes work to comments while j = J could be considered as 
the point in time where Operations declares the SSC as being available for service.) The individual job, 𝑗, 
may be executed in one of 𝑚 = 1,… ,𝑀H modes, and the solution to the optimization model recommends 
which mode should be selected. The jobs may not be preempted, and a mode, once selected, may not 
change. Executing job 𝑗 takes 𝑑HG time periods and is supported by sets, 𝑅 and 𝑁, of renewable and 
nonrenewable resources. Consider a horizon with an upper bound, 𝑇�, on the project's makespan (i.e., the 
time at which the final job is completed). We assume 𝐾"

O units of renewable resource 𝑟 ∈ 𝑅, are available 
in each time period 𝑡 = 1,2, … , 𝑇�; an example of a renewable resource is a crew’s availability for up to 40 
hours per week. The overall capacity of the nonrenewable resource 𝑟 ∈ 𝑁 , is given by 𝐾"P; an example of 
a nonrenewable resource may be a budget that spans the planning period. 

Job 𝑗 requires 𝑘HG"
O 	units of the renewable resource, 𝑟 ∈ 𝑅, for each period of the job’s duration (i.e., 

for time periods when the job is in process). For a nonrenewable resource 𝑟, 𝑘HG"P  units of the resource are 
consumed when job 𝑗 is done in mode 𝑚. 

The objective is to find a schedule which minimizes the project’s makespan while respecting the 
constraints imposed by the precedence relations and the limited resource availability. (Note that the 
makespan of a project is defined as the length of time that elapses from the start of work to its completion.) 
The following model is used for the optimization analysis. 

 

Indices and parameters: 
𝑗 = 1, 2, … , 𝐽 jobs, with 𝑗 = 1 and 𝑗 = 𝐽 denoting artificial jobs 

𝑀H number of modes in which activity 𝑗 can be performed 

𝑟 ∈ 𝑅(𝑁) set of renewable (nonrenewable) resources 

𝑑HG duration of job 𝑗 being performed in mode 𝑚; integer number of time periods 

𝐾"
O ≥ 0 number of units of renewable resource 𝑟 available in period 𝑡 
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𝑘HG"
O ≥ 0 number of units of renewable resource 𝑟 consumed by job	𝑗 each period while in 

process 

𝐾"P ≥ 0 number of units of non renewable resource 𝑟 available in period 𝑡 

𝑘HG"P ≥ 0 number of units of non renewable resource 𝑟 consumed by job 𝑗 while in process 

𝒫H set of immediate predecessors of job 𝑗 

𝐸𝑆H(𝐸𝐹H) earliest start time (finish time) of job 𝑗; if not otherwise specified it calculated by 
using minimal activity durations and neglecting resource usage (consumption) 

𝐿𝑆H(𝐿𝐹H) latest start time (finish time) of job 𝑗; if not otherwise specified it calculated by 
using minimal activity durations and neglecting resource usage (consumption) and 
taking into account the upper bound 𝑇�  on the project’s duration 

𝑡 = 𝐸𝐹H , … , 𝐿𝐹H time periods, with 𝑇� as an upper bound on the project’s makespan 

 
Variables: 

Binary decision variables 𝑥HGJ , 𝑗 = 1,… , 𝐽;𝑚 = 1,… ,𝑀H , 𝑡 = 𝐸𝐹H , … , 𝐿𝐹H 

𝑥HGJ = �	1,	if job	𝑗	completes in period	𝑡 under mode	𝑚
	0,	otherwise  

 
Model: 

min� � (𝑡 − 1)𝑥MGJ
$Q*

J,?Q*

8*

G,-
 (17) 

s. t. � � 𝑥HGJ = 1, 𝑗 = 1,… , 𝐽
$Q+

J,?Q+

8+

G,-
 (18) 

� � 𝑡	𝑥5GJ
$Q,

J,?Q,

8,

G,-
≤� � f𝑡 − 𝑑HGg𝑥HGJ , 𝑗 = 2,… , 𝐽, ℎ

$Q+

J,?Q+

8+

G,-
∈ 𝒫H (19) 

� � 𝑘HG"
O � 𝑥HGD ≤ 𝐾"

O
G7)RJST+-(-,$Q+U

D,G69RJ,?Q+U

8+

G,-

M

H,-
, 𝑟 ∈ 𝑅, 𝑡 = 1,… , 𝑇� (20) 

� � 𝑘HG"P � 𝑥HGJ ≤ 𝐾"P, 𝑟 ∈ 𝑁
$Q+

J,?Q+

8+

G,-

M

H,-
 (21) 

𝑥HGJ ∈ {0,1}, 𝑗 = 1,… , 𝐽;𝑚 = 1,… ,𝑀H , 𝑡 = 𝐸𝐹H , … , 𝐿𝐹H (22) 
 

Note that the objective function in Eq. 17 uses job 𝐽 to define the project’s makespan because this job 
is the artificial final job with zero duration, which denotes completion of the project. Constraint in Eq. 18 
ensures that each job is done exactly once (i.e., in exactly one mode and with exactly one completion time 
within its time window �𝐸𝐹H , 𝐿𝐹H�). Constraint in Eq. 19 is the precedence relation; the left-hand side of the 
constraint denotes the time at which the predecessor job finishes, and the right-hand side of the constraint 
is the start time of the successor job. Constraint in Eq. 20 ensures that the per-period availabilities of the 
renewable resources are not exceeded. Constraint in Eq. 21 secures feasibility with respect to consumable 
(nonrenewable) resources; such a constraint only makes sense because there are multiple modes for each 
job. When 𝑀H = 1, 𝑗 = 1,… , 𝐽	and	|𝑁| = 0, the multimode problem degenerates to the single-mode 
resource-constrained project scheduling problem. Even this simplified variant is an NP-hard problem (i.e., 
the current consensus suggests that it is unlikely that it can be solved in polynomial time). 
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The above model, with one mode only, is used by McKendall et al. [48] to solve a nuclear plant’s 
outage scheduling problem with eight maintenance jobs (two artificial) and nine toolboxes. This toy-sized 
problem is used to simply illustrate ideas. The objective used by McKendall et al. is to schedule 
maintenance activities such that outage duration (i.e., the project makespan) is minimized. In their example, 
they identify the most constraining resources as: polar crane, toolboxes, skilled workers, and space. In the 
considered example, toolboxes and workspaces turn out to be the limiting resources. Each job (activity) 
requires one unit of space, and three total workspaces are available. Table 20 shows additional data for the 
problem. Early start/finish time (EST, EFT) and late start/finish time (LST, LFT) values along with most 
total successors (MTS) are computed using the critical path method (CPM). Figure 37 provides another 
means of visualizing the problem. 

 

Table 20. A simple outage scheduling problem. 

Job Duration Immediate 
Predecessors Toolboxes EST EFT LST LFT MTS 

1 0 None None 1 1 15 15 7 
2 2 1 1,5,8 1 3 17 19 3 
3 2 1 1,4,6 1 3 17 19 3 
4 8 1 2,6,9 1 9 15 23 2 
5 4 2,3 6,7 3 7 22 26 1 
6 7 2,3 1,2,8 3 10 19 26 1 
7 3 4 3,5,9 9 12 23 26 1 
8 0 5,6,7 None 12 12 26 26 0 

 

 
Figure 37. Graphical visualization of the eight-job project from Table 20. 

 

Each node corresponds to a job, with Jobs 1 and 8 being artificial. Each node has a label that 
corresponds to: (duration; list of up to three toolboxes). The precedence relationships are specified by 
directed edges in the acyclic graph; for example, Jobs 2 and 3 must be completed prior to Job 5 starting. 
With respect to precedence relations, Jobs 2 and 3 would start in the first time period, but both require 

2

(2;1,5,8)

3

(2;1,4,6)

4

(8;2,6,9)

1

(0;NA)

5

(4;6,7)

6

(7;1,2,8)

7

(3;3,5,9)

8

(0;NA)
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Toolbox 1; hence, they must be processed in a series. The toolboxes represent nine renewable resources, 
and a tenth renewable resource is space, which allows at most three jobs to be processed simultaneously. 

 

 
Figure 38. Optimal schedule of the eight-job project from Table 20 and Figure 37. 

 

Each column corresponds to a time period; Jobs 1 and 8 have zero duration (even if they are depicted 
by slivers); hence, Job 3, which has duration 2, is performed during periods 1 and 2. Job 3 use shares a 
toolbox with each of Jobs 2 and 4, and hence they both start in period 3. The eight-period Job 4 shares a 
toolbox with Jobs 5, 6, and 7, and hence they start when Job 4 completes. The makespan is a total of 17 
time periods. The space constraint of having just three workspaces is not limiting. Moreover, we see that 
even if we only had two workspaces, we could delay the start of Job 7 until period 15 and still obtain the 
same makespan. 

 

7.3.2 Simple Version of the Model Formulation 
If we do not include nonrenewable resources in the formulation and for simplicity suppress the 

earliest and latest start times, we obtain a simpler mathematical formulation: 
 

Indices and parameters: 

𝑡 = 1,2… , 𝑇� time periods, where 𝑇� is an upper bound on the project's makespan 
𝑗 = 1,2, … , 𝐽 jobs, with 𝑗 = 1 and 𝑗 = 𝐽 denoting artificial jobs 

𝑟 ∈ 𝑅 set of renewable resources 
𝑑H duration of job 𝑗 

𝐾"
O ≥ 0 number of units of renewable resource 𝑟 available in period 𝑡 

𝑘H"
O ≥ 0 number of units of renewable resource 𝑟 consumed by job 𝑗 while in process 

𝒫H set of immediate predecessors of job 𝑗 
 

Variables: 

Binary decision variables 𝑥HJ , 𝑗 = 1,… , 𝐽; 𝑡 = 1,… , 𝑇� 

𝑥HJ = �	1,	if job	𝑗	completes in period	𝑡
	0,	otherwise  
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Model: 

min� (𝑡 − 1)𝑥MJ
BV

J,-
 (23) 

𝑠. 𝑡. � 𝑥HJ = 1, 𝑗 = 1,… , 𝐽
BV

J,-
 (24) 

� 𝑥HJ) ≤� 𝑥7J)
J)WJ(T+J)WJ

, 𝑗 = 2,… , 𝐽; 𝑡 = 1,… , 𝑇�; 	𝑖 ∈ 𝒫H (25) 

� � 𝑘H"
O 𝑥HJ)

JST+(-

J),J

M

H,-
≤ 𝐾"

O, 𝑟 ∈ 𝑅; 𝑡 = 1,… , 𝑇� (26) 

∈ {0,1}, 𝑗 = 1,… , 𝐽; 𝑡 = 1,… , 𝑇� (27) 
 

Note that we again use a 𝐽 subscript on 𝑥MJ in the objective function (see Eq. (23)), which indicates the 
completion time of the final (artificial) job. If that completion were to occur in the first time period, then 
the makespan would be zero since the artificial job has zero duration, which explains the “𝑡 − 1” coefficient 
in the objective function. Constraint of Eq. (24) again simply indicates that each job 𝑗 must be completed 
in some time period, 𝑡 = 1,… , 𝑇�. Constraint of Eq. (25) indicates that we can complete job 𝑗 in period 𝑡N 
only if all of its predecessors, 𝑖 ∈ 𝒫H, were completed in an earlier time period, accounting for the duration 
of job 𝑗 (i.e., accounting for the offset 𝑑H). We depict this constraint in a different form than that of Eq. (19). 
Constraint of Eq. (26) is the analog of Eq. (20) and ensures that the available resources of each type in time 
period 𝑡 are respected, and because 𝑥HJ denotes the period in which job 𝑗 ends, we must look to future time 
periods to see which jobs are currently active. We note that the same formulation would allow for time-
dynamic availability of resources, 𝐾"J

O , and/or time-dynamic consumption of resources, 𝑘H"J
O , by simply 

appending a time index to these parameters, informed by appropriate data. We further note that the 
superscript 𝜌 on these parameters allows us to distinguish these renewable resources (e.g., a crew is 
available 40 hours per week) from nonrenewable resources (e.g., total budget), which may be consumed 
over the project’s duration.  

Our formulation is largely based on the formulation given in Alcaraz and Maroto [49], with a 
modification of the precedence constraint. Our variant of the formulation from Alcaraz and Maroto [49] is 
not new (see [50]), but it can have a tighter linear programming relaxation. As a result, even though it has 
more constraints of this type (by a factor of 𝑇�) it can lead to shorter solution times when solving the integer 
program. Many papers have investigated the resource-constrained project scheduling problem (RCPSP), 
including [51–56]. Early work dates back to the late 1950s; see [57] and references therein. 

 

7.3.3 Illustration with Single-Mode Example from the Project Scheduling 
Library 

Kolisch and Sprecher [49] describe a project scheduling library, which is available at http://www.om-
db.wi.tum.de/psplib/main.html and contains a large number of problem instances of multiple varieties. It 
has examples for the single- and multiple-mode problems. The single-mode part of the library can be found 
at: http://www.om-db.wi.tum.de/psplib/getdata_sm.html. The multimode part of the library can be found 
at: http://www.om-db.wi.tum.de/psplib/getdata_mm.html. 
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File j601_1sm.txt has the original data posted on the library website. The file describes a problem with 
62 jobs (𝐽 = 62; two jobs are artificial), 1 mode (𝑀H = 1) and 4 renewable resources, and 0 nonrenewable 
resources. The time horizon is 329 (𝑇� = 329), and this is computed as the sum of the processing times (i.e., 
the worst-case makespan if the precedence and/or resource constraints are such that the projects have to be 
processed serially).  

File resource_j601_1sm.txt lists the four renewable resources and their numerical values, see Table 21. 

 

Table 21. List of the considered renewable resources and their numerical values. 

Resource Value 
r1 13 
r2 11 
r3 12 
r4 13 

 
As shown in Table 21, the first resource has a value of 13, the second 11, the third 12, and the fourth 

has 13 units of resource, all of which are available in each time period. File precedence_j601_1sm.txt has 
a table with precedence relations. Table 22 below shows the first three rows. 

 

Table 22. List of data required for each job. 

Job No. Number of modes Number of successors Successors 
1 1 3 2, 3, 4 
2 1 3 5, 10, 15 
3 1 3 7, 14, 29 
… … … … 

 
Job 1 has 3 successors, Jobs 2, 3, and 4. Job 2 has 3 successors, Jobs 5, 10, and 15. File 

duration_j601_1sm.txt has a table with job durations and how much each job consumes from the four 
resources. 

The optimal makespan for this example is 77. An optimal solution is given in the Table 23. The first 
column indicates the decision variables from model (2) that take value 1 in an optimal solution. (We do not 
show those taking value zero.) For example, the duration of Job 2 is 8. Job 2 (labeled in the second column) 
is completed at the beginning of the nineth period (fourth column), i.e., it starts in period 1 (third column), 
and is in process for periods 1–8); hence, 𝑥.X = 𝑥(2,9) = 1, denotes the completion time of Job 2. Job 2 
has 3 successors: Jobs 5, 10, and 15. Note that in the optimal solution, Job 5 starts at period 11, Job 10 in 
period 12, and Job 15 in period 28. All start after Job 2 was completed in period 9. Job 3 has successors 7, 
14, and 19. Job 3 starts in period 1 and has a duration of 1, so that a successor can start as early as period 
2, which is when Job 14 starts; Jobs 7 and 19 start later. The start times can be delayed from the earliest 
available because of resource limitations. 
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Table 23. Optimal solution for the 60 jobs problem. 

 Job 𝒋 Start time End time 
x(1,1) 1 1 1 
x(2,9) 2 1 9 
x(3,2) 3 1 2 
x(4,11) 4 1 11 
x(5,17) 5 11 17 
x(6,22) 6 17 22 
x(7,61) 7 53 61 
x(8,20) 8 11 20 
x(9,21) 9 20 21 
x(10,21) 10 12 21 
x(11,34) 11 26 34 
x(12,24) 12 21 24 
x(13,27) 13 21 27 
x(14,t4) 14 2 4 
x(15,33) 15 28 33 
x(16,49) 16 48 49 
x(17,53) 17 50 53 
x(18,37) 18 27 37 
x(19,21) 19 12 21 
x(20,22) 20 21 22 
x(21,34) 21 31 34 
x(22,50) 22 44 50 
x(23,64) 23 61 64 
x(24,54) 24 51 54 
x(25,53) 25 46 53 
x(26,48) 26 42 48 
x(27,34) 27 24 34 
x(28,46) 28 37 46 
x(29,30) 29 22 30 
x(30,38) 30 34 38 
x(31,53) 31 50 53 
x(32,56) 32 53 56 
x(33,46) 33 40 46 
x(34,11) 34 10 11 
x(35,31) 35 22 31 
x(36,42) 36 33 42 
x(37,64) 37 63 64 
x(38,33) 38 31 33 
x(39,52) 39 48 52 
x(40,68) 40 59 68 
x(41,41) 41 31 41 
x(42,50) 42 42 50 
x(43,57) 43 53 57 
x(44,37) 44 34 37 
x(45,40) 45 34 40 
x(46,59) 46 53 59 



 

 59 

 Job 𝒋 Start time End time 
x(47,53) 47 46 53 
x(48,57) 48 54 57 
x(49,68) 49 66 68 
x(50,48) 50 38 48 
x(51,68) 51 64 68 
x(52,55) 52 53 55 
x(53,69) 53 68 69 
x(54,59) 54 55 59 
x(55,69) 55 59 69 
x(56,77) 56 69 77 
x(57,75) 57 69 75 
x(58,75) 58 65 75 
x(59,78) 59 75 78 

 

7.3.4 Objective Functions 
In Section 7.3.2, we introduced a problem that minimizes the makespan (i.e., the time by which all 

projects are completed). Other objectives may be appropriate for various scheduling environments. 
Pinedo [58] introduces a wide range of objectives for single, parallel, flow shop, etc., situations, and this 
textbook also considers both deterministic and stochastic versions of the underlying problem.  

The simplest modification of the “minimize makespan” goal is to minimize the weighted sum of 
completion times across all jobs. Here, the weight, 𝜔H, of job 𝑗 can be seen as a measure of importance. It 
may represent a holding cost per unit time or lost revenue as we await completion of job 𝑗. In this way, we 
minimize ∑ ∑ 𝜔H(𝑡 − 1)𝑥HJBV

J,-
M
H,- , which reduces to minimizing makespan if 𝜔M = 1 and the weight of all 

other jobs is zero. If we simply have a single resource that can only process one job per time period (i.e., a 
single-machine scheduling problem), then the problem can be solved by simply ordering the jobs in 
decreasing order of the ratio, Y+

T+
, where 𝑑H is again the duration of job 𝑗. Problems with multiple resources 

are more challenging.  

 

7.3.5 Heuristic Solution Approaches 
If we are in the most resource-constrained setting of just one unit of resource per time period, which all 

jobs require, the problem reduces to sorting, which solves the problem under the objective of minimizing 
the weighted sum of completion times. If we have unlimited resources, i.e., no resource constraints, then 
the project-scheduling problem without resource constraints can be solved efficiently, if we seek to 
minimize makespan, via the critical path method. That problem reduces to finding the longest path in an 
acyclic network (see Figure 37) via very efficient (polynomial time) algorithms. The problem becomes NP-
hard when nontrivial resource constraints are introduced. Being an NP-hard problem, its exact solution can 
be obtained for modest-sized problems that are not highly resource-constrained. In Sections I and II we 
illustrated an exact solution for two problems. For larger problems heuristics are the main alternative. 
Classical metaheuristics include genetic algorithms (GAs), tabu search, and simulated annealing.  

A review paper by Kolisch and Hartmann [59] tests many heuristics algorithms on the RCPSP and 
identifies the best-performing approaches from the following literature: [60-65]. The best algorithms are 
not general-purpose genetic algorithms (GA)s but procedures where a GA has been modified or extended 
to exploit special structure. The above cited papers integrate ideas including path relinking, forward-
backward improvement, self-adapting mechanisms, non-standard crossover techniques, and other 
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metaheuristics. Notably, the best-performing approach is not a meta-heuristic but a sampling method for 
forward-backward improvement presented in Tormos and Lova [64]. Kolisch and Hartmann [59] note that 
the approach in [64] leads to excellent solutions after computing schedules for problems with 1,000 jobs 
but its performance deteriorates when dealing with larger problems. In contrast, metaheuristics yield better 
solutions on large-scale problems. The reason behind this improvement is the fact that they take advantage 
of learning over time.  

First, the initial population is generated, considering the representation of the solutions employed. Then, 
the schedule associated with each individual in the population is built and its objective function value is 
computed (e.g., each individual solution’s makespan). After that the above steps are repeated until the 
terminating condition (execution time, number of schedules) is reached. In the selection process, each 
individual creates several copies depending on its fitness, such that the individuals with highest fitness 
create more copies. Then the individuals are mated at random, and each pair undergoes crossing to produce 
offspring. Finally, some individuals of the population mutate, and the population is evaluated again. The 
number of schedules computed in each generation is not fixed and depends on several factors (population 
size, crossover probability, mutation probability). The modifications of the GAs in the cited papers 
introduce changes in the steps described in the illustration chart in combination with other techniques 
published in the literature (forward-backward improvement, self-adapting mechanisms, non-standard 
crossover techniques, and other metaheuristics). Most of the critical developments for applying GAs in our 
setting can be found in: 

• Alcaraz and Maroto [66]–changes in the crossover list, use of forward-backward scheduling. 

• Debels et al. [61]–crossover-like operator that the authors indicate follows a rough analogy to 
electromagnetism and essentially consists of linear combination of solutions; forward-backward 
scheduling. 

• Hartmann [62]–self-adapting GA.  

• Kochetov and Stolyar [63]–evolutionary algorithm that combines GA, path relinking and tabu search. 

• Valls et al. [65]–hybrid GA. Activity list based GA with forward-backward improvement. 

• Tormos and Lova [64]–forward-backward improvement to schedules computed by sampling. 

 

7.4 Job Scheduling Implementation in LOGOS 
LOGOS was initially developed to optimize capital budgeting/SSC replacements to support risk-

informed decisions in NPP operations under the RISA-RIAM project. In the past two years, the capabilities 
of LOGOS have been significantly enhanced. First, LOGOS capabilities were extended to handle risks 
under uncertainty during the asset management analysis via a two-stage stochastic optimization scheme to 
provide priority lists to decision makers in support of risk-informed decisions [4]. Second, both conditional 
value-at-risk (CVaR) optimization and distributionally robust optimization schemes have been 
implemented to provide more robust risk-informed asset management [7]. In FY 2021, the development of 
LOGOS focused on the RCPSP. In the following sections, we provide the detailed descriptions about how 
to use LOGOS to solve RCPSP problems. 

 

7.4.1 Components of LOGOS Used for RCPSP problem 
In LOGOS, eXtensible Markup Language (XML) format is used to create the input file. The main input 

blocks for RCPSP problem are as follows: 

• <Logos>: the root node containing the entire input, all the subsequent blocks fit inside this block. 
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• <Sets>: specifies a collection of data, possibly including numeric data as well as symbolic data that 
is typically used to specify valid indices for indexed components.  

• <Parameters>: specifies a collection of parameters, which are used to formulate constraints and 
objectives in the RCPSP model. A parameter can denote a single value, an array of values, or a multi-
dimensional array of values. 

• <Settings>: specifies the calculation settings (i.e., options for optimization solvers, options for 
constraints, and working directory.) 

 

7.4.2 Sets Input Block for RCPSP 
This section contains information regarding the XML nodes used to define the <Sets> of the RCPSP 

model. Figure 39 shows an example of <Sets> block, and the <Sets> node accepts the following sub-
nodes: 

• <tasks>: comma/space-separated string, specifies the valid indices for tasks/jobs. 

• <resources>: comma/space-separated string, specifies the indices for renewable resources 

• <predecessors>: comma/space-separated string, specifies the indices for preceding tasks 

• <successors>: comma/space-separated string, specifies indices for successors. This sub-node 
accepts the following attribute: 

o index, string, specifies the index dependence. Valid index is “predecessors”.  

 

 
Figure 39. Example XML for <Sets> input block. 
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7.4.3 Parameters Input Block for RCPSP 
This section contains information regarding XML nodes used to define the <Parameters> block of 
RCPSP optimization model. Figure 40 shows an example of <Parameters> block, and the 
<Parameters> node accepts the following sub-nodes: 
• <available_resources>: comma/space-separated string, specifies the available renewable 

resources. This sub-node accepts the following attribute: 
o index, string, specifies the index of this parameter. Keywords should be predefined in <Sets>. 

Valid keyword is “resources”.  
• <task_resource_consumption>: comma/space-separated string, specifies the resource 

consumption for each task. This sub-node accepts the following attribute: 
o index, string, specifies the indices of this parameter. Keywords should be predefined in <Sets>. 

Valid keyword is “tasks, resources”.  
 

 
Figure 40. Example XML for <Settings> input block. 

 

• <task_duration>: comma/space-separated string, specifies the duration for each task. This sub-
node accepts the following attribute: 
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o index, string, specifies the indices of this parameter. Keywords should be predefined in <Sets>. 
Valid keyword is “tasks”.  

• <task_successors>: comma/space-separated string, specifies the successors for each 
predecessor. This sub-node accepts the following attribute: 
o index, string, specifies the indices of this parameter. Keywords should be predefined in <Sets>. 

Valid keyword is “successors”. 
o type, string, specifies the text type of the provided node. Valid keywords are “int”, “float” or “str”. 

 

7.4.4 Settings Input Block for RCPSP 
This section contains information regarding the XML nodes used to define the <Settings> of 

RCPSP model. Figure 41 shows an example of <Settings> block, and the <Settings> node accepts 
the following sub-nodes: 
• <problem_type>: string, specifies the type of optimization problem, i.e., “rcpsp”. 
• <solver>: string, represents available solvers including open-source software “cbc” from 

https://github.com/coin-or/Cbc.git, and “glpk” from https://www.gnu.org/software/glpk/. The users can 
also use proprietary software “CPLEX” from https://www.ibm.com/products/ilog-cplex-optimization-
studio or “Gurobi” from https://www.gurobi.com.   

• <sense>: string, specifies “minimize” or “maximize” for the RCPSP problem 
• <makespan_upperbound>: integer, specifies upper bound of the makespan. 
 

 
Figure 41. Example XML for <Settings> input block. 

 

7.5 Multi-Objective Optimization  
In a risk-informed context, decision making is performed by balancing O&M costs and system 

reliability. Sections 5.1 through 5.3 have focused on several optimization methods designed to 
minimize/maximize a single-objective function (e.g., O&M costs), while imposing constraints on the other 
objective function (e.g., system reliability). 

The goal of multi-objective optimization is to find optimal conditions under which multiple objective 
functions are maximized/minimized. While in single-objective optimization methods a single solution that 
minimize/maximize the objective function can be determined, multi-objective optimization methods 
determine a set of candidate solutions: the Pareto frontier. 

The Pareto frontier is defined as the subset of choices the dominates the remaining set of choices (i.e., 
all objective functions have better or identical value). As an example, Figure 42 shows an example of multi-
objective optimization in a 2-dimensional space (i.e., utility and cost). Each point represents a candidate 
option, while the set of options that are part of the Pareto frontier [46] (i.e., the optimal solutions) are 
encircled in the yellow cloud.  
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If objective constraints are present, then they can be imposed on the obtained Pareto frontier to filter 
only the options on the Pareto frontier that satisfy them. 

 

  
Figure 42. Graphical representation of the Pareto frontier (encircled in the yellow cloud) in a 2-

dimensional space. The two objective functions are: utility (that it is desired to be minimized), and cost 
(that it is desired to be minimized). 

 

7.5.1 Multi-Dimensional Pareto Frontier 
During FY 2020, a RAVEN post-processor has been developed to determine the Pareto frontier from a 

2-dimensional data set (i.e., two objective functions). During FY 2021, the concept of Pareto frontier post-
processor has been extended to manage any number of objective functions (i.e., greater than two objective 
functions). As an example, the possible set of objective functions in a risk-informed context are:  

• System O&M costs 

• System availability 

• System reliability 

• System failure consequence. 

This kind of analysis requires a model 𝜳 (or a set of models) that determines the value of 𝑀 objective 
functions 𝑦-, … , 𝑦8 given a set of 𝑁 input variables 𝑥-, … , 𝑥# (also known as decision functions): 

𝒀 = 𝜳(𝑿)   where: 𝒀 = [𝑦-, … , 𝑦8] and 𝑿 = [𝑥-, … , 𝑥#] (28) 

The set of input variables 𝑿 are sampled and the corresponding output variables 𝒀 are obtained from 
the model 𝜳. The Pareto frontier is then obtained from the generated set of 𝒀 as indicated in the workflow 
shown in Algorithm 5. This method is very effective when the input variables are discrete in nature and the 
possible combination of values for the input variables are limited. 

 

Algorithm 5. Pareto Frontier based multi-objective optimization. 
1. Generate all possible combinations of values for the input 

variables 𝑥-, … , 𝑥#  
2. Generate the objective functions 𝑦-, … , 𝑦8 for each combination 

of the input variables generate in Step 1 
3. Determine the Pareto frontier from the data set generated in Step 2  
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The workflow described in Algorithm 5 can be coded using RIAM risk analytic platform. In particular, 

RAVEN can be employed to: 

1. Sample the model response 𝒀 = 𝜳(𝑿) using the RAVEN Grid sampler (see Steps 1 and 2 in 
Algorithm 5) 

2. Determine the Pareto frontier using the RAVEN ParetoFrontier post-processor (see Step 3 in 
Algorithm 5) 

This workflow is particularly usefull when: 

• The set of input variables 𝑥-, … , 𝑥# are discrete in nature  

• All possible combinations of 𝑿 are limited in number 

• The evaluation model response is not time consuming. 

In other terms, the last two conditions can be summarized as: the computational cost to evaluate all 
possible combinations of 𝑿 is within a reasonable time frame. 

 

7.5.2 Optimization Methods Applied to Sensor Configurations 
The application of multi-objective optimization methods is here applied to determine the optimal 

monitoring configuration for a single SSC. The goal is to balance monitoring installation costs and 
monitoring capabilities.  We are focusing on a centrifugal pump characterized by a set of failure modes 
indicated in Table 24. For each failure mode 𝑗, Table 24 reports the annual probability of occurrence 𝑝; 
Table 24 lists also the consequences when each failure mode is not detected (in terms of unplanned 
replacement costs 𝐶Z):[) and when the failure mode is detected (in terms of planned replacement costs 
𝐶:[).  

The considered sensors are listed in Table 25. For each sensor 𝑖, Table 25 lists its operational cost, and 
the failure mode that it can detect. 

 

Table 24. Failure modes considered for a generic centrifugal pump. 

𝒋 Failure mode 
Cost of unplanned 

replacement 
𝑪𝒖𝒏𝒑𝒍[𝒋] 

Cost of planned 
replacement 

𝑪𝒑𝒍[𝒋] 

Probability of 
occurrence over one 

year of operation 𝒑[𝒋] 

1 Motor bearing failure 2.5M 60K 0.01 
2 Pump bearing failure 1.5M 20K 0.02 
3 Pump coupler failure 1.8M 70K 0.05 
4 Pump cooling failure 2.0M 100K 0.08 
5 Pump seal failure 1.3M 50K 0.09 
6 Stator degradation 6.0M 1.0M 0.01 

 

Ideally, all sensors could be chosen: such monitoring configuration would be able to detect all failure 
modes and avoid unplanned replacement costs; however, such monitoring configuration is characterized by 
high monitoring expenses. The opposite choice is characterized by a monitoring configuration where no 
sensor is chosen: null monitoring expenses but high risk of unplanned replacement costs. Between these 
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very different monitoring configurations, there are several others characterized that can be chosen from (to 
be precise there are 2` = 64 possible configuration sensors). 

 

Table 25. Sensors that can be chosen to monitor pump degradation. 

𝒊 Sensor Cost 	
𝑪𝒔𝒆𝒏𝒔[𝒊] 

Detected failure 
modes 𝑭𝑴[𝒊] 

1 Motor shaft vibration sensor 40K 1 
2 Pump shaft vibration sensor 35K 2 
3 Pump oil temperature 20K 4 
4 External infrared  70K 3 
5 Leak detector relay 20K 5 
6 Current signature analysis  35K 6 

 

The goal is to identify the sensor configurations that balance monitoring capabilities and monitoring 
costs simultaneously. This class of problem can be framed as a multi-objective optimization problem where 
we can define the two objective functions as follows: 

• Component monitoring cost (installation and O&M costs) (see Table 25) 

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 =�𝐶'+)'[𝑖]	𝑑7

`

7,-

 (29) 

where 𝑑7 for is the decision variable for each sensor 𝑖 = 1,… ,6  𝑑7 is 1 if the sensor is chosen, 0 
otherwise 

 
• Monitoring performance, through value of information 𝑉𝑜𝐼 [84] (see Table 24) 

𝑉𝑜𝐼 = ∑ (𝐸𝑉7c% − 𝐸𝑉7c)	𝑑7`
7,-  (30) 

where: 
o Expected value with sensor: 𝐸𝑉7c = 𝑝[𝐹𝑀7]	𝐶:[[𝐹𝑀[𝑖]] 
o Expected value without sensor: 𝐸𝑉7c% = 𝑝[𝐹𝑀7]		𝐶Z):[[𝐹𝑀[𝑖]] 
o 𝐸𝑉7c% − 𝐸𝑉7c = 𝑝[𝐹𝑀7]f𝐶Z):[[𝐹𝑀[𝑖]] − 𝐶:[[𝐹𝑀[𝑖]]g	 

 
Using the RAVEN code [85] we were able to generate the value of the two objective functions listed 

above for each of the 64 possible configurations. 

The next step has been the determination of the Pareto frontier where RAVEN was again employed 
using the method indicated in Section 7.1. The set of monitoring configurations belonging to the Pareto 
frontier is reported in Table 26. Figure 43 graphically shows the 64 possible monitoring configurations in 
the 2-dimensional objective function space (i.e., monitoring costs and VoI). In the same figure, the 
configurations belonging to the Pareto frontier are highlighted in red and the configurations is reported as 
a 6-dimensional array [𝑑-, … , 𝑑`]. In Figure 43 note that the above-mentioned configurations where no 
sensors and all sensors are chosen are located in the bottom left and top right corners of the figure 
respectively. 
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Table 26. Monitoring configurations belonging to the Pareto frontier. 

Monitoring configuration Objective functions 
𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 VoI cost 
0 0 0 0 0 0 0 0 
0 0 0 0 0 1 10000 35 
0 0 1 0 0 0 8000 20 
0 0 1 0 0 1 18000 55 
0 0 1 0 1 0 12500 40 
0 0 1 0 1 1 22500 75 
0 0 1 1 1 1 26000 145 
0 1 1 0 1 1 22900 110 
0 1 1 1 1 1 26400 180 
1 0 1 0 1 1 23100 115 
1 0 1 1 1 1 26600 185 
1 1 1 1 1 1 27000 220 

 
Figure 43. Scatter plot of the 64 possible monitoring configurations in the objective function space 

(monitoring costs and VoI). The configurations belonging to the Pareto frontier are highlighted in red and 
the configurations is reported as a 6-dimensional array [𝑑-, … , 𝑑`]. 
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7.5.3 Multi-Objective Model Optimization 
When the input variables are continuous in nature or the possible combination of discrete values for the 

input variables are very large, then the method presented in Section 5.4.1 cannot be directly applied. A 
solution to this limitation is to employ evolutionary methods. These methods are based on the GAs 
developed during FY 2020; during FY 2021 these methods have been initially extended to perform multi-
objective optimization. 

For the scope of this project, we have chosen the most flexible multi-objective evolutionary algorithms: 
the nondominated sorting genetic algorithm II (NSGA-II) [83]. The basic structure of the algorithm (see 
Figure 44) is not too dissimilar to the structure of classical GA methods. The most relevant difference is 
the sorting step where current population and newly generated children are chosen to determine the 
population at the next iteration. 

In classical GA methods (i.e., single objective), the population at the next iteration is determined by 
choosing the elements of the current population and the newly generated children that possess with highest 
fitness. These methods act on a population of sampled points f𝒙, 𝐹(𝒙)g (rather than focusing on a one-
sample-at-a-time mindset) and they iteratively combine pairs of points to generate a new generation of 
points with higher quality. An initial population of 𝑁 elements is initially generated (e.g., by Monte-Carlo 
sampling) and evaluated. Each element(𝒙, 𝐹(𝒙)) of the population has the input coordinates 𝒙 encoded into 
a discrete form, a genotype, while the 𝐹(𝒙) term is encoded into a fitness value 𝑓�. The genotype form of 𝒙 
(here indicated as 𝒙̄) is called a data structure and it can be of several forms depending on the application. 
In this report we focus on arrays of discrete values. More advanced data structures can be matrices, tree 
structures or graph structures.  

The main operators that are being employed by GAs are the following: 

• Crossover. The encodings of two chromosomes are mixed to generate two new encodings  

• Mutation. The encoding of a chromosome is altered by randomly changing the value of a single element 
of the chromosome 

• Replacement. The population of chromosomes is updated by removing chromosomes with low-fitness 
or high-generational age value and keeping chromosomes with high-fitness or low-generational age. 

The main structure of a GA optimization algorithm is described in Algorithm 5 and is also graphically 
shown in Figure 44. 

In a multi-objective context, the concept of fitness does not exist strictly speaking, and the concept of 
Pareto frontier is now employed. The parent selection of is performed by iteratively determine the Pareto 
frontier out the ensemble current population plus newly generated children. This iteration process is 
described in Algorithm 6 and graphically represented in Figure 45. 

 

Algorithm 5. Basic structure of evolutionary algorithm.  
1. Create initial population of N samples (𝒙, 𝐹(𝒙)))			, 𝑛 = 1,… ,𝑁, 

e.g., through uniform Monte-Carlo sampling  
2. Perform a genotype representation according to the problem 

under investigation 
3. Calculate fitness of each chromosome: (𝒙, 𝐹(𝒙))) → (𝒙, 𝑓�)) 
4. Reproduction: create the new generation of offspring from current 

population: 
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a. Perform parent selection from the population based on 
their fitness 

b. Perform crossover: creation of child population mixing 
chromosome structure of parents 

5. Perform random mutation on the generated offspring 
6. Evaluate offspring (i.e., determine 𝐹(𝒙)) and calculate their 

fitness 𝑓� 
7. Return to Step 4 until convergence is met. 

 

 
Figure 44. The main structure of a GA optimization algorithm. 

 

Algorithm 6. Rank based sorting.  
1. Determine the Pareto frontier (frontier 1) out the ensemble current 

population plus newly generated children: associate rank 1 to the 
points belonging to this Pareto frontier  

2. Remove elements contained in the frontier 1 from the ensemble 
current population plus newly generated children 

3. Determine the Pareto frontier (frontier n) from elements 
remaining from Step 2 

4. Repeat Steps 2 and 3 until all points are associated to one Pareto 
frontier 
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Figure 45. Ranking of elements of a population based on the iterative construction of the Pareto frontier. 

 
The selection of the population for the new generation is not based on the fitness (as currently performed 

by the single-objective version) but on the rank (i.e., see Figure 46 and Algorithm 5). The new population 
is created by progressively choosing points with increasing rank (i.e., starting with point belonging to Pareto 
frontier 1). A sorting based on the crowding distance is performed for the elements belonging to the last 
frontier that is required to populate the population of the next generation. This workflow is graphically 
shown in Figure 46. 

 
Figure 46. Population and children sorting to determine the population of the next generation [83]. 

During FY 2021, we have tested under several conditions the single objective version of the GA 
optimization methods in RAVEN, and they are now a part of the official RAVEN release. Regarding the 
multi-objective GA optimization method, we have completed several computational elements that will be 
finalized and tested during FY 2022. 
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8. CONCLUSIONS 
The main goal of the RIAM project is to create a direct link between ER data and decision making; 

given this premises, this report summarizes the complete set of use cases that the RIAM project is focusing 
on. This set has been partitioned into three main areas: analysis of ER data, reliability modeling, and plant 
resources optimization. In the past decade, the nuclear industry has been addressing deficiencies in these 
three areas with various degrees of success. In this respect, the RIAM project has chosen few critical points 
in these three areas and developed methods and tools to overcome these critical points with innovative 
methods.  

This report focuses not only on the development but, more important, also on the practical application 
of the RIAM toolkit for these specific critical points. In the area of analysis of ER data, we have proposed 
effective methods to integrate SSC monitoring data and IRs to assess SSC health. Such methods rely on 
NLP methods to extract information from IR reports and then they perform diagnosis analysis using causal 
inference methods by employing OPM models for each SSC. In the area of reliability modeling, the RIAM 
project has identified a very effective method to integrate current and past ER data (both IRs and SSC 
monitoring data) into reliability models that are familiar to plant system engineers. Rather than probability-
based calculations, we here have presented innovative margin-based calculations. This modeling approach 
has the advantage that it can provide a real-time assessment of plant system/health and identify the SSCs 
that negatively affecting reliability. Lastly, in the area of asset management, we have developed 
optimization methods designed to optimize plant resources (money, time, and plant staff). These methods 
balance both plant reliability and operational costs; thus, they provide a more quantitative and complete 
knowledge to decision makers in terms of project prioritization, scheduling maintenance activities, and SSC 
lifecycle management. 

During FY 2022, we are planning to continue development and testing of NLP methods to analyze ER 
data. In addition, we will integrate data analysis tools, plant reliability models, and optimization methods 
to manage plant assets and resources in a single and consistent workflow. This activity will create a 
complete analysis platform testbed for plant operations. 
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APPENDIX A: Centrifugal Pump OPM Model 
 

This section provides an example of OPM modeling. We apply such modeling methodology to a generic 
centrifugal pump since it is a fairly common component in existing NPPs. The main components that 
compose a centrifugal pump are as follows: 

• Pump: 

o Pump casing: which is mainly designed to: 1) act as pressure containment vessel, and 2) to 
convert kinetic energy (i.e., velocity) into high pressure of the fluid 

o Pump shaft: designed to support a smooth rotation of the impeller 

o Pump shaft seals: mechanical rings designed to prevent any leakage of fluid  

o Pump bearings: designed to reduce rotation friction of the pump rotating shaft 

o Impeller: directly mounted on the pump shaft, it increases the kinetic energy of the flow 

• Motor:  

o Motor casing: designed to contain all components and to dissipate the generated heat 

o Rotor: source of rotation movement of the shaft the pump 

o Stator: designed to convert electric energy into rotation of the rotor 

o Motor shaft: designed to support a smooth rotation of the rotor 

o Motor bearings: designed to reduce rotation friction of the motor rotating shaft  

o Pump coupling: it drives the rotation from the motor shaft to the pump shaft 

OPM modeling is performed by creating diagrams that are designed to capture the form and functional 
aspects of a system/component. These diagrams consist of elements and links among these elements. While 
the complete syntax of a OPM diagrams can be found in [9], for the scope of this example, the elements 
and links here employed are shown in Table 27. 

Table 28 provides a more detailed description on how parts of an OPM diagram can be converted into 
a text form (i.e., object process language [OPL]). 

A complete description of the OPM methodology12 can be found in [9]. 

Given the syntax and semantic description of the basic OPM elements briefly provided in Table 27 and 
Table 28, we have developed the first tier of the OPM model for a generic centrifugal pump. This is shown 
in Figure 47 while the corresponding OPL structure is listed in Table 29. 

 

 

 

 

 

 
12 Additional information can be found at the following links: 

• OPM official website: https://www.opcloud.tech/   
• Wikipedia article: https://en.wikipedia.org/wiki/Object_Process_Methodology  
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Table 27. Common OPM elements and links. 

Element symbol Type 

 
Object element 

 
Process element 

 Aggregation link 

 
Consumption/result/effect 

link 

 Instrument link 

 Agent link 

 

 
Table 28. Translation of OPM diagrams into OPL. 

OPM diagram Name OPL 

 
Object A is physical 

 
Process B is physical 

 

Aggregation link A consists of B and C 

 
Result link B yields A 

 
Consumption link B consumes A 

 
Effect link B affects A 

 
Instrument link B requires A 

 
Agent link B handles A 
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Figure 47. OPM model for a generic centrifugal pump. 

 

Table 29. List of OPL elements derived from the pump OPM diagram show in Figure 47. Elements in 
green are form entities while elements in blue are functional entities. 

ID OPL element 
1 External low p flow is environmental and physical. 
2 Internal high v flow is physical. 
3 External high p flow is environmental and physical. 
4 Pump is physical. 
5 Pump consists of Bearings, Pump Shaft, and Impeller. 
6             Bearings is physical. 
7             Pump Shaft is physical. 
8             Impeller is physical. 
9 Diffuser is physical. 
10 Housing is physical. 
11 Housing consists of Casing, Centerline support, and Seal. 
12             Casing is physical. 
13             Centerline support is physical. 
14             Seal is physical. 
15 Motor is physical. 
16 Motor consists of Pump coupling, Bearings, Rotor, and Stator. 
17             Pump coupling is physical. 
18             Bearings is physical. 
19             Rotor is physical. 
20             Stator is physical. 
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21 Power Supply is environmental and physical. 
22 Cooling System is physical. 
23 Cooling System consists of Lubrication pump and Cooling fan. 
24             Lubrication pump is physical. 
25             Cooling fan is physical. 
26 Accelerating is physical. 
27 Accelerating requires Pump. 
28 Accelerating consumes External low p flow. 
29 Accelerating yields Internal high v flow. 
30 Diffusing is physical. 
31 Diffusing requires Diffuser. 
32 Diffusing consumes Internal high v flow. 
33 Diffusing yields External high p flow. 
34 Containing is physical. 
35 Containing requires Housing. 
36 Containing affects Internal high v flow. 
37 Driving is physical. 
38 Driving requires Motor. 
39 Driving affects Pump. 
40 Powering is physical. 
41 Powering requires Power Supply. 
42 Powering affects Motor. 
43 Cooling is physical. 
44 Cooling requires Cooling System. 
45 Cooling affects Motor. 
46 Seal cooling affects Seal. 
47 Component cooling water is environmental and physical. 
48 Seal cooling requires Component cooling water. 
49 Lubricating affects Pump coupling. 
50 Lubricating affects Bearings. 
51 Seal cooling requires ISO VG 100 oil. 
52 Lubricating is physical. 
53 Seal cooling is physical. 
54 ISO VG 100 oil is physical. 

 

 
 


