
RAVEN as Control Logic and Probabilistic Risk Assessment Driver for RELAP-7

C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, R. Martineau

Idaho National Laboratory

INTRODUCTION

The Next Generation of System Analysis Code
(NGSAC) [1] aims to model and simulate the Nuclear
Power Plant (NPP) thermo-hydraulic behavior with a high
level of accuracy. In this respect, Idaho National
Laboratory (INL) is developing a NGSAC (known as
RELAP-7) which will allow to model NPP responses for
a set of accident scenarios (e.g., loss of off-site power).

The control of the RELAP-7 simulation (e.g., control
logic and simulation of failure events) is directed by the
RAVEN software tool. More precisely, the scope of
RAVEN is to implement the control logic dictated by:
• Plant control logic
• Operator actions (procedure guided)
• Stochastic phenomena such as failure models of

specific components (e.g., valves and pumps) and
human interactions.

While the control logic of the first two bullets is
deterministic (i.e., it is solved deterministically through
partial or ordinary differential equations), the one
indicated in the last bullet is purely stochastic. In order to
model this stochastic behavior of the system, RAVEN
will implement two methodologies: Monte Carlo (MC)
[2] analysis and Dynamic Event Tree (DET) [3] analysis.

In this paper it will be shown how the structure of the
RAVEN software models easily the control logic and how
it is possible to overload most of the code to implement
also MC analysis. It will be also illustrated a simple
example of application of control logic.

DESCRIPTION OF THE ACTUAL WORK

The Equation Set for the Control Logic

The general equation describing a dynamic system is
provided in (1). This equation models the trajectory of the
system (i.e., time evolution of the system) in the phase
space.

∂θ
∂t

= H θ , t() (1)

In (1) it is assumed the time differentiability of the
trajectory that is not always true neither required for the
methodologies that will be here considered. However, in
this paper we will keep this notation for compactness and
readability.

When control logic is included in the analysis, it is
possible to split the vector θ in two parts:

θ = x
v

!

"
#

$

%
& (2)

For our scope, the decomposition is carried in such a
way that x represents the set of unknowns solved by
RELAP-7 (which are fully differentiable) while v
represents the set of variables (parameters) directly
controlled by the control system. The governing equation
(2) can now be rewritten as follows:

∂x
∂t
= F x,v, t()

∂v
∂t

=V x,v, t()

"

#
$$

%
$
$

 (3)

As a consequence of this splitting, the components of
the phase space in x are now all continuous while v
contains both discrete and continuous variables. For
example:
• Pressure and temperature in each point of the

solution mesh belongs to x
• On/off status of a pump (discrete), or the position

of the control rods (continuous) belong to v
A reasonable assumption is that the function V ,

representing the control system is not depending on the
whole space spanned by x , but just on a subspace. In
fact, we can imagine the control system acting only on a
set of signals coming from the plant and not on the whole
plant status.

Therefore, it is useful to introduce an appropriate
subspace of x , i.e.,C , from which the control logic can
be fully derived. Thus, (3) is now re-cast as follows:

∂x
∂t
= F x,v, t()

C =G x, t()
∂v
∂t

=V C,v, t()

"

#

$
$

%

$
$

 (4)

Before moving forward it could be helpful to
summarize functions and spaces introduced so far:
• x : set of plant status variables (e.g., temperature,

pressure, and velocity on each point of the mesh)
• F : function which describe the temporal evolution

of the plant status variables

• C : monitored variables; usually they are the result
of an integral operator (projection) applied to the

plant status variables (e.g., average temperature of
a plant component, peak pressure in a pipe)

• v : controlled variables. Variables affected by the
control system (e.g. on/off pumps, control rod
position, pump head, failure status of components,
etc)

• V : Control logic law

Time Dependent Integration

Classically the application of the control logic has
been performed via an operator splitting approach with
respect the time variable. The reason is that generally the
actions decided by the application of the control logic
always have an intrinsic delay due to the time required to
apply them.

The operator split approach applied to system (4) is
shown in (5)

∂x
∂t
= F x,vti−1, t()

C =G x, t()
vi =V Ci,vti−1, ti()

#

$

%
%

&

%
%

 ti−1 < t < ti (5)

As mentioned earlier, the space C represents an
arbitrary construction that could be avoided and directly
embedded in V but, as we will see later, its creation will
be also useful in the software framework definition. In
fact the constraint here imposed on the control law
definition is that it should not contain any operator that
requires the knowledge of the numerical schemes used to
solve for x . It is therefore necessary to embed in C all
differential and integral operators in space and time
applied to the plant status variable field needed for the
definition of the control logic

Accounting for the Stochasticity of the System

As it has already been mentioned, failure laws are
stochastic in nature. As an example, we can imagine the
vessel failure being described by a probability distribution
function (pdf) which depends on both time t and average
pressure p inside the vessel at a certain point in time
pdf p, t() .

One of the most used methodologies to perform such
analysis is the Monte Carlo approach where several
simulation runs are performed choosing different failure
probability thresholds for the failure of the vessel. The
outcome histogram is used to assess the likelihood of the
considered scenario.

As an example we can use the above-described case
of the failure of the vessel:

1. Randomly pick a number ptest from the pdf p, t()
of the vessel failure

2. For each time step verify:
o If ti > tend then end simulation without

vessel failure and go to point 3, else
o Compute average vessel pressure pi and

verify ptest < pdf pi, ti()
 If true: i = i+1(i.e., advance in

time) and back to point 2
 If false, end the simulation with

vessel failure outcome and go to
point 3

3. If the number of simulations is sufficient end
sampling otherwise go to point 1

Note that the checks performed at point 2 are clearly

equivalent to the application of specific control logic. As
a consequence it is possible to overload the software
emulating the control logic to perform the Monte Carlo
simulation of the system.

Software Implementation

The development of both RAVEN and RELAP-7 are
still in their beginning stages. RELAP-7 is built out of
MOOSE [4] which is a middleware that provides the
capabilities to solve system of partial differential
equations (MOOSE embeds PETSc [5] and LIBMESH
[6]). RELAP-7 orchestrates the assembling of the system
of equations and provides the equation set describing each
of the plant components.

Given the definition of the monitored variables
provided in the above paragraph it is possible to build
control logic software that is agnostic of the solution
algorithm of RELAP-7 MOOSE but based only on the
space of the monitored variables. Figure 1 shows the
software architecture.

Test

The development of both RAVEN and RELAP-7 is
still in its initial phase therefore at this moment it is not
possible to provide a full example of the software
implementation. Nonetheless we have performed a simple
test to verify the correctness of the software architecture
and its implementation.

The control system is used in this case to alter the
thermal conductivity in the fuel-clad gap. The core is
schematically represented by 2 channels (hot and cold),
power is fixed with a cosine axial shape, and each channel
represents the thermodynamic behavior of fuel, gap and
clad. When the fuel temperature exceeds 500 K the
thermal conductivity of the gap is set equal to the one of
the fuel. While this example could be seen as simplified
model for Pellet-Clad-Interaction, in our case was simply
aimed to test the capability of the code.

The test used is a pseudo steady state problem where
the system should reach the equilibrium situation
provided power and inlet condition. Figure 2 shows the
behavior of the clad temperature for the two core channels
with or without the control logic. To be noticed the
sudden spike in temperature due to the fuel contact while
the clad while the asymptotic temperatures are, as
expected, the same.

Figure 1: Software Layout

Figure 2: Clad Temperature comparison

CONCLUSIONS
The required mathematical model for the

implementation of the control logic has been overviewed
and its implementation in a modern software framework
discussed. The chosen software structure has the
advantage to allow overloading of most of the code so
that the implementation of statistical failure models is
straightforward. Currently implementation of more
sophisticated control logic is ongoing for the simulation
of the whole power plant.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of
Energy, under DOE Idaho Operations Office Contract
DE-AC07-05ID14517. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.

REFERENCES

[1] U.S. Department of Energy, “Light Water Reactor

Sustainability Research and Development Program
Plan. Fiscal Year 2009–2013,” (2009).

[2] M. Marseguerra, E. Zio, J. Devooght, P.E. Labeau,
“A concept paper on dynamic reliability via Monte
Carlo simulation”, Mathematics and Computers in
Simulation, Vol. 47, pp. 371-382 (1998).

[3] N. Siu and C. Acosta, “Dynamic event tree analysis:
an application to STGR,” Probabilistic Safety
Assessment and Management, G. Apostolakis, Ed.
New York: Elsevier Science Publishing Co., pp. 413–
418, (1991).

[4] D. Gaston, C. Newman, G. Hansen, D. Lebrun-
Grandié, “MOOSE: A parallel computational
framework for coupled systems of nonlinear
equations”, Nuclear Engineering and Design, Vol.
239, Issue 10, pp. 1768-1778 (2009).

[5] Satish Balay and Jed Brown and and Kris
Buschelman and Victor Eijkhout and William D.
Gropp and Dinesh Kaushik and Matthew G. Knepley
and Lois Curfman McInnes and Barry F. Smith and
Hong Zhang, “PETSC Users Manual”, ANL-95/11 -
Revision 3.2, Argonne National Laboratory (2011).

[6] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F.
Carey. libMesh: A C++ Library for Parallel Adaptive
Mesh Refinement/Coarsening Simulations.
Engineering with Computers, 22(3-4), pp. 237-254,
(2006)

RAVEN: Monte Carlo Driver

RAVEN: Failure Laws as
Control Logic

RELAP-7

RAVEN: Control Logic

ti−1→ ti
∂x
∂t
= F x,vti−1, t()

C =G x, t()

x vti−1 x C

vi =V Ci,vti−1, ti()

ptest

ptest < pdf pi, ti()

Start
New Simulation

Time

Te
m

pe
ra

tu
re

MOOSE

