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Abstract: This paper presents a solution of the space propulsion problem using a PRA code currently 
under development at Idaho National Laboratory (INL). RAVEN (Risk Analysis and Virtual control 
ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows 
dispatching different functionalities. It is designed to derive and actuate the control logic required to 
simulate the plant control system and operator actions (guided procedures) and to perform both 
Monte-Carlo sampling of randomly distributed events and Event Tree based analysis. In order to 
facilitate the input/output handling, a Graphical User Interface and a post-processing data-mining 
module are available. RAVEN also allows to interface with several numerical codes such as RELAP-
7, RELAP5-3D and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc 
simulator has been developed in Python and then interfaced to RAVEN. Such a simulator fully models 
both the deterministic (e.g., system dynamics and interactions between system components) and the 
stochastic behaviors (e.g., failures of components/systems such as distribution lines and thrusters). 
Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). 
Such analysis is accomplished in order to determine both the reliability of the space propulsion system 
and to propagate the uncertainties associated with a specific set of parameters. As also indicated in the 
scope of the benchmark problem, the results generated by the stochastic analysis are used to generate 
risk-informed insights such as conditions under which different strategies can be followed. 
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1 INTRODUCTION 
 
For the PSAM12 conference, a benchmark problem was issued with the intent of gathering people 
actively researching in the PRA field and have them work on the solution of a common problem. The 
problem statement (see Section 2) was structured in such a way that its essential features would 
challenge the capability of classical event-tree (ET) and fault-tree (FT) algorithms. In this respect, this 
paper presents a solution to such problem. Complete system dynamics and full system features have 
been implemented as an ad-hoc simulator code written in Python. Implementation details are provided 
in Section 4. We used the code RAVEN [1,2] to perform the statistical analysis using its Monte-Carlo 
sampling algorithms. RAVEN code description is shown in Section 3. Once the coupling between the 
system simulator and RAVEN has been established, a set of Monte-Carlo runs [3] has been performed 
in order to evaluate the temporal profile of system failure probability. Results are shown in Section 5. 
 
2 BENCHMARK DESCRIPTION 
 
An ion propulsion system is needed for a science mission in order to reach the orbit of a distant planet. 
The system is pictured in Fig. 1 (left) and consists of the following components:   

• 1 Tank 
• 1 Set of Distribution Lines  
• 5 Propulsion thrusters (Fig. 1 right), each composed of: 

o 1 Propulsion Power Unit (PPU) 
o 2 Ion Engines: A (main engine) and B (backup engine) 
o 2 Valves 

When a thruster is operating, the PPU provides power to just one ion engine. The other engine is in a 
standby mode, unless failed. When the number of engines required is greater than the actual number of 
engines available then the mission fails. 
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Figure 1: Schematics of the propulsion system (left) and of a thruster (right): PPU, ion Engines and valves 

The standby thrusters remain in standby until they are needed to replace a failed thruster, and they are 
actuated in series. The strategy for thruster operation is to begin with: 

• Power from the PPU going to Ion Engine A 
• Open valve A (to provide propellant to the Ion Engine) 
• Start Engine 

Ion Engine A continues to be the operating engine of the thruster until the ion engine A fails. If engine 
A fails, the strategy is to: 

• Close valve of engine A 
• Shut down the PPU 
• Switch the PPU to Ion Engine B 
• Open valve of engine B 
• Re-energize the PPU and operate with Ion Engine B. 

Strategy to shut down the thruster is to: 
• Shut-down engine 
• Close valve of the ion engine 
• Shut down the PPU 

Failure mode and effect analysis for all the components considered are shown in Table 1 along with 
reliability data for PPU and Ion Engine.  
 

Table 1: FEMA and failure mode probability values 

Component  Failure Mode Outcome Value 

PPU 

Fails to start on demand 

Thruster failure 

1×10-4 (per demand) 
Failure to operate 1×10-6 (per hour) 
Failure to shut down on demand 1×10-5 (per demand) 
Fails to switch to Ion Engine B 2×10-6 (per demand) 

Ion Engine 
Fails to start on demand 

Loss of redundancy 
or thruster failure 

3×10-5 (per demand) 
Fails to operate 2×10-5 (per hour) 
Fails to shut down on demand 3×10-6 (per demand) 

Propellant 
Valve 

Failure to open on demand Loss of Engine See Section 2.2 Failure to close on demand Mission failure 
 
2.1 Mission Profile 
 
The phase mission is described schematically in Figure 2 that shows the time length of the mission 
(78,000 hours) and the strategy regarding the number of thrusters needed in specific time intervals. 
From Fig. 2 note: 

• Support station: this station can be used to refuel and recover any damage and failure. After 
stopping, all components are as good as new. Decision to stop at the support station can be 
made anytime before 18,000 hours 

• Gray region: this region represents an area that contributes to increase leakage failure rates of 
the distribution lines (see Section 2.3) only when propulsion system is active. 
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Figure 2: Mission scenarios – Scenario 1: without stop at the support scenario (top) and  

Scenario 2: with stop at the support scenario (bottom) 

2.2 System Dynamics Interaction 
 
The valve is subject to pressure shocks when the thruster is activated and deactivated. Following a 
change of the status of the value there is a pressure oscillation ∆𝑃 around the nominal value with the 
following expression (time 𝑡 in seconds): 
 

∆𝑃 =   𝑠𝑖𝑛 𝑡𝜋/4 𝑠𝑖𝑛 𝑡𝜋/𝑝               𝑡 ∈ [0,4𝑠]
  0                                                                                      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (1) 

 
where the parameter 𝑝 is uncertain and characterized by a symmetric triangle distribution [0.4,0.8]. 
Such oscillation causes a damage accumulation 𝑑 at each valve activation (either opening or closing) 
that can be modelled as: 

𝑑 = 𝑑𝑡   ∆𝑃
!

!
 (2) 

 
The probability of failure on demand 𝑝!"#!$ of the valve as a function of the damage 𝑑 is as follows: 
 

𝑝!"#!$ = (𝑒! − 5) ∙ 10!! (3) 
 
Remember that if the valve fails to open, only the associated ion engine is lost; if the valve fails to 
close, mission fails. 
 
2.3  Leakages 
 
Both distribution lines but and the fuel tank are subject to leakages and the failure rate for such events 
are as follows: 

• Distribution lines: the damage accumulation 𝐷(𝑡) of the distribution lines can be modeled as a 
Gaussian random walk (Brownian motion) [4] having mean value (drift) equal to 1 and sigma 
equal to 0.4. In the gray region (see Figure 2) and only when propulsion system is active (i.e., 
thrusters are running), damage accumulation for the distribution lines is still considered a 
random walk but having mean value equal to 1.3 and sigma equal to 0.6. 
Distribution lines fail when 𝐷 𝑡 = 80,000; when this happens the mission is lost. Note that, 
for this benchmark extension, the leakage model for the distribution lines replaces the 
reliability value reported in Table 2. 

• Fuel tank: leakage failure rate = 10-5 hour -1. When a leakage event occurs in the fuel tank, the 
rate r of fuel leaking out (in unit of fuel per hour) has been experimentally observed and 
modeled as a Gaussian distribution characterized by: 
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• Mean = 500  
• Standard deviation = 100 

Automatic repair system is available only for the fuel tank. Repair time is exponentially 
distributed with a value of lambda 𝜆 = 24 hour. 

Thus, the amount of fuel leaked is equal to the time needed for the repair multiplied by the rate of fuel 
leaking out. Note that the size of the leakage and the time requited to fix such leakage determines how 
much fuel has been lost and its contribution to reaching mission failure. 
 
2.4 Initial Conditions Uncertainties 
 
The minimum amount of fuel required for this mission is 110,000 units but an additional amount of 
fuel is loaded. The additional amount is uncertain and can be modelled with a uniform distribution 
between 5,500 and 16,500 units of fuel. Each working ion engine requires 1 unit of fuel each hour. 
 
2.5 CCF Data 
 
Common cause failures (CCF) should be assessed using the conditional probability values listed in 
Table 1 by the CCF model of choice. No specific CCF model is endorsed, but any simplification or 
approximation of CCF probabilities must be based on calculations using the values below. 

Table 2: Common Cause Failure Modeling Values 

Group Size  Conditional Failure probability [%]  

2 8.0 
3 4.0 
4 2.0 

 
3 RAVEN CODE 

 
RAVEN is a generic software driver to perform parametric and probabilistic analysis of code 
simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the 
RELAP-7 code, it is currently being generalized with the addition of Application Programming 
Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as 
all the parameters that need to be perturbed are accessible by inputs files or directly via python 
interfaces. RAVEN is capable to investigate the system response probing the input space using Monte 
Carlo, grid strategies, or Latin Hyper Cube schemes. 
RAVEN has been developed in a highly modular and pluggable way in order to enable easy 
integration of different programming languages (i.e., C++, Python) and coupling with other 
applications including the ones based on MOOSE. The code consists of three main modules: Code 
interface, External Python Manager and Graphical User Interface (GUI). 
The interface is the container of all the tools needed to interact with codes such as RELAP-7/MOOSE, 
RELAP5 and user defined codes (i.e., Python scripts). It has been designed to be general and 
pluggable with different solvers simultaneously in order to allow an easier and faster development of 
the control logic/PRA capabilities for multi physics applications.  
The core of PRA analysis is contained in an external driver/manager. It consists of a Python 
framework that contains the capabilities and interfaces to drive a PRA analysis.  
The GUI is compatible with all the capabilities actually available in RAVEN. Its development is 
performed using QtPy, which is a Python interface for a C++ based library (C++) for GUI 
implementation. The GUI is based on a software named Peacock, which is a GUI interface for 
MOOSE based applications and it is able to assist the user in the creation of the input.  
 
3.1 Software Infrastructure 
 
The external driver manager has the control of the different modules that support the DET calculation: 

• General Calculation Driver and Job Handler 
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• Visualization and Input supporting GUI 
• Dynamic Event Tree (DET) and Probability Engine 
• Database manager 
• Post-processing and Data Mining module 
• Distribute Computing Environment Interface 

The General Calculation Driver is in charge of communicating information among the different 
modules. It is the only software branch that is aware of which modules are participating in the 
calculation. 

 
Figure 3: RAVEN code software structure 

The Calculation Driver, through the Job Handler module, runs the simulator until a stopping condition 
is reached. The probability engine is in charge of computing the likelihood of branching generated by 
trigger signals (e.g. probability threshold on Clad Failure distribution overpassed).  
The resulting data generated by the stochastic analysis, simulation probabilities, trigger information, 
and simulation results are sent to the Database manager, that, based on the kind of information 
received, distributes the data among the sub-structures (DET, PRA, Output databases). The database 
manager is able to store data in different formats (e.g., HDF5, CSV, etc.). 
The user can decide to perform post-processing operations and/or data mining manipulation on the fly, 
through the Post-processing and data mining module. The whole calculation may be visualized 
through the RAVEN GUI that is able to exploit the communication capabilities present in the external 
calculation driver for following the simulation evolution (e.g., monitored variables or probability 
evolution through different branches, etc.). 
The whole calculation infrastructure is designed to be agnostic regarding the machine in which it is 
running with extremely good performance either in PCs/workstations and HPC clusters. 
 
4 RELIABILITY ANALYSIS 
 
Scope of this benchmark is to 1) determine the time-dependent reliability of the propulsion system 
over the planned mission and 2) identify and rank the most risk significant components. From a safety 
point of view, mission failure occurs when one of the following conditions is satisfied before 
𝑡 = 78,000: 

1. Number of thruster available is less than the number of thruster required 
2. Fuel tank empty 
3. Distribution lines accumulated damage reach threshold value 𝐷 𝑡 = 80,000 

In addition, it is needed to quantify the impact of support station on overall system reliability; a stop at 
the support station: 

• Allows to fully repair the propulsion system 
• Increase distribution lines damage accumulation (see Fig. 2 bottom) 
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5 SYSTEM MODELING 
 

In this section, we show how the most relevant features of the benchmark problems described in 
Section 2 have been modeled and coded.  

 
5.1 System Control Logic 

 
The complete propulsion control logic has been implemented. For each of the following actions (that 
have been coded in Python) a pseudo code is provided: 

1. Start single thruster 
Pseudo code 1: StartSingleThruster() 

do  
  thrusterToStart = FindFirst()  # get a thruster on stand-by 
  if valveFailsToOpen then 
    LoseEngine(thrusterToStart) 
    StartSingleThruster() 
  else  
    if PPUFailsToStart then 
      LoseThruster(thrusterToStart) 
    else  
      if engineFailToStart then 
        LoseEngine(thrusterToStart) 
      else 
        Success = True 
      endif 
    endif 
  endif 
while success 

 
2. Lose engine 

Pseudo code 3: LoseEngine(thruster=i) 
if valveFailsToClose then 
    missionFailure = True 
else  
  if availableEngines = 0 
    LoseThruster(i) 
  else  
    if PPUfailsToSwitch 
      LoseThruster(i) 
    else 
      switchToEngineB(i) 
    endif 
  endif 
endif 

 
3. Shut down all thrusters 

Pseudo code 2: ShutDownAllThrusters() 
for all available thrusters 
  if valveFailsToClose then 
    missionFailure = True 
  else  
    if engineFailsToShutdown then 
      LoseEngine(i) 
    else  
      if PPUFailsToShutDown then 
        LoseThruster(i) 
      else 
        setThrusterOnStandBy(i) 
      endif 
    endif 
  endif 
endfor 

 
4. Operate thrusters (given time step 𝑑𝑡) 

Pseudo code 5: OperateThrusters(dt) 
if numberRequiredThrusters > numberOperatingThrusters 
  numberThrusterToStart = numberRequiredThrusters -numberOperatingThrusters 
  for i = 1 to numberThrusterToStart 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

    StartSingleThruster() 
  endfor 
endif 
 
if numberRequiredThrusters = 0 then 
  ShutDownAllThrusters() 
dndif 
 
for i = 1 to numberOfOperatingThrusters 
  if PPUfailsToOperate then 
    LoseThruster(i) 
    StartSingleThruster() 
  endif 
  if EngineFailsToOperate then 
    LoseEngine(i) 
    StartSingleThruster() 
  endif 
endfor 

 
5.2 Distribution Lines Damage Accumulation 
 
As indicated in Section 2, distribution lines damage accumulation can be described as a classical 
Brownian motion (also know as Weiner process or random walk) characterized by a mean value 𝜇 
(i.e., drift) equal to 1 and a standard deviation 𝜎 (i.e., diffusion) equal to 0.4. Under this assumption, 
temporal evolution of accumulated damage 𝐷 = 𝐷(𝑡) can be described by Eq. 4 [4]: 

 
𝑑𝐷   =   𝜇  𝑡   +   𝜎  𝑑𝑊! (4) 

 
where 𝑊!  is a one-dimensional continuous process such that for any two times 𝑡 > 𝑠  it has 
independent increments 𝑊! −𝑊! distributed normally with mean 0 and variance 𝑡 − 𝑠. Such process 
can be easily coded using the following approach: 

 
𝐷 𝑡 + 𝑑𝑡 =   𝐷 𝑡 +   𝜇  𝑑𝑡 + 𝑁 0,𝜎 𝑑𝑡 (5) 

 
Equation 5 has been coded as a separate module in Python as shown in Code 1. Note that in the 
benchmark case, 𝜇   and 𝜎  change with time: 𝜇 = 𝜇(𝑡)   and 𝜎 = 𝜎(𝑡) . An example of damage 
accumulation profile for five independent simulation runs are shown in Fig. 4. 

 
Code 1: Damage accumulation 

def brownian(x0, n, dt, mu, sigma): 
  x = np.zeros(n, np.dtype(float)) 
  W = np.zeros(n, np.dtype(float))  
  x[0]=x0 
  for i in range(1, len(W)): 
      x[i] = x[i-1] + dt 
      W[i] = W[i-1] + mu*dt + np.random.normal(0, sigma) * np.sqrt(dt) 
  return W[len(W)] 

 
5.3 CCF Failures 

 
CCF failures affect only thruster operations (i.e., start, operation and shut-down). Common cause 
failures (CCF) have been modeled by taking the group conditional failure probabilities supplied in the 
benchmark problem specification (see Table 2) as β-factor values, i.e. the total failure probability or 
rate 𝑝!!  of component i (PPU, valve, engine) is determined as: 
 

𝑝!! = (1 + 𝛽)𝑝! (5) 
 

where 𝑝!are given in Table 1 and the β-factors are given in Table 2. 
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Figure 4: Examples of distribution lines damage accumulation in the [0,5] h interval 

5.4  Valve failure probabilities 
The probability of failure for the valve has to be considered as a probability per demand. Such 
probability value depends on the uncertain parameter p which is characteristic of each valve. Such 
value remains constant throughout the mission time but differs from valve to valve. In our model we 
initialize the values of valve failure probabilities (p_valve) at the beginning of each simulation run 
using the python script presented below. Figure 5 shows the temporal profile of the pressure 
oscillation for the two values of 𝑝 (𝑝 = 0.4 and 𝑝 = 0.8). Given the uncertainty associated with the 
parameter 𝑝, we investigated the probability distribution of p_valve that is shown in red line of Fig. 5 
(right). 

Code 2: p_valve determination  
def pressureOscil(t,p): 
  value=0 
  if t<0 and t>4:  
    value = 0 
  else: 
    value = np.sin(t*np.pi/4)*np.sin(t*np.pi/p)       
  return abs(value) 
 
def p_valve(p): 
  integral = quad(pressureOscil,0,4, args=(p), limit=100000) 
  value = (np.exp(integral)-5)*0.0001 
return value 

 
5.5 Tank Leaks 
 
At each time step 𝑑𝑡 the simulator queries the possibility of having a tank leak. As shown in Pseudo 
code 6, note that simulator account he possibility that more that one leaks can be present. 
 

Pseudo code 6 (given time step 𝒅𝒕): updateTankLeaks(dt) 
if newLeakOccurs then 
  leakRate = sampleRateValue() 
  repairTime = sampleRepairTime() 
  leakSet.push(leakRate, repairTime) 
endif 
 
for i = 1 to all leaks 
  repairTime[i] = repairTime[i] – dt 
endfor 

 
5.6 Mission Simulation 
 
Mission profile for each scenario: 

• Scenario 1: with stop at the support station 
• Scenario 2: without stop at the support station 

have been divided into phases as shown in Fig. 6: phase numbers are shown in italics. 
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Figure 5: Temporal profile of pressure oscillation during valve activation for p = 0.4 and p = 0.8 (left) and 

probability distribution function of p_valve (right) 

 
Figure 6: Mission profiles phase discretization for Scenario 1 (top) and Scenario 2 (bottom) 

Mission temporal evolution has been calculated using a value of 𝑑𝑡 = 1. Pseudo code that perform a 
single simulation run is provided below: 
 

Pseudo code 7: Simulation() 
for i = 1 to numberOfPhases 
  for t = 1 to lengthOfPhase[i] 
    OperateThrusters(dt) 
    updateDistributionLinesDamage(dt) 
    updateTankLeakages(dt) 
    updateFuelAmount(dt)     
    if missionFailure = True 
      stopSimulation() 
    endif 
  endfor 
endfor 

 
where the pseudo code for updateFuelAmount(dt) is as follows: 
 

Pseudo code 8: updateFuelAmount(dt) 
for all operating thrusters 
  fuelAmount = fuelAmount – 1 * dt 
endfor 
for i = 1 to all leaks 
  fuelAmount = fuelAmount – leakRate[i] * dt 
endfor 

 
6 RESULTS 

 
In order to determine the reliability of the overall system, we employed the RAVEN code to perform a 
Monte-Carlo (MC) analysis. The MC simulation of the system mission was performed with 3·105 
histories for each scenario. Final reliability values are: 

• Scenario 1 (without stop at support station): 16.17 % 
• Scenario 2 (with stop at support station): 82.09 %. 

Monte&Carlo+

Density+es0ma0on+

# 
Th

ru
st

er
s N

ee
de

d 

Time 

Time 

# 
Th

ru
st

er
s N

ee
de

d 

2 

3 

3 

28
00

 

52
00

 

78
00

0 

38
00

0 

50
00

0 

69
00

0 

54
00

0 

69
00

0 

38
00

0 

18
00

0 
12

00
0 

28
00

0 

78
00

0 

18
00

0 

31
00

0 

2 

28
00

 

52
00

 

12
00

0 

23
00

0 
23

00
0 

40
00

0 
40

00
0 

21
00

0 

1"""""2""""""3""""""""4"""""5"""6""""""""""""""""7"""""""""""""8""""""""""9""""""""""""""""10"""""""""""""11"

""1"""""2""""""3""""""4"""""5""""""""6""""""""""""""""7""""""""""8"""""""""""""9""""""""""""""""10"""""""""11"



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Temporal profiles of the system reliability for both scenarios are shown in Figure 7. 

 
Figure 7: Temporal profiles of the system reliability for scenario 1 (left) and scenario 2 (right) 

We also performed a series of MC experiments using the RAVEN code. In each experiment we 
isolated specific failure modes in order to evaluate the impact of these failure modes on the overall 
system reliability. In particular, we focused our attention on identifying the impact of thruster 
reliability, distribution lines damage accumulation, CCF and initial fuel uncertainties. 

 
6.1 Impact of Thruster System Reliability 
 
We evaluated the impact of the thruster dynamics only into the reliability function.  In essence, at each 
𝑑𝑡 (see Pseudo code 7), we considered only OperateThrusters(dt). The temporal profiles of 
the reliability function for both scenarios are shown in Fig. 8. Final reliability values are (CCF 
considered): 

• Scenario 1 (without stop at support station): 99.22 % 
• Scenario 2 (with stop at support station): 99.05 %. 

 
Figure 8: Scenario 1 (left) and Scenario 2 (right) temporal profile of reliability function if only thruster 

system is considered (with CCF) 

6.2 Impact of CCF failures 
 
For both scenarios we were able to determine that CCF failures are responsible for decreasing the 
overall system reliability by 2%. The temporal profiles of the reliability function for both scenarios are 
shown in Fig. 9. 
 
6.3 Impact of Damage Accumulation  

 
We evaluated the impact of distribution lines damage accumulation only into the reliability function: 
at each 𝑑𝑡 (see Pseudo code 7), we considered only updateDistributionLinesDamage(dt).  
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We were able to notice that damage accumulation plays a major role in the overall system reliability. 
For Scenario 1, the distribution of accumulated damage at 𝑡 = 78,000 is given in Fig. 10, i.e., there is 
about 49% probability that the accumulated damage reaches its threshold (80,000). In fact, such accu-
mulated damaged is almost normally distributed with mean value of 80,070 and sigma equal to 117. 

 
Figure 9: Scenario 1 (left) and Scenario 2 (right) temporal profile of reliability function if only thruster 

system is considered (without CCF) 

On the other hand, for Scenario 2 (see Fig. 11), the accumulated damaged at 𝑡 = 78,000 is normally 
distributed but with mean value of 62,938 and sigma equal to 109.6. Final reliability values are: 

• Scenario 1 (without stop at support station): 19.6% 
• Scenario 2 (with stop at support station): negligible 

 
Figure 10: Distribution lines damage accumulation for Scenario 1 

 

 
Figure 11: Distribution lines damage accumulation for Scenario 2 
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Figure 12: Temporal profile of system reliability due to accumulated damage for Scenario 1 

 
6.4 Impact of Tank Leakages + initial fuel uncertainties 
 
At the end, we evaluated the impact of tank leaks and initial fuel uncertainty into the reliability 
function by considering updateTankLeakages(dt) and updateFuelAmount(dt) at each 𝑑𝑡 
(see Pseudo code 7). 
Regarding overall tank system, four stochastic variables are considered: 

• Initial value of fuel amount 
• Probability of leaks occurrence 
• Leak rate value 
• Leak repair time 

In particular, the last two variables determine, for each leak, the amount of fuel that is lost. Table 3 
shows the amount of fuel loaded and needed for both scenarios. Note that the amount of fuel needed is 
less for scenario 2 since a refuelling is being performed at the support station. Note also that the 
amount of fuel surplus (loaded-needed) is obviously greater for scenario 2. Given that mission failure 
occurs when fuel is depleted before 𝑡 = 78,000, we can see that this occurs when the amount of fuel 
lost due to tank leaks exceed the surplus. 
 

Table 3: Fuel loaded, needed and surplus for both scenarios 

Scenario Fuel loaded Fuel needed Surplus Nominal Added 
1: without stop 110,000 [5,500 16,500] 101,000 [14,500 25,500] 
2: with stop 110,000 [5,500 16,500] 105,0001 [10,500 21,500] 

 

  
Figure 13: Tank leak cumulative distribution function (CDF) (left) and probability distribution function 

of fuel lost given a leak has occurred (right) 

 
                                                        
1 For Scenario 2 (with stop at support station), the overall amount of fuel needed for the mission is measures 
from 𝑡 = 18,000 h since: 1) ship is completely refuelled during the stop and 2) the likelihood of mission failure 
due to tank leakages before 𝑡 = 18,000 h is negligible. 
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Figure 13 (left), shows that the likelihood of a tank leak is very high; in addition, it also shows the 
distribution of fuel lost due to tank leaks given that a leak has occurred (Fig. 12, right). This 
distribution is compared to the distribution of fuel surplus for both scenarios. Hence, from Fig. 12 
(right), we expect that system reliability due to tank leaks and initial fuel uncertainties is considerably 
higher for scenario 2. In this respect, Fig. 13 shows, for scenario 1 (left) and 2 (right), the temporal 
profile of the reliability function. 

 
Figure 14: Temporal profile of reliability function for scenario 1 (left) and 2 (right) when only tank leaks 

and initial fuel uncertainty are considered 

6.5 Summary of reliability contributions 
 
As a summary of the results shown in the previous sections, for each scenario we show in Figure 15 
the probability of success (green) and the major contributors to failures: tank leaks (red), distribution 
lines (yellow) and propulsion system (blue). 

 
Figure 15: Probability of success (green) and the major contributors to failures: tank leaks (red), 
distribution lines (yellow) and propulsion system (blue) for Scenario 1 (left) and Scenario 2 (right) 

 
7 CONCLUSIONS 
 
This paper presented a solution of the PSAM12 space propulsion system benchmark.  A stochastic 
analysis was performed in order to obtain the system reliability using the Monte-Carlo capabilities of 
the RAVEN code. An ad-hoc simulator has been developed and coded in python and then interfaced 
with RAVEN. We have obtained an overall system reliability of 16% for Scenario 2 and 82% for 
Scenario 1. This suggests that a stop at the support station is mandatory in order to maximize mission 
success. We also investigated the impact of: thruster reliability, distribution lines damage 
accumulation, CCF and initial fuel uncertainties. 
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APPENDIX A: BASE BENCHMARK PROBLEM RESULTS 
 
In this appendix we present the result obtained for the base benchmark problem. Reliability value 
obtained was 0.986 as shown in Fig. 16. Figure 16 shows the reliability drop caused by failure on 
demand 

 
Figure 16: Temporal profile of reliability function for the base version of the benchmark problem 

 
APPENDIX B: COMPARISON TABLE 
 

• Methodology Employed: Monte-Carlo 
• Stochastic analysis tool: RAVEN 
• Software parameters: 300,000 runs 
• System simulator initially developed in Python and later in C++ for faster computational time 
• Computational resources: Intel core i7-3770 Quad Core (3.4 GHz), 16 GB SDRAM DDR3 
• Computational time: ~ 5 hours 

 
Component Hypothesis/Approximations Modelling 

PPU No approximation Control logic implemented through scripts 
Ion engine No approximation Control logic implemented through scripts 
Valve No approximation p_valve values numerically determined for each 

simulation run 
Distribution line Stochastic process embedded into 

the simulator  
Damage modelled as a Weiner process 

Phase mission Mission divided into 11 phases Time step for the simulation set to 1 hour 
Engine CCF Beta factor Failure probability 𝑝!! is determined as 𝑝!! = (1 + 𝛽)𝑝! 
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