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INTRODUCTION 
State of the art PRA methods, i.e. Dynamic PRA 

(DPRA) methodologies [1], largely employ system 
simulator codes to accurately model system dynamics. 
Typically, these system simulator codes (e.g., RELAP5 
[2]) are coupled with other codes (e.g., ADAPT [3], 
RAVEN [4] that monitor and control the simulation. The 
latter codes, in particular, introduce both deterministic 
(e.g., system control logic, operating procedures) and 
stochastic (e.g., component failures, variable uncertainties) 
elements into the simulation. A typical DPRA analysis is 
performed by: 
1. Sampling values of a set of parameters from the 

uncertainty space of interest 
2. Simulating the system behavior for that specific set of 

parameter values 
3. Analyzing the set of simulation runs 
4. Visualizing the correlations between parameter values 

and simulation outcome 
Step 1 is typically performed by randomly sampling 

from a given distribution (i.e., Monte-Carlo) or selecting 
such parameter values as inputs from the user (i.e., 
Dynamic Event Tree [3], DET). In Step 2, a simulation run 
is performed using the values sampled in Step 1). These 
values typically affect the timing and sequencing of events 
that occur during the simulation. 

The objective of Step 3 is to identify the correlations 
between timing and sequencing of events with simulation 
outcomes (such as maximum core temperature). In a 
classical PRA (event-tree/fault-tree based) environment, 
such analysis is performed by observing and ranking the 
minimal cut sets that contribute to a Top Event (e.g., core 
damage). In a DPRA environment, however, data 
generated is more heterogeneous since it consists of both: 

• Temporal profiles of state variables 
• Timing of specific events. 
The visual exploration of such data is a new research 

topic and it is especially relevant when uncertainty 
quantification is performed on many parameters for 
complex systems such as nuclear power plants. Such 
exploration aims to evaluate impact of uncertainties on 
simulation outcome (e.g., maximum core temperature).  

This paper tackles: 
• Step 1: How the data is generated  
• Step 3: How the data is analyzed  
• Step 4: How the data is visualized 

and present state-of-the-art algorithms that have been 
developed in the past few years with the intent of 
improving the capabilities of DPRA methodologies. 

Such algorithms are the result of a series of 
collaborations between Idaho National Laboratory (under 
the Risk Informed Safety Margins Characterization project 
of the Light Water Reactors Sustainability program), 
University of Utah, the Ohio State University and 
Lawrence Livermore National Laboratory. 

 

 
Figure 1. Max core temperature as function of 2 parameters 

and limit/fail temperature (top) and plot of their intersection:  
limit surface (bottom) 

GENERATE DATA 
Nuclear simulations are often computationally 

expensive, time-consuming, and high-dimensional with 
respect to the number of input parameters. Thus exploring 
the space of all possible simulation outcomes is infeasible 
using finite computing resources. This is a typical context 
for performing adaptive sampling where a few 
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observations are obtained from the simulation, a surrogate 
model is built in order predict behavior of the system (e.g., 
maximum core temperature), and new samples are selected 
based on the model constructed (see Fig. 1).  

The surrogate model is then updated based on the 
simulation results of the sampled points. In this way, we 
attempt to gain the most information possible with a small 
number of carefully selected sampled points, limiting the 
number of expensive trials needed to understand features 
of the simulation space. From a safety point of view, we 
are interested in identifying the limit surface, i.e., the 
boundaries in the simulation space between system failure 
and system success. The generic structure of an adaptive 
sampling algorithm is shown in Fig. 2. 

Two classes of algorithms have been evaluated and are 
being implemented within RAVEN: 

• Discrete: model generated predicts simulation 
outcome in a binary fashion, e.g., system failure 
or system success 

• Continuous: model generated predicts a best 
estimate of simulation outcome, e.g., maximum 
temperature reached in the core 

In the first class, Support Vector Machines (SVMs) 
have proven to be flexible to model limit surface of an 
arbitrary shape [5]. The only limitation is that the surrogate 
model only predicts the simulation outcome in a binary 
form (failure or success) and does not give any quantitative 
information of the variables of interest (e.g., max core 
temperature). We then investigate algorithms that can 
generate continuous reduced order models based on 
Gaussian process models. 

We started by evaluating the Kriging method and then 

developed more advanced algorithms based on topological 
constructions of the surrogate model (Morse-Smale 
complexes) [6] as shown in Fig. 3. 
 

 
Figure 2. Generic scheme for adaptive sampling algorithms 

These algorithms offer better convergence 
performances, i.e., less samples are need to evaluate limit 
surfaces. Figure 4 shows an example of limit surface 
determination for a simplified PWR system during a 
station blackout (SBO) scenario. Two stochastic variables 
are considered:  initial time after scram (x axis) and 
duration (y axis) of SBO condition. Note how the 
uncertainty (green and blue lines) associated to the limit 
surface (black line) after 10 samples (top of Fig. 4) is very 
wide while after only 60 samples (bottom of Fig. 4) the 
limit surface has been completely characterized. Note that 
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Figure 3. Three topology based methods for adaptive sampling [6] 



the limit surface could have been obtained using Monte-
Carlo or Latin Hypercube sampling with a much higher 
number of samples (about 300 samples). Such 
improvements can be even higher when a large number of 
stochastic parameters are considered. 
 

 

 
Figure 4. Limit surface obtained for a simplified PWR system 
for a SBO scenario after 10 (top) and 60 (bottom) samples [5] 

While we have primarily testing adaptive sampling 
schemes to Monte-Carlo analyses, we are also 
implementing them also to DET analyses. 

A slight different approach to select the simulation to 
run has been shown in [13] and applied to DET analysis. It 
actually labels scenarios that lead to safe or failure state 
through a learning process based on Hidden Markov 
models. The labeling can be applied while the analysis is 
running and it can be used to select the most significant 
simulations to runs, and therefore, decrease the execution 
time of a DET analysis [13]. 
 
ANALYZE DATA 

The ability to analyze and identify correlations among 
timing of events through system dynamics/software/human 
action interactions is essential for nuclear power plant 
safety analysis and post-processing of the data generated 
by DPRA methodologies is still a research topic. 

A first approach toward discovering these correlations 
from data generated by DPRA methodologies has been 
developed using Fuzzy classification. However, clustering 
algorithms have allowed users to fully analyze these 
correlations by considering the complete system dynamics 
and not only the final outcome [7].  

Clustering based algorithms can be used to identify 
groups (i.e., clusters) of scenarios having similar temporal 
behavior of the state variables. An example [7] is shown in 

Fig. 5 for a data set generated using ADAPT and RELAP-5 
for an aircraft crash scenario. A plot of all 610 scenarios is 
shown in Fig. 5 (top); clustering algorithm allowed to 
identify 4 clusters and the “representative scenarios” for 
each of these 4 clusters are shown in Fig. 5 (middle). At 
this point, the analysis can be performed by observing the 
timing of events that lead to the scenarios contained in that 
cluster (Fig. 5 bottom). 

Moreover, clustering algorithms have proven to assist 
the user, for example, in the identification of those 
scenarios having similar temporal behavior but 
characterized by different outcomes only because the 
maximum simulation time was passed (see Figure 6). 

 

 

 
Figure 5. Original data (top), clustered data (middle) and 

timing of events associated to a cluster (bottom)[7] 

In addition, in [7] we showed how clustering algorithms 
can easily identify outliers scenarios, i.e., scenarios 
characterized by erroneous/discontinuous temporal 
behavior for example due to the fact that the validity 
boundaries of the code were surpassed (see Fig. 7). 

In these clustering analyses, only continuous data are 
used to represent each scenario while discrete data are 
considered after the clustering process to identify the set of 
events that caused a similar temporal behavior.  

Our recent efforts have been toward the development 
of methodologies able to analyze scenarios by considering 



in a coherent fashion both state variables (continuous data) 
data and timing/sequence of events (discrete data). We 
accomplished this task by symbolically representing both 
continuous and discrete datasets [8]. 

Symbolic representation means that the data are 
transformed into a series of symbols. Two algorithms are 
being used: 
• A modified version of SAX [9] that discretize state 

variables symbolically converts (see Fig. 8) 
• Time Series Knowledge Representation (TSKR) [10] 

which symbolically converts discrete types of data 
(see Fig. 9). 

 
Figure 6. Identification of scenarios that would lead to failure 

if max simulation time would be extended [7] 

 
Figure 7 Identification of outliers scenarios generated by 

errorneopus behavior of the simulation code [7] 

These conversions are performed in such way that 
duration, coincidence and order are preserved. Noteworthy 
is that high memory requirement reductions were achieved. 
In addition, we also noticed great computational time 
reduction when clustering and classification algorithms 
were applied to the symbolically converted data. 

Such reductions (both in term of memory requirements 
and computational performances) are of relevance for 
diagnosis and prognosis methodologies when real-time 
measurements need to be continuously compared with sets 
of archived data (either generated by simulators or 
previously monitored and stored). 
 
VISUALIZE DATA 

The need for software tools able to both analyze and 
visualize large amount of data generated by Dynamic PRA 

methodologies has been emerging only in recent years. In 
the past 2 years, INL and University of Utah have 
developed a software tool able to analyze multi-
dimensional data: HDViz [11,12]. 

 
Figure 8. Discretization of a scenario charaterized by two 

state variables; a specific symbol is associated to each cell [8] 

 

 
Figure 9. Symbolic conversion of time dependent events [8] 

HDViz model the relations between output variables 
and stochastic/uncertain parameters as high-dimensional 
functions. In this respect, HDViz segments the domain of 
these high-dimension functions into regions of uniform 
gradient flow by decomposing the data based on its 
approximate Morse-Smale complex (see Fig. 10).  

Points (i.e., simulation runs) belonging to a particular 
segmentation have similar geometric and topological 
properties, and from these it is possible to create compact 
statistical summaries of each segmentation. 

Such summaries are then presented to the user in an 
intuitive manner that highlights features of the dataset 
which are otherwise hidden [11, 12] (see Fig. 11). In 
addition, the visual interfaces provided by the system are 
highly interactive and tightly integrated, providing users 
with the ability to explore various aspects of the datasets 
for both analysis and visualization purposes. 

 
CONCLUSIONS 

This paper has shown several methodologies and 
algorithms that have been developed among national 
laboratories and academic research centers. These 
algorithms are now being evaluated and implemented in 
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projects such as the Risk Informed Safety Margin 
Characterization (RISMC) and a DPRA code under 
development at INL: RAVEN. 

 
Figure 10. The topological summary visual interface of the 

simple 2D function [11] 
 

 
Figure 11. Inverse coordinate plots for a PRA dataset [11] 

 
In this respect, we believe that these algorithms may 

represent a big step forward toward the utilization of 
simulation-based methodologies (i.e., DPRA) in order to 1) 
minimize high computational cost of such analysis (by 
decreasing the number of scenarios to be generated), and, 
2) maximize the amount of information and risk/safety 
insights that can be explored. 
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