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1. INTRODUCTION 
RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) 

program [1], is advancing its capability to perform statistical analyses of stochastic dynamic systems. 
This is aligned with its mission to provide the tools needed by the Risk Informed Safety Margin 
Characterization (RISMC) path-lead [2] under the Department of Energy (DOE) Light Water Reactor 
Sustainability program [3]. In particular this task is focused on the synergetic development with the 
RELAP-7 [4] code to advance the state of the art on the safety analysis of nuclear power plants (NPP).  

The investigation of the probabilistic evolution of accident scenarios for a complex system such as a 
NPP is not a trivial challenge. The complexity of the system to be modeled leads to demanding 
computational requirements even to simulate one of the many possible evolutions of an accident scenario 
(tens of CPU/hour). At the same time, the probabilistic analysis requires thousands of runs to investigate 
outcomes characterized by low probability and severe consequence (tail problem). 

The milestone reported in June of 2013 [5] described the capability of RAVEN to implement complex 
control logic and provide an adequate support for the exploration of the probabilistic space using a Monte 
Carlo sampling strategy. Unfortunately the Monte Carlo approach is ineffective with problems of such 
complexity. 

In the following year of development, the RAVEN code has been extended with more sophisticated 
sampling strategies (grids, Latin Hypercube, and adaptive sampling). This milestone illustrates the 
effectiveness of those methodologies in performing the assessment of the probability of core damage 
following the onset of a Station Black Out (SBO) situation in a boiling water reactor (BWR). 

Section 2 provides an overview of the available probabilistic analysis capabilities, ranging from the 
different types of distributions available, possible sampling strategies, and post processing analysis 
capabilities. Section 2 also provides an extensive description of two major developments introduced this 
year: adaptive sampling for limit surface sampling and multi variate distributions. The document 
concludes with a description of the demo case (BWR-SBO) and a discussion of the results obtained. 

 

2. PROBABILISTIC ANALYSIS TOOLS 
Given the probabilistic aspects characterizing the initiating events of an accident scenario in a NPP 

and its evolution (e.g. failure on demand), it is natural to try to evaluate the risk (R) connected to the 
operation of a NPP in a probabilistic sense (referred to as a Probabilistic Risk Analysis [PRA]). Before 
entering into the detail of the work completed, the recall of a few mathematical concepts will help the 
understanding of the material. 

Specifically: 

• 𝑥 = 𝑋 𝑡 : random variate representing the status of the system (e.g., NPP status) at a given 
instant in time 

• 𝑋 𝑡 : random variable. For each possible realization of the stochastic components of the system 
determine the status of the system; it is thus a mapping between the event space and the system 
phase space 

• 𝑓! 𝑥, 𝑡 : probability distribution function (PDF) of 𝑥 with support S 

• 𝐹! 𝑥, 𝑡 = 𝑓 𝑥!, 𝑡 𝑑𝑥′!!
!"! : cumulative distribution function (CDF), 

• 𝐶 𝑥, 𝑡 : cost functions which represent the maximum risk given the status of the system 𝑥 at time 
t, 



 

 5 

• 𝑅 = 𝑑𝑡 𝐶 𝑥, 𝑡 𝑓! 𝑥, 𝑡 𝑑𝑥!
!
! : risk. It is useful to remark that the risk integral is nothing more 

than the integral over time of the expected value of the cost function 𝐸 𝐶 𝑥 . 

To illustrate these quantities in a more practical sense, in a prototypical PRA the following 
correspondence could be used: 

• 𝐶 𝑥 = 𝛿 𝑡!"#   𝑖𝑓  𝑟𝑒𝑎𝑐𝑡𝑜𝑟  𝑖𝑠  𝑑𝑎𝑚𝑎𝑔𝑒𝑑
0  𝑖𝑓  𝑟𝑒𝑐𝑎𝑡𝑜𝑟  𝑖𝑠  𝑛𝑜𝑡  𝑑𝑎𝑚𝑎𝑔𝑒𝑑   , 

•  𝑅 = 𝑓! 𝑥, 𝑡!"# 𝑑𝑥!∩!"#$%&!  !"#"$%! , 

where 𝛿 .  is the Dirac delta and 𝑡!"# is the maximum time extension of the simulation used for the PRA 
analysis. In such a case the risk becomes just the probability that before the end time of the simulation the 
reactor has been damaged. As it could be noticed, since the goal function is known, the PRA analysis task 
is therefore the computation of some form of the 𝐹! 𝑥, 𝑡!"#  or more in general of 𝐹! 𝑥, 𝑡  that is what is 
needed for computing the risk integral. 

Before describing the details of how this could be performed (this subject is treated in Section 
2.3, dedicated to the sampling strategies) the above example could be further extended to make a more 
detailed parallel between the mathematical representation of the problem insofar provided and the 
RAVEN-RELAP-7 simulation environment. 

When RAVEN and RELAP-7 are used to perform a PRA the following correspondence are assumed: 

• The realization space (scenario space) is the set of all possible values that all parameters subject to 
stochastic behavior, used in the construct of the numerical model solved by RELAP-7, could possible 
assume. Examples are: 

o Friction coefficient 

o Time of the recovery the auxiliary system 

o Number of successful time a valve is operated before failing. 

• A realization (scenario) is characterized by a specific set of values of the above-described random 
variables. 

• RELAP-7 is the mapping (random variable) from the scenario space to the outcome space (random 
variate). 

In the software infrastructure constructed, RAVEN is the scenario generator that—according to the 
probability distribution function characteristic of each random variable—creates scenarios, monitors the 
resulting value of the random variate describing the plant status (computed by RELAP-7), infers their 
probabilistic distribution functions, and compute the risk integrals. 

The following subsections summarize the capability of RAVEN to represent stochastic behavior by 
the implemented probability distribution functions, and describe the different strategies (samplers) to 
compute the cumulative distribution function of the status of the system (𝐹!) or the risk integrals. 

 

2.1 Univariate Distributions 
Both the probabilistic distribution of events (e.g. pump failure) or the uncertainty characterizing one 

of the model parameters used to describe the NPP (e.g., friction coefficient) are described by PDFs.  

In RAVEN a large number of analytical PDFs have been made available during the current fiscal 
year. Table 1 summarizes the distributions present and if their truncated form are available. Figure 1 
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illustrates an example of the probability plots generated by some PDFs. The distributions have been 
imported via the construction of a software interface with the BOOST library [6]. The truncation of a 
distribution in an interval [a,b], if available, is performed to preserve the normalization using the 
following transformation: 

𝑓! 𝑥 𝑎 ≤ 𝑥 ≤ 𝑏 =
𝑓! 𝑥

𝑓! 𝑏 − 𝑓! 𝑎  

Table	  1:	  List	  available	  probability	  distribution	  functions	  

Probability 
Distribution Function 

Truncated Form 
Available 

Probability 
Distribution Function 

Truncated Form 
Available 

Bernoulli No Poisson No 

Binomial No Triangular Yes 

Exponential Yes Uniform Yes 

Logistic Yes Weibull Yes 

Lognormal Yes Gamma Yes 

Normal Yes Beta Yes 

 
In the following are reported some distribution analytical expressions used to generate the plots in 

Figure 1 as also used to generate the example of the different sampling strategies in Figure 4 to Figure 10. 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑥;𝜎 = 0.5, 𝜇 = 0 = 𝑁 𝑥;𝜎 = 0.5, 𝜇 = 0 = !
! !!

𝑒!
!!! !

!!!  , 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝑥;𝜎 = 0.5, 𝜇 = 0 = 𝐿𝑁 𝑥;𝜎 = 0.6, 𝜇 = 0 = !
!" !!

𝑒!
!" ! !! !

!!! ,  

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑥;𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 3 = 𝑈 𝑥;𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 3 = ! ! !! !!!
!

 . 
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Figure	  1:	  Scattered	  plot	  generated	  by	  sampling	  (Latin	  Hypercube	  sampling	  scheme)	  of	  a	  Normal	  (red),	  Lognormal	  

(blue)	  and	  Uniform	  distributions	  (green)	  

2.2 Multivariate Distributions 
A univariate distribution statistically represents the uncertainty associated to a 1-dimensional 

parameter (e.g., AC power recovery time, pipe friction factor). As an example, a normally distributed 
(mean 𝜇 and sigma  𝜎) variable 𝑥 can be written as: 

𝑥~𝒩(𝜇,𝜎), 

and the PDF associated to 𝑥 can be written as:  

𝑓! 𝑥 =
1

𝜎 2𝜋
𝑒!

!!! !

!!! . 

 Such concept can be extended to multi-dimensional, i.e. multivariate, distributions [7] in order to 
model how the uncertainties associated to 𝑛 coupled parameters (𝑥!,… , 𝑥!)  are distributed and correlate 
among each other (e.g., concentration of H2 and CO in the LWR containment at which ignition will start). 
In such case we are dealing with n-dimensional variable, i.e., a vector 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! , which has 
an associated distribution ℳ: 

𝑥~ℳ. 

Note that concepts like PDFs 𝑓! 𝑥 : 

𝑓! 𝑥 :  ℝ! → ℝ  , 𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! , 

and CDFs 𝐹! 𝑥 : 

𝐹! 𝑥 :  ℝ! → 0,1 ,𝐹! 𝑥 = 𝐹! 𝑥!,… , 𝑥! , 

can still be defined similarly to the univariate case, i.e., 

𝐹! 𝑥 = 𝐹! 𝑥!,… , 𝑥!   = 𝑑𝑥!… 𝑑𝑥!  𝑓! 𝑥!,… , 𝑥!
!!

!!

!!

!!
, 

𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! =
𝜕!

𝜕𝑥!… 𝜕𝑥!
  𝐹! 𝑥!,… , 𝑥! . 
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However, operations like the inverse of the CDF (performed to generate random samples from a 
given CDF) need to be treated differently. The inverse of a multi-dimensional function is in fact not a 
uniquely determined point but an infinite set of points distributed on a line (for a 2-dimensional 
multivariate distribution), or on a surface (for a 3-dimensional multivariate distribution) and so on. In 
other words, given a value 𝑝 ∈ [0,1], 𝐹!! 𝑝  determine an infinite set of points lying in a (𝑛 − 1)-
dimensional hyper surface constrained by the same value of the CDF that iso-probability surface (see 
Figure 2). 

2.2.1 Normal Multivariate Distributions 
Since multivariate distributions are widely used in the UQ and PRA arenas, a set of stochastic 

libraries that can handle those distributions has been developed for the RAVEN code. In the literature, 
multivariate normal distributions are mainly considered. Those distributions are defined as [7]: 

𝑥~𝒩(𝜇, Σ) 

where: 

• 𝜇 = 𝜇!,… , 𝜇! ∈ ℝ! is the mean value, 

• Σ is the covariance matrix. 

 
Figure	  2:	  Example	  of	  multivariate	  cdf	  𝑭(𝒙,𝒚)	  (2D	  case):	  the	  	  average	  internal	  pressure	  at	  which	  two	  different	  pipe	  

will	  fail.	  The	  correlation	  could	  be	  given	  by	  being	  built	  by	  the	  same	  material.	  The	  iso-‐probability	  planes	  
represents	  the	  location	  of	  the	  points	  (x,y)	  such	  that	  the	  𝑭(𝒙,𝒚)	  =0.5	  

While an analytical expression for a multivariate normal PDF exists: 

𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! =
1

2𝜋 ! Σ
𝑒!

!
! !!! !!!! !!! , 

an expression for a multivariate normal CDF 𝐹 𝑥  does not exists but can be determined numerically. 

As an example, for a 2-dimensional normal distribution, the covariance matrix can be written as: 

𝜎!! 𝜌𝜎!𝜎!
𝜌𝜎!𝜎! 𝜎!!

, 

where 𝜎! and 𝜎! are the standard deviations associated to the two variables 𝑥! and 𝑥! while 𝜌 represents 
the correlation factor between 𝑥! and 𝑥!. If 𝑥! and 𝑥! are not correlated, i.e., 𝜌 = 0, then: 
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𝑓!!,  !! 𝑥!, 𝑥! =
1

2𝜋𝜎!𝜎! !
𝑒
!!!

!!!!!
!!!

! !!!!!
!!! =

1
𝜎! 2𝜋

𝑒
! !!!!! !

!!!! ∙
1

𝜎! 2𝜋
𝑒
! !!!!! !

!!!!

= 𝑓!! 𝑥! ∙ 𝑓!! 𝑥! , 

i.e., the multivariate normal distribution can be written as a product of two independent univariate 
distributions (for 𝑥! an 𝑥!). 

2.2.2 N-dimensional spline interpolation 
The development of multivariate distributions was not limited to model only normal distributions but 

we also added the capability to handle custom multivariate distributions. In such cases, the user provide 
through a .txt file a set of point (M) of coordinates 𝑥 ! = 𝑥!,… , 𝑥! ∈ ℝ! ! , 𝑖 = 1,… ,𝑀 in the n-
dimensional space and the value of the CDF 𝐹! 𝑥  associated to those points. In order to calculate the 
value of 𝐹! 𝑥  at a generic point, a set n-dimensional interpolation functions have been employed. This 
section is dedicated to the description of an interpolating process that uses n-dimensional spline while the 
next one will focus on inverse weight based methodologies. 

 Given that the data points provided by the user are located on a Cartesian (regular) grid (see 
Figure 3), RAVEN allows using a cubic spline interpolation. Such interpolation method constructs a 
representation of the original data set that is both continuous and differentiable. 

 
Figure	  3:	  2-‐dimensional	  points	  lying	  on	  a	  Cartesian	  (regular)	  grid	  

Given a set of 𝑀 points and CDF values 𝑥,𝐹!(𝑥) ! , 𝑖 = 1,… ,𝑀lying on a n-dimensional Cartesian grid 
with n different discretization step ℎ! for   𝑗 = 1,… , 𝑛 (one for each dimension), the interpolated value 
𝐹(𝑥) at a generic point 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! can be written as [8]: 

𝐹! 𝑥 = … 𝑐!!,!!,…,!!

!!!!

!!!!

!!!!

!!!!

∙ 𝑢!!
! (𝑥!)

!

!!!

 

where: 

𝑚! , 𝑗 = 1,… ,𝑛: number of discretization points for each dimension (j) 

𝑚!

!

!!!

= 𝑀 

𝑢!!
! 𝑥! = Φ

𝑥! − 𝑥!!

ℎ!
+ 2− 𝑗!  

h2#

h1#

x1#

x2#
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Φ 𝑡 =
(2− 𝑡 )! 1 ≤ 𝑡 ≤ 2

4− 6 𝑡 ! + 3 𝑡 ! 𝑡 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The scope of the interpolator is to determine all the coefficients 𝑐!!,!!,…,!! through a recursive algorithm as 
shown in [8]. Note that dimensionality of the problem is (𝑚! + 2)!

!!! . Hence, for high dimensionality 
problem and with a large number of discretization points, the calculation of the coefficients 𝑐!!,!!,…,!! may 
be computationally intensive. 

2.2.3 Inverse weight interpolation 
Also know as Shepard’s interpolator method [9], the inverse weight algorithm perform n-dimensional 
interpolation using a basic metric distance scheme. 

Given a set of 𝑀 points and CDF values 𝑥,𝐹!(𝑥) ! , 𝑖 = 1,… ,𝑀 the interpolated value 𝐹(𝑥) at a generic 
point 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! can be written: 

𝐹! 𝑥 = 𝑤! 𝑥   𝐹(𝑥!)
!

!!!

 

where: 

𝑤! 𝑥   =
𝑥! − 𝑥!

!

𝑥! − 𝑥!
!!

!!!
 

with 𝑝 set to a value greater than 2 in order to assure differentiability. 

2.2.4 Challenges 
While dealing with univariate distributions is common practice, the multivariate distributions pose a 

set of challenges that require special handling approaches 

2.2.4.1 Computation of the inverse of a multivariate cumulative distribution function: 
Given the value of the 𝐹! 𝑥′ = 𝑃 𝑥 ≤ 𝑥′ , to compute the corresponding value of the random 

variate 𝑥′ (if exists) is a problem that occurs frequently when performing this type of statistical analysis. 
This operation is for example required to generate a set of sampling of a random variable using the 
inverse transformation method in Monte Carlo based analysis (see Section 2.3.1). 

While for univariate distribution the solution of 𝑥! = 𝐹!
!! 𝑃 𝑥 ≤ 𝑥′  could be always computed 

(either analytically or numerically), in the case of multivariate distribution the equation has an infinite 
number of solutions. However, using an iterative scheme, it is possible to find a point 𝑥′ ∈ ℝ! such that 
𝐹! 𝑥′ = 𝑃 𝑥 ≤ 𝑥′  using for example graph-based methods [10]. Unfortunately ensuring that the 𝑥′ not 
only satisfy the above constrain but also is uniformly distributed over the hyper-surface (iso-probability 
surface) is rather challenging. Preliminary results unfortunately show that the search algorithm used to 
locate 𝑥 has effectively some bias. While the effect seems to be negligible, more investigation will be 
required in the future. 

2.2.4.2 Derivation of the probability distribution function from the cumulative 
distribution function 

As indicated earlier the user provides the point evaluation of the 𝐹! 𝑥  CDF, therefore the PDF 
𝑓! 𝑥  should be derived by differentiation: 
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𝑓! 𝑥 =
𝜕!

𝜕𝑥!… 𝜕𝑥!
  𝐹!(𝑥!,… , 𝑥!)	  

Such 𝑓! 𝑥  is affected by errors generated by both the interpolation method employed and by the 
quantity of points 𝑥! given as input by the user. In this respect, an estimate of such error is needed and 
should be argument of investigation in the future. 

2.2.5 Parametric Distributions 
In PRA analysis there are also several examples of parametric distributions. While in many respects 

similar to the multivariate case, the treatment of those distributions should be different from a 
probabilistic point of view. 

Referring to the notation introduced in Section 1: 

• 𝑥: random variate 

• 𝑋 𝑝 : random variable, function of the parameter 𝑝 

• 𝑋 𝑝 ~𝑓! 𝑥, 𝑝 : PDF 

• 𝐹! 𝑥, 𝑝 = 𝑓 𝑥!, 𝑝 𝑑𝑥!
!!"# ! : CDF 

Differently form a multivariate distribution: 

𝑓 𝑥!, 𝑝 𝑑𝑥
!!"# !

!!"# !
= 1 

𝑑𝑝′
!

𝑓 𝑥!, 𝑝′ 𝑑𝑥
!!"# !

!!"# !
= 𝑉𝑜𝑙 𝑝  

It could be noticed as for any value of the parameter 𝑝 the normalization condition is respected and 
the integration for all possible parameter values leads to the iper-volume 𝑉𝑜𝑙 𝑝  representing the 
estension of the 𝑝 domain. In reality this situation is not very much different from what has been 
described in chapter 1 where the natural parameterization chosen for the status of the system is the time 
coordinate. In fact the probability of the system being in any of the admissible points is always 1 and its 
integral over time is just the total simulation time. In the analysis presented in the latter part of this report 
a parametric distribution is used to represent the evolution of the failure clad temperature probability as a 
function of the burn-up. 

2.3 Samplers 
As already mentioned a sampler is an algorithm which purpose is to determine the cumulative 

distribution function of the status of the system or to compute risk integrals.  

2.3.1 Sampling of Probability Distribution Function 
Before moving forward into the description of the different sampling techniques it is useful to recall 

some results that show how the sampling of different type of distribution could be performed. 

2.3.1.1 Transformation Method 
This methodology is used when the inverse of the CDF is know analytically 

• if X, Y random variable with their respective random variate x, y, PDF 𝑓!, 𝑓!, and cdf 𝐹!, 𝐹! 

• Then  𝑦 = 𝐹!!! 𝑓! 𝑥  or equivalently 𝑌 = 𝐹!!! 𝑓!  
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A special case is when, conveniently 𝑓! = 𝒰 0,1 , and this lead to 𝑦 = 𝐹!!! 𝑥 . This result tells that the 
realization of any random variable could be obtained by computing the inverse of its CDF on the 
realization of a random variable uniformly distributed on 0,1 .  

2.3.1.2 Rejection Method 
This methodology is numerically based, and used when the inverse of the CDF is not known 

analytically. Once a sampling u is generated from the 𝒰 0,1  the solution of 𝐹! 𝑦 = 𝑢  is sought 
iteratively. The process, of course, takes advantage of the monotonicity of the CDF. 

2.3.1.3 Multivariate and Parametric Distributions 
In case of multivariate CDF clearly the inverse does not exist given that the inversion problem is ill 

conditioned. As already mentioned in Section 2.2.4 the inversion is performed numerically but the 
process currently implemented needs further refining to ensure the complete absence of bias in the 
location of the point on the iso-probable surface. 

To focalize the issue it could be helpful to examine the following example. Referring to the case in 
Figure 2. 𝑃!! ,𝑃!! ~𝑓!!!,!!! 𝑝!! , 𝑝!! : random variate where, respectively, the two variates are the 
failure temperature of pipe 1, and failure temperature of pipe 2. The inversion method would prescribe to 
generate a random number 𝑥 realization of the uniform distribution 𝒰 0,1  and solve: 

𝐹!!!,!!! 𝑝!! , 𝑝!! = 𝑑𝑝!!′
!!!

!!!,!"#

𝑑𝑝!!′
!!!

!!!,!"#

𝑓!!!,!!! 𝑝!! , 𝑝!! = 𝑥. 

Clearly this would lead to the definition of an hyper-surface (line in this case) satisfying the constrain: 
𝐹!!!,!!! 𝑝!! , 𝑝!! = 𝑥. 

While it is possible to numerically determine a couple of value 𝑝!! , 𝑝!!  that satisfies the above 
constrain it is rather challenging to define an algorithm that used several times for the same 𝑥 will 
produce a set of Independent Identically Distributed (IID) pairs of 𝑝!! , 𝑝!! ! as requested for example 
by Monte Carlo sampling strategy. As mentioned in Section 2.2.4 this issue is still under investigation. 
Currently RAVEN provides the capability to perform random sampling of multi-dimensional distribution 
but the IID hypothesis is not fully ensured. Nonetheless the bias and its effect detected, in test cases, so 
far have been minimal. 

2.3.2 Monte Carlo 
The Monte Carlo sampling strategy is the most used and more basic sampling strategy. First thing is 

to remind that the risk integrals are just the expected values of the cost function  𝐸 𝐶 𝑥  therefore using 
the Law of Large Numbers [11] it is possible to compute an approximation of the risk integrals. 

The sequence of steps could be so summarized as follows: 

1. M IID realizations 𝑢!   𝑖 = 1,… ,𝑀 are generated. The vectors 𝑢! are constitute by N realizations of 
the uniform distribution 𝒰 0,1 . Examples are friction coefficient or recovery time of an auxiliary 
system (monovariate) or the temperature and pressure of failure of a pipe (multivariate). 

2. For each vector 𝑢! for each entry of the vector 𝑢!,! , 𝑗 = 1,… ,𝑁 (N is the number of random variables, 
counting the multidimensional ones as one) the corresponding values of the variates 𝑣!are generated 
(stochastic parameters used to define the mathematical representation of the system) using either the 
transformation method, either the rejection method, or numerical inversion for the multivariate. To be 
notice that 𝑑𝑖𝑚 𝑢! ≥ 𝑑𝑖𝑚 𝑣!  and that only after the inversion of the multivariate distributions the 
number of parameter generated equals the number of stochastic parameters needed by the RELAP-7 
model. 
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3. For each set 𝑣! a RELAP-7 run is executed producing the time evolution of the coordinate in the 
phase space representing the system (aka NPP) 𝑥! 𝑡 = ℎ 𝑣! , 𝑡 . Where the transfer function ℎ 𝑣! , 𝑡  
represent the mathematical model used by RELAP-7 to represent the system. 

4. The value of the goal function 𝐶!(𝑥! 𝑡 ) is computed. 

5. To each 𝐶! it is associated the probability !
!

 and therefore it is possible to compute its expected value 

by: 𝐸 𝐶 = !
!

𝐶!!
!!!  

Figure 4 shows the sampling points (300 points) resulting from a Monte Carlo approach over three 
monovariate parameters sampled respectively from uniform (Variable_U), lognormal (Variable_LN), and 
normal (Variable_N) distributions. Figure 5 shows instead the sampled value of a goal function set equal 
to the product of the lognormal and normal probability distribution functions. The second image clearly 
shows the clustering of the sampling location towards the highest probability region, reflecting the 
characteristic of the Monte Carlo approach to better represent goal functions (risk integrals) close to 
highest probable regions, while performing a poor job in the assessment of the system behavior in low 
probability regions. 

 
Figure	  4:	  Scattered	  plot	  of	  the	  location	  of	  the	  sampling	  point	  resulting	  from	  a	  Monte	  Carlo	  sampling	  over	  three	  

monovariate	  parameters	  

 

 
Figure	  5:	  	  Probability	  values	  sampled	  by	  the	  Monte	  Carlo	  
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2.3.3 Grid Sampling 
Grid-based sampling is more aimed towards a parametric analysis of the system response rather than 

a probabilistic analysis. RAVEN for monovariate parameters allow either defining the grid in terms of 
probability (CDF) or directly with respect the parameter values. There is the limitation that, when using 
grid build on the CDF values, the distribution used should have a finite interval support so to avoid that 
the grid point expressed in parameter values are ±∞ (this would happen if the support of the distribution 
is ±∞ and the point chosen on the grid are 0 or 1). For the parametric distributions it is only possible to 
define a grid with respect to the CDF since the support of the PDF evolves with the evolution of the 
system. Also for multivariate distributions it is not possible to define the grid over the values of the 
parameters but only over the CDF, in fact, similar to the parametric case, the different variable could not 
discretized separately. 

The procedure to evaluate the risk integrals is similar to the Monte Carlo, except that the probability 
associated to each sampling should be computed differently: 

• First if the grid points are provided in values, than they are re-mapped in term of grid point over 
0,1  by means of the inverse of the CDF 

• 𝑢!   𝑖 = 1,… ,𝑀: i-th point on the grid of coordinate 𝑢!,! , 𝑗 = 1,… ,𝑁, where N is the number of 
dimension on the grid  

• 𝑃𝑟 𝑢! = 𝐹!! 𝑢!,!!!/! − 𝐹!! 𝑢!,!!!/!
!
!!!   

• Where the index 𝑗 ± 1/2 refers to the coordinate located at the middle point between the 
coordinate 𝑢!,! and the next/previous point on the grid. 

• For the extreme points it is used the relationship: 

if  𝐹!! 𝑢!,!!!/! >   𝐹!! 𝑢!,!!!/!  then 𝐹!! 𝑢!,!!!/! = 1, 𝑎𝑛𝑑  𝐹!! 𝑢!,!!!/! = 0 

if  𝐹!! 𝑢!,!!!/! <   𝐹!! 𝑢!,!!!/!  then 𝐹!! 𝑢!,!!!/! = 0, 𝑎𝑛𝑑  𝐹!! 𝑢!,!!!/! = 1 

• The expected value of any stochastic function (cost function in this case) 𝐶 is therefore: 

𝐸 𝐶 = 𝐶!𝑃𝑟 𝑢!

!

!!!

 

Figure 6 shows the sampling points (1764 points) resulting from a grid sampling approach over three 
monovariate parameters sampled respectively from uniform (Variable_U), lognormal (Variable_LN), and 
normal (Variable_N) distribution. Figure 7 shows instead the sampled value of a goal function set equal 
to the product of the lognormal and normal distributions. The sampling strategy used was equal 
probability for the monovariate described by the normal and lognormal distribution while equally spaced 
for the one characterized by the uniform. The result of this approach could be noted in Figure 7 where 
clearly the density of the points decrease approaching low probability regions. 

The grid sampling represents a very practical tool for engineers to explore the parametric response of 
the system, unfortunately becomes very expensive with the growing number of dimensions posing clear 
computational challenges. 
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Figure	  6:	  Scattered	  plot	  of	  the	  location	  of	  the	  sampling	  point	  resulting	  from	  a	  grid	  sampling	  over	  three	  

monovariate	  parameters	  

 

 
Figure	  7:	  	  Probability	  values	  sampled	  by	  the	  Grid	  Sampling	  

 

2.3.4 Stratified Sampling 
Stratified sampling is a class of methods that relies on the assumption that the input space can be 

separated in regions (strata) based on similarity of the response of the system for input set within the same 
strata. Following this assumption the most rewarding (in terms of computational cost vs. knowledge 
gained) sampling strategy would be to place one sample for each region. In this way the same information 
is not collected more than once and the all the prototypical behavior are sampled at least once. 

In a manner very similar to the one described for the grid sampler, RAVEN allows the construction of 
a grid on the input parametric space either with respect to the probability associated to the random variate 
(CDF) or to the value itself of the variables (same limitations of the grid sampler apply). The stratification 
is build by assuming that there should never be more than a strata characterized by the same range of any 
of the random variate. This constrain allows many possible solution for the construction of the strata, one 
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is randomly selected and then one point is sampled from within each strata. This process is exemplified in 
Figure 8. 

The probability associated to each point sampled is equivalent to the probability associate to the strata 
of which the point is representative. The computation of the risk integrals is exactly the same as in the 
case of the grid sampling except for the fact that the probability should account for the whole probability 
associated to each strata and therefore renormalized as it follows: 

𝑃𝑟 𝑢! =
𝐹!!,! 𝑢!,!!! − 𝐹!!,! 𝑢!,!

!
!!!

𝐹!!,! 𝑢!,!!! − 𝐹!!,! 𝑢!,!
!
!!!

!"#$%&
!!!

 

Where the numerator is introduced to renormalize the probability of a point so to carry along the 
probability of the whole strata it is representing. 

The most classical implementation of stratified sampling in PRA analysis is the Latin Hypercube 
Sampling (LHS) where the strata are build based on equal probability regular Cartesian partition of the 
parametric input space. In this case each parameter is partitioned in M equal-probability range and the 
probability associated to each sample is !

!
. Figure 9 shows the sampling points (100 points) resulting from 

a LHS over three monovariate parameters sampled respectively from uniform (Variable_U), lognormal 
(Variable_LN), and normal (Variable_N) distribution. Figure 9 shows instead the sampled value of a goal 
function set equal to the product of the lognormal and normal distributions. Compared to the other 
samplers up to now examined the LHS present the most scattered pattern and it is regarded in the PRA 
community as the most efficient with respect to the trade off between computational cost and information 
generated. 

 

     

     

     

     

     
 

 

     

     

     

     

     
 

   

 

     

     

     

     

     
 

 

 

     

     

     

     

     
 

	  

Figure	  8:	  On	  the	  left	  column	  two	  possible	  stratifications	  while	  in	  the	  right	  column	  the	  corresponding	  possible	  
sampling	  locations.	  
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Figure	  9:	  Scattered	  plot	  of	  the	  location	  of	  the	  sampling	  point	  resulting	  from	  a	  LHS	  over	  three	  monovariate	  

parameters	  

 

 
Figure	  10:	  	  Probability	  values	  sampled	  by	  the	  Grid	  Sampling	  
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2.3.5 Adaptive Sampling 
2.3.5.1 The Limit Surface 

One of the more advanced options that RAVEN offers is goal oriented sampling strategies for the 
research of limit surfaces [12]. To properly explain which type the information available by these 
techniques it is useful to start from the characterization of limit surfaces. Without entering in a 
mathematical description of the concept of limit surface it is possible to describe the limit surface as a 
hyper-surface, in the realization space of the stochastic parameters of the system, along which a specific 
goal function assumes an imposed value. 

If, as in the example in Section 2, the goal function is: 

𝐶 𝑥 = = 𝛿 𝑡!"#   𝑖𝑓  𝑟𝑒𝑎𝑐𝑡𝑜𝑟  𝑖𝑠  𝑑𝑎𝑚𝑎𝑔𝑒𝑑
= 0  𝑖𝑓  𝑟𝑒𝑐𝑎𝑡𝑜𝑟  𝑖𝑠  𝑛𝑜𝑡  𝑑𝑎𝑚𝑎𝑔𝑒𝑑   , 

the image of the limit surface could be conveniently defined as the surface, in the realization space, where 
𝛁𝑪 𝒙 = ∞, which simply is hyper surface that separates failure regions to success regions. The 

information content of the limit surface image is rather minimal because it just illustrates a property of the 
goal function with respect the status of the system but it could be conveniently noticed that the integration 
domain of the risk integral is the volume within the limit surface image 𝜕𝑉!: 

𝑅 = 𝑓! 𝑥, 𝑡!"# 𝑑𝑥
!∩!"#$%&!  !"#"$%!

= 𝑓! 𝑥, 𝑡!"# 𝑑𝑥
!!

, 

where the image of the limit surface 𝜕𝑉! satisfies ∇𝐶 𝜕𝑉! = ∞. 
Now the discussion will be narrowed to system where the probabilistic behavior could be studied only 

as a function of uncertainty in the model parameters and initial condition. The limitation of this 
assumption are described in [13] but generally are fairly acceptable for monovariate variable while might 
get more complex for multivariate or parametric distributions and the analysis of such cases it is still 
under investigation. 

Under the above-described assumption, the phase space coordinate of the system at any moment in 
time is a function of 𝒙𝟎 , which represents the realization of the initial conditions and stochastic 
parameters characterizing the system. Therefore the system behavior could be now described 
deterministically by: 

𝑥 𝑡 = ℎ 𝑥!, 𝑡 , 
where ℎ 𝑥!  is the mathematical model representing the system, once the initial condition and the 
uncertain parameters are chosen. The probability propagate according: 

𝑓! 𝑥 𝑑𝑥 = 𝑓!! 𝑥! 𝑑𝑥!, 
which reads that the probability of the system being in a particular state 𝒙 is equal to the probability of the 
initial condition and parameters to be such that leads to the prescribed state (this is a simplification that 
assumes ℎ being injective, a more generic description could be found in [14]). 

As a consequence the risk integral could be evaluated as: 

𝑅 = 𝑓!! 𝑥! 𝑑𝑥!
!!! !!

, 

where ℎ!! 𝑉!  is the pre-image of 𝑉! and therefore ℎ!! 𝜕𝑉!  is the limit surface. 
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Figure	  11:	  Limit	  surface	  example	  (red	  dots)	  

Figure 11 shows an example of limit surface. The example refers to the solution of the time 
dependent heat conduction equation in one dimensional slab: 

𝜕𝑇
𝜕𝑡

= 𝐷
𝜕𝑇
𝜕𝑥

𝑇 𝑥 = 𝑥! , 𝑡 = 0 = 𝑇!,!
𝑇 𝑥 = 𝑥! , 𝑡 = 0 = 𝑇!,!

, 

where 𝑇!,!  and 𝑇!,!  are respectively the left and right boundary conditions (on temperature), 𝐷  the 
diffusion coefficient and T the temperature. The goal function is equal 1 if the average temperature in the 
slab after 20 sec exceeds the threshold value, 0 othervise. The limit surface separates the input space 
(diffusion coefficient and left boundary condition) depending on the value of the goal function. 

In conclusion a limit surface is a hyper-surface discriminating the input space coordinates (initial 
condition and model parameters) depending on the evolution that the system will have with respect the 
value of a given cost function. 

The knowledge of the limit surface allows a fast evaluation of risk functions, provides information 
concerning which uncertainty is mostly relevant to risk increase/decrease, defines safe areas to be 
explored for parametric operational optimization and risk reduction. Unfortunately the search of a limit 
surface in terms of computational effort is very expensive. 

A brute force approach would be to build an N-dimensional grid on the input space and sample each 
point. The number of point in the grid would be proportional to the degree of accuracy sought and would 
hit rather fast a prohibitive number. To avoid such a situation RAVEN uses acceleration schemes based 
on surrogate models that are used to predict the location of the limit surface so to guide the exploration of 
the input space avoiding regions far from the frontier sought.  

Region where the average 
temperature exceeds the 
threshold (failure) 
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2.3.5.2 Surrogate Models 
 In the literature, there are several definitions for surrogate models and/or reduced order models 
and/or supervised learning process and they often overlaps. For the purpose of this technical report, a 
surrogate model is a mathematical model that is trained to predict the response of a physical system. The 
training is a process that uses sampling of the physical model to improve the prediction capability 
(capability to predict the status of the system given a realization of the input space) of the surrogate 
model. More specifically, in our case, the surrogate model is trained to emulate a numerical representation 
of the physical system that we assume possess a high degree of fidelity but it is also very computational 
expensive to realize. Two general characteristics of surrogate models will be assumed true in the 
remaining of this discussion even exceptions are possible: 
1. The higher is the number of realizations in the training sets the higher is the accuracy of the 

prediction of the surrogate model. This is assumed true although some of the surrogate models used 
might be subject to the over-fitting issues. Because this a phenomena that is highly dependent on the 
surrogate model type, and RAVEN posses a large number of options available, the reader should 
consult specific literature on this subject depending on the problem to be solved. 

2. The smaller is the size of the input domain with respect the variability of the system response 
projected on the cost function, or vice versa, the smoother is the response of the system projected on 
the cost function within the input domain, the more likely the surrogate model will be able to 
represent the risk function. 

Given the fact that most of the time the cost function assume the form of a characteristic function of a 
certain domain (e.g. failure/success) in the phase space, in the development of the RAVEN code it has 
been given priority to the introduction of a class of supervised learning algorithms that are usually 
referred to as classifier. In essence classifiers are surrogate models specialized to represent a binary 
response of the system (failure/success). 

The first class of classifier introduced has been the Support Vector Machines [15] with several 
different kernels (polynomial of arbitrary integer order, radial basis function kernel, and sigmoid) 
followed by a nearest-neighbor based classification using a K-D three search algorithm [16]. All those 
supervised learning algorithms have been imported via an Application Programming Interfaces (APIs) 
with the scikit-learn [17] library. It is foreseen to import soon the whole library of supervised learning 
methods from scikit-learn, as also the N-Dimensional spline and the inverse weight methods, which are 
currently available for the interpolation of N-Dimensional PDF/CDF. 

2.3.5.3 The Searching Algorithm 
The limit surface searching algorithm is rather straightforward and could be described by the 

following steps: 

1. A limited number of point in the input space 𝑥! !  are selected via one of the previously 
described sampling strategies (stratified, grid and Monte Carlo sampling) 

2. The RELAP-7 code is used to compute the status of the system for the set of point in the input 
set: 𝑥 𝑡 ! = ℎ 𝑥! ! , 𝑡  

3. The Goal function (Boolean function) is evaluated at the phase space coordinate of the system: 
𝑔 ! = 𝐺    𝑥 𝑡 !  

4. The set of pairs 𝑥! ! , 𝑔 !  are used to train a surrogate model 

5. The surrogate model (SM) is used to predict the value of the goal function on a regular Cartesian 
grid in the domain space (the mesh size depend on the convergence requested by the user): 

𝑆𝑀 𝑥! ! ≈ 𝑐 ! , 𝑗 = 1,… ,𝑀  𝑝𝑜𝑖𝑛𝑡𝑠  𝑜𝑛  𝑡ℎ𝑒  𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛  𝑔𝑟𝑖𝑑 
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6. The values of the goal function are used to determine the limit surface location based on the 
change of values of 𝑐 !: 

𝑐 ! → 𝜕𝑉! 

7. The position of the limit surface is compared with the one at the previous iteration (This step is 
skipped at the first iteration), if no changes are detected the iterations stop otherwise a new point 
need to be identified in the input space 

8. The point located on the limit surface that is the farther from all the other already selected point in 
the input space is added to the 𝑥! ! set and the process restart from point 2 

 

The iteration scheme is graphically presented in Figure 12. 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 
 
 
 

 

 

 
Figure	  12:	  Limit	  Surface	  Searching	  Scheme	  

END 

No 

Determine what is the most relevant point in the input space where to perform the next physical 
model evaluation and add it to {�̅�!}! 

Yes 

Perform the evaluation 

Evaluation of the system response on a low number of points of the input space 
 {�̅�(𝑡)}! = ℎ({�̅�!}! , 𝑡) 

Evaluation of the binary cost functions{𝑐}! = 𝐶(  {�̅�(𝑡)}!) 

  Training of the SM using the pairs ({�̅�!}! , {𝑐}!) 

Convergence test on the 
consistency of the location 

of the limit surface 

The approximation of the cost function {𝑐}! ≈ 𝑆𝑀!{�̅�!}!! → 𝜕𝑉𝐿 is used to locate the limit 
surface 𝜕𝑉! in a very fine Cartesian grid 
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2.3.5.4 Computation of the Probability Associated 
Once that the limit surface have been found the information concerning its location have been fully 

captured by the SM that is fully trained to locate the surface. The computation of the risk integrals is 
therefore performed used the M points on the Cartesian grid as it would be for a grid based sampler (see 
2.3.3) where the evaluation of the cost function is replaced by its approximation by the SM: 
𝐶    𝑥 𝑡 ! ≈ 𝑆𝑀 𝑥! !  leading to the following expression: 

𝐸 𝐶 = 𝑆𝑀 𝑥! ! 𝑃𝑟 𝑢!

!

!!!

 

 

3. BWR SBO DEMO 
A simplified BWR plant system model has been built based on the parameters specified in the 

Organization for Economic Cooperation and Development (OECD) turbine trip benchmark problem [18]. 
The reference design for the OECD BWR Turbine Trip benchmark problem is derived from Peach 
Botom-2, which is a General Electric-designed BWR-4 NPP, with a nominal thermal power of 3,293 
MW.  

Figure 13 and Figure 14 show the schematics of the simplified BWR plant system that has been 
modeled through RELAP-7/RAVEN. The reactor vessel model consists of the down comer model, the 
lower plenum model, the reactor core model, the upper plenum model, the separator dryer model, the 
steam dome model, the main steam line model, the feed-water line model, the primary pump model, the 
RCIC turbine model, the RCIC pump model, and the wet well model.  

 
Figure	  13:	  BWR	  scheme	  

A core channel model (i.e., flow channel with heat structure attached to it) was used to describe the 
reactor core. Each core channel represents thousands of real cooling channels and fuel rods. To speed up 
the transient simulation, only one core channel was used to represent the entire core; bypass flow was 
ignored. The lower plenum, upper plenum and steam dome are modeled with branch models. External to 
the reactor vessel, the main steam line is connected to the steam dome. A time dependent volume is 
attached to the main steam line to provide the necessary boundary conditions for the steam flow. A feed-
water line is connected to the down comer model. A time dependent volume is attached to the feed-water 
line to provide the necessary boundary conditions for the feed-water. The safety injection system includes 
the RCIC turbine and pump, as well as the containment wet well and dry well. Valves are placed at 
various locations to provide the flow control functions of the plant system.  
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Figure	  14:	  BWR	  plant	  visualization	  in	  RAVEN	  

Notably missing from this simplified BWR model are the jet pumps and the recirculation loops that 
allow the operator to vary coolant flow through the core and change reactor power. Instead, for this case 
study, a pump model is used to represent the functions of the jet pumps and the recirculation loops. 

The following paragraph provides more detailed information on the plant geometry and parameters 
used to derive this demo. 

The Peach Bottom-2 reactor core consists of 764 fuel assemblies. The initial cycle was selected as the 
reference design cycle for the simulations done in this report. In the initial cycle, 7×7 fuel rod lattice type 
assemblies with no water rods were loaded. The active core height specified was 3.6576 m. For ease of 
preparing the input file, we used 3.66 m as the active core height in our calculations. The fuel assembly 
and fuel rod geometry data were taken from reference [18] and shown in Table 2. 

Table	  2:	  Core	  model	  parameter	  and	  fuel	  rod	  geometry	  data.	  

Core thermal power (MW) 3,293 
Core height (m) 3.66 
Core flow area (m2) 7.8 
Fuel pellet diameter (cm) 1.21158 
Gap thickness (cm) 0.01524 
Clad outer diameter (cm) 1.43002 
Fuel rod pitch (cm) 1.8745 
Number of fuel rods per assembly 49 
Assembly pitch (cm) 15.24 
Heat transfer surface area per unit fluid volume 235.4927 
Hydraulic diameter (cm) 1.3597 
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The major parameters required to build the simplified BWR plant system configurations also were 
obtained from reference [18] and some key data are shown in Table 3. 

Table	  3:	  Major	  component	  parameters	  for	  the	  simplified	  BWR	  plant	  configuration	  

Component  
Name 

Volume 
(m3) 

Area 
(m2) 

Axial Elevation (Top) Relative to 
the Bottom of the Vessel (m) 

Lower Plenum 61.48 11.64 5.28 
Reactor Core 28.55 7.8 8.94 
Upper Plenum 26.99 14.36 10.82 
Separator Standpipe 10.69 3.93 13.54 
Separator Dryer (S/D) 19.30 10.27 15.42 
S/D Steam Outlet Pipe 0.393 3.93 15.42 
S/D Liquid Discharge Pipe 3.93 3.93 14.48 
Steam Dome 178.19 26.19 22.32 
Main Steam Line 2.64 1.32 18.92 
Down Comer 201.30 15.00 15.52 
Feedwater Line 3.96 1.32 12.52 
Wet Well Water Space 3570.00 892.50 -12.00 (bottom) 
Wet Well Gas Space 3570.00 892.50 -4.00 (top) 
RCIC Turbine - - -3.00 
RCIC Pump - - -3.00 
 

3.1 Demo Description 
The scenario considered is a grid related loss of off-site power (LOOP) event immediately followed 

by the loss of the emergency diesel generators (DGs). Such event is known as station black-out (SBO) 
initiating event. Due to the complete loss of AC power, after the reactor operators successfully scram the 
reactor, the cooling of the core and the removal of the decay heat is performed by using high-pressure 
cooling system, the RCIC system, which removes the steam from reactor pressure vessel (RPV) and 
dump it into the suppression pool (i.e., wet well). At the same time, RCIC injects cool water from the 
suppression pool back to the RPV. This procedure is followed until AC power is restored either by 
recover off-site power or by fixing issues related to the DGs. From a stochastic point of view, several 
random variables have been introduced to represent the probabilistic evolution of the system and are here 
reported: 

• Off-site power recovery time (see Figure 15): lognormal (mean=2.66 and sigma=2.0) truncated 
within the interval [20.0, 600.0] s 

• DGs recovery time (see Figure 16): Weibull (k=0.745 and lambda=120) truncated within interval 
[1.0, 600.0] s 

• Burn-up of the fuel: exponentially distributed with lambda 0.05 within the interval [0.0, 60.0] 
GWd/MtHM 

• Failure temperature of the cladding: 1-dimensional triangular parametric distribution that 
describes the PDF of the temperature at which the clad fails as a function of Burn-up (see Figure 
17). Such distribution models the fact that clad failure likelihood increases for higher Burn-Up 
values. A more detailed description of the mathematical model is provided in the following 
paragraph. 
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Figure	  15:	  PDF	  and	  CDF	  for	  Off-‐Site	  Power	  Recovery	  Time	  

	  	  	  	  	  	  	  	  	   	  

Figure	  16:	  PDF	  and	  CDF	  for	  Diesel	  Generator	  Time	  

As previously mentioned, handling multivariate and/or parametric distributions can be challenging 
from a sampling point of view. The usage of those distributions, in whatever sampling strategy the user 
decides to employ, needs to be carefully handled. The main problem is related to the fact that the inverse 
of a multivariate and/or parametric CDF is not a bijection (it is represented by an hyper-surface); this does 
not allow the usage of a strategy based on the concept of point sampler (the system code is run for 
specific values of the random variables that are set externally) and requires a different approach. RAVEN, 
in such cases, samples the CDF between [0,1] and checks, during the simulation, if the CDF threshold 
gets crossed in consequence of the evolution of the system. 

Here, it is shortly described how the 1-dimensional parametric PDF, considered in this demo, has 
been handled: 

• Random variable: clad failure temperature with triangular distribution (𝑇!,!). 
• Parameter: burn-up level (𝐵𝑢). 
• Probability distribution function: 

𝑇!,!~𝑝𝑑𝑓 𝑇!,! =

=

0, 𝑇 < 𝑇!,!,!"#
2 𝑇!,! − 𝑇!,!,!"#

𝑇!,!,!"# − 𝑇!,!,!"# 𝑇!,!,!"#$ − 𝑇!,!,!"#
, 𝑇!,!,!"# < 𝑇 < 𝑇!,!,!"#$

2 𝑇!,!,!"#$ − 𝑇!,!
𝑇!,!,!"# − 𝑇!,!,!"# 𝑇!,!,!"# − 𝑇!,!,!"#$

, 𝑇!,!,!"#$ < 𝑇 < 𝑇!,!,!"#

0, 𝑇!,!,!"#$ > 𝑇

, 
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with the parametric dependence from the Burn-up accounted by: 
𝑇!,!,!"# = 1699.81𝑒−0.092354Bu, 
𝑇!,!,!"# = 1255.37𝑒−0.092354Bu, 
𝑇!,!,!"#$ = 1477.59𝑒−0.092354Bu. 

Where 𝑇!,!,!"#, 𝑇!,!,!"#$, 𝑇!,!,!"# are respectively the minimum, the most probable and the 
maximum values of the clad failure temperature. 

• Before each simulation starts, a random number between [0, 1] is generated as threshold of the clad 
failure temperature CDF (𝑐𝑑𝑓!!). 

• Each time RELAP-7 advances the solution in time, the Burn-up level and the clad temperature, 
coming from the simulation, are used to perform a test on the CDF value: 

𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 ≶ 𝑐𝑑𝑓!! 
• Depending on exceeding/not exceeding the CDF threshold the simulation evolution is modified 

according: 
𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 < 𝑐𝑑𝑓!!: the simulation goes on without alteration, 
𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 ≥ 𝑐𝑑𝑓!!: the simulation stops as consequence of the clad failure detection.  

 

 

 
Figure	  17:	  PDF	  and	  CDF	  for	  clad	  failure	  as	  function	  of	  Burn-‐Up	  and	  Temperaturea	  

 

3.1.1 Analysis Performed 
The main goal of this demo is to show some of the capabilities developed in the last year by the 

RAVEN team.  As already mentioned, the intense development of RAVEN resulted in the addition of all 
the state-of-art sampling strategies along with all the capabilities to perform probability and uncertainty 
quantifications. 

The SBO scenario has been analyzed through the 4 principal sampling strategies (Dynamic Event 
Tree is subject of a future milestone report): Monte Carlo, Grid sampling, Latin Hypercube and Adaptive 
sampling. Since the final scope was to perform a comparison among these methodologies, it has been 
decided to set the maximum number of samples, for each sampler, to a common upper bound of 1224.   

It is important to note that, since the RELAP-7 computational performances are still in a developing 
stage, the RAVEN team artificially shorted the simulated time (maximum Simulation Time = 450 

                                                        
a Plots generated by RAVEN code 
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seconds) by acting on unconventional parameters, such as friction factors and decay heat curve. These 
actions do not affect the validity of the goal of this report that, as already mentioned, is focused on 
RAVEN algorithm capabilities.  

3.2 Results 
3.2.1 Monte Carlo 

The Monte Carlo sampling has been performed setting a limit of 1224 calculations. As it will be 
pointed out later, the Monte Carlo is the only strategy that involved a sampling of the distributions 
(CDFs) associated to the uncertain parameters mainly using the transformation method described in 
2.3.1.1. In fact, the other sampling strategies use a structured discretization of the input space either in 
value or cumulative probability and probability distribution functions are used to compute the failure 
probability as described in 2.3.3, 2.3.4 and 2.3.5.  

 
Figure	  18:	  Clad	  Temperature	  Evolution	  Monte	  Carlo	  

Figure 18 shows the clad temperature evolution for all the histories simulated. Right after the reactor 
scram, the temperature of the clad starts decreasing until the primary pumps, in coast-down condition, are 
completely stopped. When they stop, the temperature starts rising until the auxiliary cooling system is 
possibly restored, leading to a further cooling of the core and placing the NPP in safety conditions.  

Figure 19 shows the histograms of the sampled Burn-up level and the threshold CDF (𝑐𝑑𝑓!!) for the 
clad failure temperature following the Monte Carlo sampling of the respectively exponential and uniform 
distributions. Figure 21 shows, instead, the histogram resulting from the sampling of the truncated 
Weibull and Log Normal distributions being respectively the PDF of the DGs and off-site power recovery 
time. 

Figure 22 shows the distribution of the maximum temperature reached by the clad for the Monte 
Carlo analysis. Most of the sampled scenarios reached maximum temperatures below 1000 K, i.e., the 
minimum temperature that could cause the failure of the system, at high Burn-ups (see Figure 18) 
indicating therefore that most of the scenarios ended without failure of the clad. 

Figure 21 shows the limit surface that has been generated based on the Monte Carlo sampling. Since 
the uncertain parameters represent a 4-D input space, three of them are explicitly treated in as 3-D 
coordinate and the remaining one, the Probability Threshold, is used as weight for the colors of circles 
plotting the limit surface. As expected, the limit surface presents itself as the intersection of two planes 
almost parallel, one to the DG recovery – Burn-up plane and the other to the off site recovery time – 
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Burn-up plane. The reason for this shape is that the recoveries of the diesel generators or the off-site 
power are equivalent with respect the determination of the clad temperature. As a consequence the limit 
surface should, in some extend, being similar to the surface representing the following mathematical 
expression: 

𝑚𝑖𝑛 𝐷𝐺  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  𝑡𝑖𝑚𝑒,𝑂𝑓𝑓  𝑠𝑖𝑡𝑒  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  𝑡𝑖𝑚𝑒 > 𝑇 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 
𝑚𝑖𝑛 𝐷𝐺  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  𝑡𝑖𝑚𝑒,𝑂𝑓𝑓  𝑠𝑖𝑡𝑒  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  𝑡𝑖𝑚𝑒 < 𝑇 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 

 
where T is a generic recovery time such as the clad temperature does not exceed the failure value. T is, 
obviously, a function of the 𝑐𝑑𝑓!! and 𝐵𝑢. These dependencies generate the bending of the planes 
so that the success area (region characterized by the low values of DGs and off-site power 
recovery time) decreases with the increase of the Burn-up and increase with the increase of the 
CDF threshold chosen for the clad failure temperature (𝑐𝑑𝑓!!). 

 
 

 
Figure	  19:	  Burn-‐Up	  and	  Probability	  threshold	  histograms	  

 

 
Figure	  20:	  Diesel	  Recovery	  Time	  (blue),	  off-‐site	  Power	  Recovery	  Time	  (yellow)	  
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Figure	  21:	  Views	  of	  the	  limit	  surface	  obtained	  from	  the	  Monte-‐Carlo	  sampling	  strategy	  
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Figure	  22:	  Max	  clad	  temperature	  histogram	  

In the following tables the probability of failure (Table 4) and the correlation matrix (Table 5) are 
reported. The correlation matrix shown in Table 5 highlights, as expected, the importance of the AC 
power recovery time (either by DG repair or off-site power recovery) followed by Pb_threshold 
associated to the clad failure temperature and its burn-up value. This could be inferred by observing the 
correlation between the ‘clad failed’ and the other entries of the matrix. The correlation between the 
sampled variables (DG recovery time, off site power recovery time, Burn-up and CDF threshold) is 
negligible given the fact that they represent independent parameters. 

 
Table	  4	  Failure	  Probability	  Monte	  Carlo	  

Failure Probability 1.31E-02 
Sigma 3.23E-03 

	  

 
Table	  5	  Correlation	  Matrix	  Monte	  Carlo	  

Correlation Matrix 
DGs 
Recovery 
Time 

Off-Site Power 
Recovery Time Burn-Up Pb 

Threshold Clad Failed 

DGs Recovery Time 1.00E+00 -3.74E-02 -4.56E-03 -2.41E-02 2.35E-01 
Off-Site Power 
Recovery Time -3.74E-02 1.00E+00 9.59E-03 -3.65E-02 2.70E-01 

Burn-Up -4.56E-03 9.59E-03 1.00E+00 3.05E-02 2.35E-02 
Pb Thresholds -2.41E-02 -3.65E-02 3.05E-02 1.00E+00 -9.03E-02 
Clad Failed 2.35E-01 2.70E-01 2.35E-02 -9.03E-02 1.00E+00 
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3.2.2 Grid Sampling 
In the first part of this report it has been highlighted that sampling performed on a Cartesian grid is 

the simplest algorithm can be used for exploring the input space characterized by a set of uncertain 
parameters. In this section the SBO scenario is analyzed by mean of an equally spaced value grid and the 
results are compared to the ones obtained by the Monte Carlo sampling strategy. The following table 
summarizes the discretization used.  

 
Table	  6	  Grid	  Meshing	  

 

 
Figure	  23:	  Max	  Temperature	  Histogram	  Grid	  

Since the grid used is equally spaced in value, the histograms of the sampled variables are not going 
to be reported here, not being correlated to the associated distributions. The distributions, as already 
mentioned, have been used for the computation of the failure probability only.  

Uncertain Parameter # of equally spaced mesh intervals Mesh size 
Diesel Generators’ Recovery Time 5 100 s 
Off-site Power Recovery Time 5 100 s 
Burn-Up 5 12 GWd/MtHM 
2D Probability Thresholds 5 0.2 
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Figure	  24:	  View	  of	  the	  limit	  surface	  obtained	  from	  the	  grid	  sampling	  strategy	  

Figure 23 shows the distribution of the maximum temperature reached by the clad for the Grid based 
analysis. As it can been seen, most of the sampled scenarios reached maximum temperatures below of 
1000 K, i.e., the minimum temperature that could cause the failure of the system, at high Burn-ups (see 
Figure 18) meaning that also in this case, as for the Monte Carlo, the sampling was focused on areas of 
the input space mostly leading to successful scenarios. From this figure it can be also noted that the grid, 
as expected, given the low number of sampling points, is not very accurate in the exploration of the input 
space. In fact it leads to a low coverage of some of the bins. On the positive side this approach enlarges 
the range of covered temperatures with respect the Monte Carlo approach (Figure 22) providing a better 
explorative approach. 
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Figure	  25:	  Clad	  Temperature	  temporal	  profile	  for	  the	  Grid	  sampling	  

Figure 24 shows the limit surface generated using the Grid sampling strategy. As already mentioned, 
since the uncertain parameters represent a 4-D input space, three of them are explicitly plotted in the 3-D 
space while the forth one, the Probability Threshold, affects the colors of the points lying on the limit 
surface. Behavior of the limit surface appears very similar to the one detected by the Monte Carlo 
approach, confirming the overall congruence of the two approaches. The grid approach offers a better 
resolution of the general trends characterizing the limit surface being more regular in its explorative 
strategy. 

Figure 26 shows the clad temperature evolution obtained by the grid sampling. The analysis of the 
figure confirms the coarse exploration of the input and, consequentially, output space (as already 
observed in the histogram analysis reported in Figure 23). 

In the following tables the probability of failure and the correlation matrix, among uncertain 
parameters and the target parameter (Clad Failed) are reported.  

Table	  7	  Failure	  probability	  Grid	  Sampling	  

Failure Probability 1.33E-02 
Sigma 1.15E-01 

 
Table	  8	  Correlation	  Matrix	  Grid	  Sampling	  

Correlation Matrix 
DGs 

Recovery 
Time 

Off-Site Power 
Recovery Time Burn-Up Pb 

Threshold 
Clad 

Failed 

DGs Recovery Time 1.00E+00 8.70E-‐17 -‐3.11E-‐18 -‐1.18E-‐17 5.09E-‐01 
Off-Site Power Recovery 
Time 8.70E-‐17 1.00E+00 -‐1.31E-‐17 -‐8.93E-‐18 4.90E-‐01 

Burn-Up 3.11E-‐18 -‐1.31E-‐17 1.00E+00 -‐6.27E-‐18 3.87E-‐02 
Pb Thresholds -‐1.20E-‐17 -‐2.16E-‐18 -‐6.27E-‐18 1.00E+00 -‐5.44E-‐02 
Clad Failed 5.09E-‐01 4.90E-‐01 3.87E-‐02 -‐5.44E-‐02 1.00E+00 
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Table 7 reports the probability of failure computed through the Grid sampler. Its value has been 
computed following the approach reported in chapter 3 and closely matches the one computed by the 
Monte Carlo method. 

Values indicated in Table 8 agree to the ones presented in Table 5 and, hence, similar conclusions can 
be inferred regarding the greater importance of the AC recovery timing. 

 

3.2.3 Latin Hypercube Sampling 
As already mentioned, in order to perform a comparison among the different sampling strategies a 

limit of 1224 simulations has been set. From a Latin Hypercube point of view, this has been translated 
using a grid of 1224 equally spaced probability discretization intervals.  

Since the grid used for the latin hypercube sampling is equally spaced, in probability, the histograms 
of the sampled variables are not going to be reported here, not being correleted to the associated 
distributions. The distributions, as for the grid analysis, have been used for the computation of the failure 
probability only. 

 
Figure	  26:	  Max	  Temperature	  Histogram	  LHS	  

Figure 26 shows the distribution of the maximum temperature reached by the clad for the LHS 
analysis. Similarly to the Monte Carlo case, the outcomes are evenly distributed in whole output space. 
As for all the cases shown so far, most of the sampled scenarios reached maximum temperatures below of 
1000 K. From this figure it can be noticed that the LHS is a good sampling strategy for the exploration of 
the uncertainty space.  

This result is confirmed by Figure 28. That shows how the clad temperature evolution of the LHS 
effectively covers the possible output space. 
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Figure	  27:	  Views	  of	  the	  limit	  surface	  obtained	  from	  LHS	  strategy	  
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Figure	  28:	  Clad	  Temperature	  Evolution	  LHS	  

Figure 27 shows the limit surface that has been generated based on the Latin Hyper Cube sampling. 
The limit surface is fairly similar to the previous reported ones confirming the results so far obtained. 

In the following tables the probability of failure and the correlation matrix, among uncertain 
parameters and the target parameter (Clad Failed) are reported. 

 
Table	  9:	  Failure	  Probability	  LHS	  

Failure Probability 1.53E-02 
Sigma 1.23E-01 

 
Table	  10:	  Correlation	  Matrix	  LHS	  

Correlation Matrix 
DGs 

Recovery 
Time 

Off-Site Power 
Recovery Time Burn-Up Pb 

Threshold 
Clad 

Failed 

DGs Recovery Time 1.00E+00 -‐2.78E-‐04 -‐1.71E-‐02 -‐4.40E-‐03 5.19E-‐01 
Off-Site Power Recovery 

Time -‐2.78E-‐04 1.00E+00 -‐2.23E-‐02 -‐9.93E-‐03 5.19E-‐01 

Burn-Up -‐1.71E-‐02 -‐2.23E-‐02 1.00E+00 -‐9.49E-‐03 8.69E-‐03 
Pb Thresholds -‐4.40E-‐03 -‐9.93E-‐03 -‐9.49E-‐03 1.00E+00 -‐7.10E-‐02 

Clad Failed 5.19E-‐01 5.19E-‐01 8.69E-‐03 -‐7.10E-‐02 1.00E+00 
 
Table 9 reports the probability of failure computed through the LHS sampler. Its value is in 

agreement with the previous reported values. 

Again, as stated for the correlations matrices already shown, great importance is given to AC power 
recovery (either DG or off-site power) followed by the Pb_threshold associated to the clad failure 
temperature and burn-up values. 
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3.2.4 Adaptive Sampling 
The adaptive sampling strategy is the most promising sampling strategy currently present in RAVEN.  

For this analysis, a convergence criterion based on probability has been set to a minimum tolerance of 
1.0E-4. The Adaptive sampler converged in this confidence interval in ~1000 iterations (simulations). 

 
Figure	  29:	  Max	  Temperature	  Histogram	  Adaptive	  

Figure 29 shows the distribution of the maximum temperature reached by the clad for the Adaptive 
sampling analysis. This figure already shows the goal-oriented behavior of the methodology; as it can be 
seen the right side of the histogram is more populated then the ones obtained by the other sampling 
approaches. This is due by the fact the adaptive strategy tends to explore the input space that most likely 
is close to the failure boundary, reasonably focusing around scenarios characterized by higher 
temperatures.	  

 
Figure	  30:	  Clad	  Temperature	  Evolution	  Adaptive	  
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Figure	  31:	  Limit	  surface	  e	  obtained	  from	  the	  adaptive	  sampling	  strategy 

Figure 30 shows the clad temperature evolution generated by the adaptive sampling analysis. As it 
can be seen, there are several changes in color (indicating multiple lines overlapping) in correspondence 
of scenarios with high clad temperatures (right side of the plot). Once more, this is due by the intrinsic 



 

 39 

nature of the adaptive strategy that explores the input and output space that most likely can lead to the 
failure of the clad.  

Figure 31 shows the limit surface that has been generated using the Adaptive sampling strategy. The 
limit surface shows the same shape characteristics of the others already seen for the other sampling 
strategies. The limit surface looks clearer because the samples are highly concentrated along the limit 
surface itself. 

The following tables show the probability of failure and the correlation matrix, among uncertain 
parameters and the target parameter (Clad Failed).   

 
Table	  11:	  Failure	  Probability	  Adaptive	  

Failure Probability 1.13E-02 
Sigma 1.11E-01 

 
Table	  12:	  Correlation	  Matrix	  Adaptive	  

Correlation Matrix 
DGs 

Recovery 
Time 

Off-Site Power 
Recovery Time Burn-Up Pb 

Threshold 
Clad 

Failed 

DGs Recovery Time 1.00E+00 3.61E-‐01 2.84E-‐02 -‐4.67E-‐02 5.06E-‐01 
Off-Site Power Recovery 

Time 3.61E-‐01 1.00E+00 4.85E-‐02 -‐4.49E-‐02 5.41E-‐01 

Burn-Up 2.84E-‐02 4.85E-‐02 1.00E+00 -‐6.34E-‐02 2.91E-‐02 
Pb Thresholds -‐4.67E-‐02 -‐4.49E-‐02 -‐6.34E-‐02 1.00E+00 -‐4.47E-‐02 

Clad Failed 5.06E-‐01 5.41E-‐01 2.91E-‐02 -‐4.47E-‐02 1.00E+00 

 

Table 11 shows the probability of failure computed through the adaptive sampling. As it can be seen, 
its value is in agreement with the Monte Carlo one. The sigma associate is larger then the Monte Carlo 
one; this is explainable since the number of observations of failure events in the adaptive sampling is 
much higher. 

Table 12 confirms the conclusions already stated for the other sampling strategies.  

 

4. CONCLUSIONS 
As highlighted in the first part of this report RAVEN’s statistical analysis have made large progress 

forward. All classical and most widely used statistical methods (Monte Carlo, stratified sampling and 
grid-based sampling) have been implemented and successfully tested. New methodologies have been 
explored as the limit surface searching approach. Those new methodologies have shown great potentiality 
in both increase accuracy of risk estimation and reduction of computational time. More work will be 
needed in the future to optimize these new algorithms and provide robust error estimators. The coupling 
of RAVEN and RELAP-7 has been tested in conjunction with those new features of the RAVEN code for 
a demo of a BWR SBO core damage probabilistic analysis. During this test a sizable number of 
probabilistic distributions have been employed in conjunction with also a parametric distribution function 
that is a capability that is unique to the synergy rising from the usage of MOOSE as a common platform 
for the RAVEN control logic and the RELAP-7 code. All statistical analysis approach tested provides 
coherent results within the prescribed tolerances. The conclusion is that the theoretical bases are sounds,, 
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the software implementation has been proven to be solid and supporting the conclusions of the theoretical 
derivation. The next step will be to extend the complexity of the analysis performed and to push further 
the computational effort so to provide a more stringent confutation of the theoretical basis. 

Overall RAVEN is proposing itself as a valid tool for a more comprehensive and also computational 
efficient tool to perform PRA analysis. 

 

REFERENCES 
[1] NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program, Technical Report 

ANL/NE-13/5 
[2] R. W. Youngblood, V. A. Mousseau, D. L. Kelly, and T.N. Dinh, “Risk-Informed Safety Margin 

Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety 
Analysis,” The 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and 
Safety (NUTHOS-8) Shanghai, China, October 10-14, 2010 

[3] “Light Water Reactor Sustainability Program Integrated Program Plan, Revision 1,” INL-EXT-11-
23452, April 2013 

[4]  “RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR 
Simulation with RELAP-7,” INL/EXT-12-25924 

[5] C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, R. Martinueau, C. Smith, “Deployment and 
Overview of RAVEN Capabilities for a Probabilistic Risk Assessment Demo for a PWR Station 
Blackout,” Idaho National Laboratory report: INL/EXT-13-29510 (2013). 

[6] Boost Team, http://www.boost.org 
[7] A. C. Rencher, Methods of Multivariate Analysis. New York: Wiley (1995). 
[8] C. Habermann, F. Kindermann, “Multidimensional Spline Interpolation: Theory and Applications”, 

Computational Economics, Volume 30, Issue 2, pp 153-169 (2007) 
[9] W. J. Gordon and J. A. Wixom, “Shepard's Method of "Metric Interpolation" to Bivariate and 

Multivariate Interpolation”, Mathematics and Computation, vol. 32, n 141, pp 253-264, 1978. 
[10] T. Itoh, K. Koyamada. Isosurface generation by using extrema graphs, In proceeding of: 

Visualization, 1994., Visualization '94, Proceedings., IEEE Conference on 
[11] R Durrett (1995). Probability: Theory and Examples, 2nd Edition. Duxbury Press. 
[12] D. Mandelli and C. Smith, “Adaptive sampling using support vector machines,” in Proceeding of 

American Nuclear Society (ANS), San Diego (CA), vol. 107, pp. 736-738, 2012 
[13] C. Rabiti, D. Mandelli, A. Alfonsi, J. Cogliati, and B. Kinoshita, “Mathematical framework for the 

analysis of dynamic stochastic systems with the raven code,” in Proceedings of International 
Conference of mathematics and Computational Methods Applied to Nuclear Science and 
Engineering (M&C 2013), Sun Valley (Idaho), pp. 320–332, 2013. 

[14] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, “RAVEN, a New Software for 
Dynamic Risk Analysis”, in Proceedings for PSAM 12 Conference, Honolulu (USA), 2014 

[15] C. J. C. BURGES, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Min. 
Knowl. Discov., 2, 2, 121–167 (Jun. 1998). 

[16] Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching". 
Communications of the ACM 18 (9): 509. 

[17] Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning 
Research, pp. 2825-2830, 2011. 

[18] J. Solis, et al., “Boiling Water Reactor Turbine Trip (TT) Benchmark Volume I: Final 
Specifications”. NEA/NSC/DOC(2001) 1, June (2001). 

 

 



 

 41 

 
 
5. APPENDIX A: Input Files 

5.1.1 RELAP-7 nodalization 
[GlobalParams] 
  # these initial values will be used for all the fluid models and will be overrode by local initial values if 
provided 
  # if not provided, these default values will be used 
  # scaling factors for flow equations; if not provided, default values will be used 
  scaling_factor_var = '1e-3 1e-4 1e-8' 
  temperature_sf = '1e-4' 
  gravity = '0 0 -9.8' 
  global_init_P = 7.e6 
  global_init_V = 3. 
  global_init_T = 517. #517.252 
  model_type = 32 
  global_init_alpha = 0.0 
  stabilization_type = 'LAPIDUS' 
[] 
[EoS] 
  [./two_phase_eos] 
    type = TwoPhaseStiffenedGasEOS 
  [../] 
  [./vapor_phase_eos] 
    type = StiffenedGasEquationOfStateVapor 
  [../] 
  [./liquid_phase_eos] 
    type = StiffenedGasEquationOfStateLiquid 
  [../] 
  [./eos_nc] 
    type = N2Properties 
  [../] 
[] 
 [Materials] 
  [./fuel-mat] 
    k = 3.7 
    Cp = 3.e2 
    type = SolidMaterialProperties 
    rho = 10.42e3 
  [../] 
  [./gap-mat] 
    k = 0.7 
    Cp = 5e3 
    type = SolidMaterialProperties 
    rho = 1.0 
  [../] 
  [./clad-mat] 
    k = 16 
    Cp = 356. 
    type = SolidMaterialProperties 
    rho = 6.551400e3 
  [../] 
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[] 
[Components] 
  #----Main steam line 
  # steam venting line 
  # ------------------------------------------------- 
  # water loop to simulate water drawing back to core 
  # ------------------------------------------------- 
  # ------------------------------------------------- 
  # gas vent loop to simulate venting to dry well 
  # ------------------------------------------------- 
  # ------------------------------------------------- 
  # wet well 
  # ------------------------------------------------- 
  # separated water return line 
  # feed water line 
  [./reactor] 
    #decay_heat = decayheatcurve 
    #decay_heat = decayheatcurveSuperTricked 
    initial_power = 3293.0e6 
    type = Reactor 
  [../] 
  [./lowerplenum] 
    volume = 61.48 
    inputs = 'pipe11(out)' 
    center = '0.0  0.0  2.64' 
    scale_factors = '1.0E-3  1.0E-9  1.0E-0' # rho, rhoE, vel 
    Area = 11.64 
    outputs = 'ch1(in)' 
    K = '1.0 20' 
    initial_T = 517.0 
    eos = two_phase_eos 
    type = VolumeBranch 
  [../] 
  [./ch1] 
    #length = 3.6576 
    #Hw = 5.0e4 
    #aw = 2.354927e2 
    elem_number_of_hs = '5 1 2' #'5 1 2' 
    Ts_init = 517. 
    orientation = '0 0 1' 
    n_elems = 20 #in relap7 model: 50 200 
    power_fraction = '1.0 0.0 0.0' 
    Dh = 1.3597E-02 
    fuel_type = cylinder 
    name_of_hs = 'FUEL GAP CLAD' 
    Phf = 18.368e2 
    n_heatstruct = 3 
    stabilization_type = 'NONE' 
    A = 7.8 
    material_hs = 'fuel-mat gap-mat clad-mat' 
    position = '0 0.0  5.28' #'0 -4.0  5.28' 
    PoD = 1.547170E+00 
    f = 0.2 #0.05 
    type = CoreChannel 
    eos = two_phase_eos 
    length = 3.66 
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    model_type = 32 
    HT_geometry_code = 110 # fuel bundle 
    width_of_hs = '6.057900e-3  1.524000e-4  9.398000e-4' 
    dim_hs = 1 
  [../] 
  [./upperplenum] 
    volume = 26.99 
    inputs = 'ch1(out)' 
    center = '0.0  0.0  9.88' 
    scale_factors = '1.0E-3  1.0E-8  1.0E-0' 
    Area = 14.36 
    outputs = 'pipe6(in)' 
    K = '3.0 1.0'  #'1.0 1.0' 
    initial_T = 517.0 
    eos = two_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe6] 
    # rising pipe 
    A = 3.93  # PI/4 * (0.01)**2 
    orientation = '0 0 1' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600 # wall temperature 
    Hw = 0. #1e5 
    eos = two_phase_eos 
    model_type = 32 
    length = 2.72 
    aw = 400 # 
    n_elems = 15 #in relap 7 model :40 
    position = '0.0 0.0 10.82' 
    type = Pipe 
    stabilization_type = 'NONE' 
  [../] 
  [./SeparatorDryer] 
    volume = 19.30 
    inputs = 'pipe6(out)' 
    center = '0.0 0.0 14.48' 
    scale_factors = '1.0E-3  1.0E-9  1.0E-0'  # rho, rhoE, vel 
    Area = 10.27 
    outputs = 'pipe7(in)  pipe8(in)' 
    K = '1.0  1.0  5.0' 
    initial_T = 517.0 
    initial_void_fraction = 0.9 
    eos = two_phase_eos 
    type = SeparatorDryer 
  [../] 
  [./pipe7] 
    # to steam dome 
    A = 3.93 
    orientation = '0  0  1' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600 
    Hw = 0.0 
    eos = vapor_phase_eos 
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    model_type = 3 
    length = 0.1 
    aw = 400.0 
    n_elems = 7 # in relap 7 model: 20 
    position = '0.0  0.0  15.42' 
    type = Pipe 
  [../] 
  [./Dome] 
    volume = 178.19 
    inputs = 'pipe7(out)' 
    center = '0.0  0.0  18.92' 
    scale_factors = '1.0E-3  1.0E-8  1.0E-0' 
    Area = 26.19 
    outputs = 'pipe9(in)' 
    K = '1.0 1.0' 
    eos = vapor_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe9] 
    # main steam line coming out of dome 
    A = 1.32 
    orientation = '0 1 0' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600 
    Hw = 0.0 
    eos = vapor_phase_eos 
    model_type = 3 
    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  3  18.92' 
    type = Pipe 
  [../] 
  [./SteamLineBranch] 
    volume = 2.64 #1.32 
    inputs = 'pipe9(out)' 
    center = '0.0  4  18.92' 
    scale_factors = '1.0E-4 1.0E-8 1.0' 
    Area = 1.32 
    outputs = 'pipe14(in) pipe_venting1(in)' 
    K = '0.0 0.0  0' 
    initial_T = 517.0 
    eos = vapor_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe14] 
    # main steam line to MIV 
    A = 1.32 
    orientation = '0 1 0' 
    Dh = 1.0 
    f = 0.0 
    Tw = 600 
    Hw = 0.0 
    eos = vapor_phase_eos 
    model_type = 3 



 

 45 

    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  4  18.92' 
    type = Pipe 
  [../] 
  [./MainIsolationValve] 
    volume = 1.32 
    inputs = 'pipe14(out)' 
    center = '0.0  5.0  18.92' 
    scale_factors = '1.0E-4  1.0E-11'  # rho, rhoE 
    Area = 1.32 
    outputs = 'pipe_steam_turbine(in)' 
    K = '0.0 0.0' 
    initial_T = 517.0 
    initial_status = open 
    eos = vapor_phase_eos 
    trigger_time = 1 #1.0E5 
    type = Valve 
    response_time = 10 #1.1E5 
  [../] 
  [./pipe_steam_turbine] 
    # main steam line to TDV 
    A = 1.32 
    orientation = '0 1 0' 
    Dh = 1.0 
    f = 0.0 
    Tw = 600 
    Hw = 0.0 
    eos = vapor_phase_eos 
    model_type = 3 
    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  5  18.92' 
    type = Pipe 
  [../] 
  [./outlet1] 
    weak_bc = false 
    T_bc = 517 
    p_bc = 7.0e6 
    eos = vapor_phase_eos 
    input = 'pipe_steam_turbine(out)' 
    type = TimeDependentVolume 
  [../] 
  [./pipe_venting1] 
    #stabilization_type = 'NONE' 
    # geometry 
    A = 1.2566e-1 
    orientation = '0 0 -1' 
    Dh = 0.4 
    f = 0.1 
    initial_P = 7e6 
    initial_T = 517. 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0. 
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    eos = vapor_phase_eos 
    n_elems = 4 # in relap 7 model: 10 
    length = 5 #0.1 
    model_type = 3 
    position = '0  4  18.92' 
    type = Pipe 
  [../] 
  [./branch_venting1] 
    volume = 2.5132e-1 
    inputs = 'pipe_venting1(out)' 
    center = '0.0  4  13.92' 
    scale_factors = '1.0E-4 1.0E-8 1.0' 
    Area = 1.2566e-1 
    outputs = 'pipe_venting2(in)' 
    K = '100 100' 
    initial_T = 517.0 
    eos = vapor_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe_venting2] 
    #stabilization_type = 'NONE' 
    # geometry 
    A = 1.2566e-1 
    orientation = '0 1 0' 
    Dh = 0.4 
    f = 0.1 
    initial_P = 7e6 
    initial_T = 517. 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0. 
    eos = vapor_phase_eos 
    n_elems = 4 # in relap 7 model: 10 
    length = 4 #0.1 
    model_type = 3 
    position = '0  4  13.92' 
    type = Pipe 
  [../] 
  [./branch_venting2] 
    volume = 2.5132e-1 
    inputs = 'pipe_venting2(out)' 
    center = '0.0  8  13.92' 
    scale_factors = '1.0E-4 1.0E-8 1.0' 
    Area = 1.2566e-1 
    outputs = 'pipe_turbine_inlet(in)' 
    K = '100 100' 
    initial_T = 517.0 
    eos = vapor_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe_turbine_inlet] 
    #stabilization_type = 'NONE' 
    # geometry 
    A = 1.2566e-1 
    orientation = '0 0 -1' 
    Dh = 0.4 
    f = 0.1 
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    initial_P = 7e6 
    initial_T = 517. 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0. 
    eos = vapor_phase_eos 
    n_elems = 4 # in relap 7 model: 10 
    length = 16.92 
    model_type = 3 
    position = '0  8  13.92' 
    type = Pipe 
  [../] 
  [./turbine] 
    inputs = 'pipe_turbine_inlet(out)' 
    p0_design = 7e6 #6e6 
    scale_factors = '1e-1 1e-1 1e-5 1e-7' # for inlet pressure, outlet pressure, outlet density, and shaft work 
    Initial_p = 7e6 
    outputs = 'pipe_turbine_outlet(in)' 
    Initial_T = 517. 
    T0_design = 517 
    eos = vapor_phase_eos 
    Turbine_efficiency = 0.6 #0.9 
    is_shutdown = 'false' #'true' 
    relative_mass_flow_rate_design = 0.8 
    pressure_ratio_design = 3. #3.0 
    type = Turbine 
    max_mass_flow_rate = 2e-1  # steady state design point 
  [../] 
  [./pipe_turbine_outlet] 
    #stabilization_type = 'SUPG' 
    #eos = two_phase_eos 
    # geometry 
    #initial_void_fraction = 1.0 
    A = 1.2566e-1 #7.854e-1 
    orientation = '0 0 -1' 
    Dh = 0.4 #1 
    f = 0.1 #10 
    initial_P = 1.5e5 #1e5 
    initial_T = 400 #300. 
    Hw = 0.0 
    initial_V = 1e-2 #0. 
    eos = vapor_phase_eos 
    n_elems = 4 # in relap 7 model: 10 
    length = 6.5 #0.1 
    model_type = 3 
    position = '0  9   -3' #'0  4.1   18.82' 
    type = Pipe 
  [../] 
  [./pipe_RCIC_pump_inlet] 
    # geometry 
    A = 3.141593e-2 
    orientation = '0  0  1' 
    Dh = 0.2 
    f = 0.001 #0.2 
    initial_P = 1e5 
    initial_T = 300 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 



 

 48 

    initial_V = 0 #1e-3 
    eos = liquid_phase_eos 
    n_elems = 7 # in relap 7 model: 20 
    length = 8 
    model_type = 3 
    position = '0  6  -11' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./RCIC_pump] 
    # now no-used but still required parameters, give them some whatever values 
    #Area = 0.007853982 
    inputs = 'pipe_RCIC_pump_inlet(out)' 
    outputs = 'pipe_RCIC_pump_outlet(in)' 
    Initial_pressure = 1.0e5 
    eos = liquid_phase_eos 
    mass_flow_rate = 2e-1   # this number should be equal or smaller than the  max_mass_flow_rate for 
turbine 
    type = IdealPump   # IdealPump is good to simulate closed valve for incompressible fluid 
  [../] 
  [./pipe_RCIC_pump_outlet] 
    # geometry 
    A = 3.141593e-2 
    orientation = '0 -1 0' 
    Dh = 0.2 
    f = 1e-3 
    initial_P = 7e6 
    initial_T = 517 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0 #1e-3 
    eos = liquid_phase_eos 
    n_elems = 3 # in relap 7 model: 5 
    length = 1 
    model_type = 3 
    position = '0  5  -3' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./branch_RCIC_water_line] 
    volume = 0.007853982 
    inputs = 'pipe_RCIC_pump_outlet(out)' 
    center = '0  4  -2' 
    scale_factors = '1.0E-4 1.0E-8 1.0' 
    Area = 3.141593e-2 
    outputs = 'pipe_RCIC_to_feedwater_line(in)' 
    K = '0 0' 
    initial_T = 517.0 
    eos = liquid_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe_RCIC_to_feedwater_line] 
    # geometry 
    A = 3.141593e-2 
    orientation = '0 0 1' 
    Dh = 0.2 
    f = 1e-4 #0.01 



 

 49 

    initial_P = 7e6 
    initial_T = 517 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0 #1e-3 
    eos = liquid_phase_eos 
    n_elems = 9 # in relap 7 model: 30 
    length = 15.52 
    model_type = 3 
    position = '0  4  -3' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./pipe_to_dry_well] 
    # geometry 
    A = 0.031415927 
    orientation = '0 1 0' 
    Dh = 0.2 
    f = 0.01 #0.2 
    initial_P = 1e5 
    initial_T = 300 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0 
    eos = eos_nc 
    n_elems = 15 # in relap 7 model: 50 
    length = 0.2 
    model_type = 3 
    position = '0  11  -4' 
    type = Pipe 
    stabilization_type = 'NONE' 
  [../] 
  [./VacuumBreaker] 
    volume = 3.142e-3 
    inputs = 'pipe_to_dry_well(out)' 
    center = '0  11.2  -4' 
    scale_factors = '1.0E-4  1.0E-11'  # rho, rhoE 
    Area = 0.031415927 
    outputs = 'pipe_to_dry_well2(in)' 
    K = '0.0 0.0' 
    initial_T = 300 
    initial_status = close 
    eos = eos_nc 
    Initial_pressure = 1.e5 
    trigger_time = 1.0E100 
    type = Valve 
    response_time = 1.1E100 
  [../] 
  [./pipe_to_dry_well2] 
    # geometry 
    A = 0.031415927 
    orientation = '0 1 0' 
    Dh = 0.2 
    f = 0.01 #0.2 
    initial_P = 1e5 
    initial_T = 300 
    Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer 
    initial_V = 0 
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    eos = eos_nc 
    n_elems = 15 # in relap 7 model:  50 
    length = 0.2 
    model_type = 3 
    position = '0  11.3  -4' 
    type = Pipe 
    stabilization_type = 'NONE' 
  [../] 
  [./Dry_well] 
    eos = eos_nc 
    input = 'pipe_to_dry_well2(out)' 
    p_bc = 1.e5 
    type = TimeDependentVolume 
    T_bc = 300 
  [../] 
  [./wet_well] 
    eos_water = liquid_phase_eos 
    K_or = 1.0 
    K_ir = 1e6 #0.5 
    K_i = 100 #1.0 
    Lt = 8 
    K_o = 0.1 #0.5 
    cooling_rate = 0.0 
    scale_factors = '1e-5 1e-10 1e-7 1e-13 1e-6' # for mg, me_g, mw, me_w, Lw 
    Lw_initial = 4 #5 
    type = WetWell 
    inputs = 'pipe_turbine_outlet(out)' 
    z_in = 2.5 
    eos_vapor = vapor_phase_eos 
    outputs = 'pipe_RCIC_pump_inlet(in) pipe_to_dry_well(in)' 
    K_vr = 1.0 
    alpha_s = 1e3 
    K_v = 0.5 
    Ac = 892.5 FIXME 
    p_gas_initial = 1.e5 
    z_out = 1 
    T_initial = 300.0 
    eos_nc_gas = eos_nc 
  [../] 
  [./pipe8] 
    # discharge water line from SeparatorDryer 
    A = 3.93 
    orientation = '0  1  0' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600 
    Hw = 0.0 
    eos = liquid_phase_eos 
    model_type = 3 
    length = 0.5 #2.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  2.0  14.48' 
    type = Pipe 
  [../] 
  [./DownComer] 
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    volume = 201.3 #171.3 
    inputs = 'pipe8(out) pipe_feedwater3(out)' 
    center = '0.0  2.75  9.81' #'0.0  4.0  9.81' 
    scale_factors = '1.0E-4  1.0E-10  1.0E-2'  # mass, energy, and level 
    dome_eos = vapor_phase_eos 
    outputs = 'pipe10(in)' 
    K = '1.0 10.0 1.0' 
    Area = 15 
    initial_T = 517.0 
    initial_level = 13.42 #11.42 
    eos = liquid_phase_eos 
    display_pps = 'true' 
    dome_component = 'Dome' 
    type = DownComer 
  [../] 
  [./pipe10] 
    # downcomer pipe 
    #position = '0.0  5.0  10.51' 
    #length = 6.42 
    A = 8.55 
    orientation = '0  0  -1' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600 
    Hw = 0.0 
    eos = liquid_phase_eos 
    model_type = 3 
    length = 0.5 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  2.75  2.10' #'0.0  5.0  4.10' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./Pump] 
    #type = IdealPump 
    #mass_flow_rate = 12915.0 
    inputs = 'pipe10(out)' 
    Head = 40 #33.0 
    Area = 3.0 
    outputs = 'pipe11(in)' 
    eos = liquid_phase_eos 
    Initial_pressure = 7.3e6 
    K_reverse = '10. 10.' 
    type = Pump 
  [../] 
  [./pipe11] 
    # pipe to lower plenum 
    A = 8.55 
    orientation = '0  0  -1' 
    Dh = 1.0 
    f = 0.1 
    Tw = 600.0 
    Hw = 0.0 
    eos = liquid_phase_eos 
    model_type = 3 
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    length = 0.5 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  2.75  1.60' #'0.0  5.0  3.60' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./inlet] 
    #    type = TDM 
    #    massflowrate_bc = 1909.2 
    T_bc = 508. 
    p_bc = 7.1e6 
    eos = liquid_phase_eos 
    void_fraction_bc = -0.01 
    input = 'pipe_feedwater1(in)' 
    type = TimeDependentVolume 
  [../] 
  [./pipe_feedwater1] 
    #feedwater line from TDV 
    #    f = 0.01 
    #stabilization_type = 'LAPIDUS' 
    A = 1.32 
    orientation = '0  -1  0' 
    Dh = 1.0 
    f = 0.01 #1 
    Tw = 600.0 
    Hw = 0. 
    eos = liquid_phase_eos 
    model_type = 3 
    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  6.0  12.52' #'0.0  7.0  12.52' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./FeedWaterValve] 
    volume = 1.32 
    inputs = 'pipe_feedwater1(out)' 
    center = '0.0  5.0  12.52' 
    scale_factors = '1.0E-4  1.0E-11'  # rho, rhoE 
    Area = 1.32 
    outputs = 'pipe_feedwater2(in)' 
    K = '0.0 0.0' 
    initial_T = 517.0 
    initial_status = open 
    eos = liquid_phase_eos 
    trigger_time = 1 #1.0E5 
    type = Valve 
    response_time = 1 #1.1E5 
  [../] 
  [./pipe_feedwater2] 
    #feedwater line from feed water valve 
    #    f = 0.01 
    #stabilization_type = 'LAPIDUS' 
    A = 1.32 
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    orientation = '0  -1  0' 
    Dh = 1.0 
    f = 0.01 #1 
    Tw = 600.0 
    Hw = 0. 
    eos = liquid_phase_eos 
    model_type = 3 
    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  5.0  12.52' #'0.0  7.0  12.52' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
  [./branch_feedwater_line] 
    volume = 1.32 
    inputs = 'pipe_feedwater2(out)' 
    center = '0.0  4.0  12.52' 
    scale_factors = '1.0E-4 1.0E-8 1.0' 
    Area = 1.32 
    outputs = 'pipe_feedwater3(in)  pipe_RCIC_to_feedwater_line(out)' 
    K = '0  0  0' 
    initial_T = 517.0 
    eos = liquid_phase_eos 
    type = VolumeBranch 
  [../] 
  [./pipe_feedwater3] 
    #feedwater line to downcomer 
    #f = 0 
    #stabilization_type = 'LAPIDUS' 
    A = 1.32 
    orientation = '0  -1  0' 
    Dh = 1.0 
    f = 0.01 
    Tw = 600.0 
    Hw = 0. 
    eos = liquid_phase_eos 
    model_type = 3 
    length = 1.0 
    aw = 400.0 
    n_elems = 3 # in relap 7 model: 5 
    position = '0.0  4.0  12.52' #'0.0  6.0  12.52' 
    type = Pipe 
    stabilization_type = 'SUPG' 
  [../] 
[] 
[Postprocessors] 
  [./core_void] 
    variable = void_fraction_HEM 
    type = ElementAverageValue 
    block = 'ch1:pipe' 
  [../] 
[] 
[Preconditioning] 
  # active = 'FDP_PJFNK' 
  #active = 'FDP_Newton' 
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  active = 'SMP_PJFNK' 
  [./SMP_PJFNK] 
    petsc_options_iname = '-mat_fd_type -mat_mffd_type' 
    petsc_options_value = 'ds ds' 
    full = true 
    type = SMP 
    solve_type = 'PJFNK' 
  [../] 
  [./FDP_PJFNK] 
    petsc_options_iname = '-mat_fd_type  -mat_mffd_type' 
    petsc_options_value = 'ds             ds' 
    full = true 
    type = FDP 
    solve_type = 'PJFNK' 
  [../] 
  [./FDP_Newton] 
    petsc_options_iname = '-mat_fd_coloring_err' 
    petsc_options_value = '1.e-10' 
    full = true 
    type = FDP 
    solve_type = 'NEWTON' 
  [../] 
[] 
[Executioner] 
  #type = Transient 
  #predictor_scale = 0.5 
  # 
  #  [./TimeStepper] 
  #    type = SolutionTimeAdaptiveDT 
  #    dt = 0.5 
  #    percent_change = 0.15 
  #  [../] 
  #  num_steps = 5000000000 The number of timesteps in a transient run 
  #restart_file_base = SBO_raven_8_11_out_restart_12680 
  #restart_file_base = SBO_8_11_small_steady_out_cp/0572 
  nl_abs_tol = 1e-4 #5e-5 
  petsc_options_value = '30 lu' 
  nl_max_its = 20 #11 #15 
  restart_file_base = 0750 
  type = RavenExecutioner 
  start_time = 0 #1834.0600 
  nl_rel_tol = 1e-8 #1e-9 
  dump_raven_init = false 
  l_tol = 1e-4 #1e-6   Relative linear tolerance for each Krylov solve 
  dtmin = 1.e-9 
  dt = 1e-2 
  scheme = 'implicit-euler' # this is not default option anymore 
  petsc_options_iname = '-ksp_gmres_restart -pc_type' 
  l_max_its = 30 #60 Number of linear iterations for each Krylov solve 
  end_time = 450 
  [./TimeStepper] 
    # steady state time step control 
    #time_t  = '0       0.01      0.1    0.5     20      50    100  1e5' 
    #time_dt = '1e-3    2.e-3     2.e-3  1.e-2   1.1e-2  1.5e-2  2e-2 2e-1' 
    #time_dt = '5e-3    5.e-3     5.e-3  2.e-2   4.e-2  1e-1  2e-1   5e-1' 
    #  transient time step control 
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    time_t = '0       0.01      0.1    0.5     20      50     100  200  298 1820  1e5' 
    time_dt = '1e-2    2.e-2     2.e-2  1.e-1   1e-1    2e-1   1e-1 2e-1 6e-2 3e-1  1e-1' 
    type = FunctionDT 
  [../] 
  [./Quadrature] 
    # Specify the order as FIRST, otherwise you will get warnings in DEBUG mode... 
    type = TRAP 
    order = FIRST 
  [../] 
[] 
[Outputs] 
  # Turn on performance logging 
  #interval = 20 
  #  num_checkpoint_files = 1 
  exodus = false 
  output_intermediate = false 
  output_displaced = false 
  output_initial = false 
  perf_log = true 
  csv = true 
  [./console] 
    perf_log = false 
    type = Console 
  [../] 
[] 
[Debug] 
  #  show_var_residual_norms = true 
[] 
[Controlled] 
  control_logic_input = SBO_control_logic_final 
  [./turbine_max_mass_flow_rate] 
    print_csv = true 
    data_type = double 
    property_name = max_mass_flow_rate 
    component_name = turbine 
  [../] 
  [./RCIC_pump_flow_rate] 
    print_csv = true 
    data_type = double 
    property_name = mass_flow_rate 
    component_name = RCIC_pump 
  [../] 
  [./HeadPump] 
    print_csv = true 
    property_name = Head 
    data_type = double 
    component_name = Pump 
  [../] 
  [./ReactorPowerFract] 
    print_csv = true 
    property_name = FUEL:power_fraction 
    data_type = double 
    component_name = ch1 
  [../] 
  [./ReactorPower] 
    print_csv = false 
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    property_name = initial_power 
    data_type = double 
    component_name = reactor 
  [../] 
[] 
[RavenAuxiliary] 
  [./initialPowerFractionLevel] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./RealPower] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./initialHeadPump] 
    print_csv = true 
    data_type = double 
    initial_value = 40.0 
  [../] 
  [./DGsFailTime] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./DGsRecoveryTime] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./CollapsedTimeParameter] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./CanDGsFailAgain] 
    print_csv = false 
    data_type = bool 
    initial_value = false 
  [../] 
  [./AuxSystemAvailable] 
    print_csv = true 
    data_type = bool 
    initial_value = false 
  [../] 
  [./OffSitePowerRecoveryTime] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./BurnUp] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
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  [./PbThreshold2Ddist] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./CladTempFailure] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./CladFailed] 
    print_csv = true 
    data_type = bool 
    initial_value = false 
  [../] 
  [./MonitorProbabilityLevel] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./sboStartTime] 
    print_csv = true 
    data_type = double 
    initial_value = 1.0 
  [../] 
  [./keepGoing] 
    print_csv = true 
    data_type = bool 
    initial_value = true 
  [../] 
  [./Pdf2Ddistribution] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./PdfDGs] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./PdfOffSite] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./PdfBU] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
  [./PointProbability] 
    print_csv = true 
    data_type = double 
    initial_value = 0.0 
  [../] 
[] 
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[RavenTools] 
  [./PumpCoastDown] 
    coefficient = 3 #2 
    initial_flow_rate = 40 
    type = pumpCoastdownExponential 
  [../] 
  [./DecayHeat] 
    fitting_type = linear 
    type = TableFunction 
    y_coordinates = '1 0.8 0.636236373 0.636204562 0.636172753 0.636140945 0.636109139 
0.636077334 0.636045531 0.636013729 0.63598193 0.635950131 0.635918335 0.635886539 
0.635854746 0.635822954 0.635791164 0.635759375 0.635727588 0.635695802 0.635664018 
0.635505122 0.635346265 0.635187449 0.635028672 0.634711237 0.63439396 0.634076843 
0.633759884 0.633126441 0.632493631 0.631861453 0.631229907 0.630598993 0.629968709 
0.626826727 0.623700416 0.620589697 0.617494493 0.28590802' 
    x_coordinates = '0 1 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 125 150 175 200 250 
300 350 400 500 600 700 800 900 1000 1500 2000 2500 3000 80000' 
 
  [../] 
  [./PumpRampUp] 
    fitting_type = linear 
    y_coordinates = '0  1.0' 
    type = TableFunction 
    x_coordinates = '0  5.0' 
  [../] 
[] 
[Distributions] 
  # CladFailure2DTriangularNormal is the distribution that drives the plant failure 
   [./CladFailure2DTriangularNormal] 
       alpha = '0 0' 
       beta  = '0 0' 
       function_type = CDF 
       type = MultiDimensionalCartesianSpline 
       data_filename = TriangularExponential2D.txt 
    [../] 
  # BurnUpDistribution is the distribution that define the sampling on the II dimension of 
CladFailure2DTriangularNormal 
  # This distribution is needed to create the 2D grid sampling (it define the Probability Thresholds) 
[./DGsRecoveryTime] 
    k = 0.745 
    V_window_Up = 237.17909 
    V_window_Low = 236.7169 
    xMax = 600.0 
    xMin = 1.0 
    type = WeibullDistribution 
    lambda = 120.0 
  [../] 
  [./OffSitePowerRecoveryTime] 
    type = LogNormalDistribution 
    V_window_Up = 99.66034 
    mu = 2.66 
    V_window_Low = 99.21281 
    xMax = 600.0 
    xMin = 20.0 
    sigma = 2.0 
  [../] 
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  [./DummyPbForThresholdSet] 
    xMin = 0.0 
    type = UniformDistribution 
    V_window_Low = 0.3194424 
    V_window_Up = 0.320214 
    xMax = 1.0 
  [../] 
  [./BurnUpDistribution] 
    V_window_Up = 21.94146 
    V_window_Low = 21.89517 
    xMax = 60.0 
    xMin = 0.0 
    type = ExponentialDistribution 
    lambda = 0.01 
  [../] 
[] 
[Monitored] 
  [./ch1cladtemperature] 
    operator = NodalMaxValue #ElementAverageValue 
    path = CLAD:TEMPERATURE 
    data_type = double 
    component_name = ch1 
  [../] 

[] 

5.1.2 RAVEN control Logic 
import sys 
import math 
coordinate = None 
triangularBu = None 
 
def restart_function(monitored, controlled, auxiliary): 
     
    indebugmode = False 
    global coordinate 
    global triangularBu 
    if coordinate is None: 
      coordinate = distribution1D.vectord_cxx(2) 
      coordinate[0]=0.0 
      coordinate[1]=0.0 
    # initial pump head 
    auxiliary.initialHeadPump = 40.0 
    # get sampled vars (these calls are the same for all the sampling strategy types (except DET)) 
    if not indebugmode: 
      auxiliary.DGsRecoveryTime          = distributions.DGsRecoveryTime.getDistributionRandom() 
      auxiliary.OffSitePowerRecoveryTime = 
distributions.OffSitePowerRecoveryTime.getDistributionRandom() 
      auxiliary.BurnUp                   = distributions.BurnUpDistribution.getDistributionRandom() 
      auxiliary.PbThreshold2Ddist        = distributions.DummyPbForThresholdSet.getDistributionRandom() 
    else: 
      auxiliary.DGsRecoveryTime          = distributions.DGsRecoveryTime.getDistributionRandom() 
      auxiliary.OffSitePowerRecoveryTime = 
distributions.OffSitePowerRecoveryTime.getDistributionRandom() 
      auxiliary.BurnUp                   = distributions.BurnUpDistribution.getDistributionRandom() 
      auxiliary.PbThreshold2Ddist        = distributions.DummyPbForThresholdSet.getDistributionRandom() 
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    # compute the key times 
    auxiliary.CollapsedTimeParameter   = 
min(auxiliary.DGsRecoveryTime,auxiliary.OffSitePowerRecoveryTime) 
    auxiliary.initialPowerFractionLevel= controlled.ReactorPowerFract 
    auxiliary.RealPower = controlled.ReactorPower 
    print('DGsRecoveryTime: ',         str(auxiliary.DGsRecoveryTime)) 
    print('OffSitePowerRecoveryTime: ',str(auxiliary.OffSitePowerRecoveryTime)) 
    print('BurnUp: ',                  str(auxiliary.BurnUp)) 
    print('PbThreshold2Ddist: ',       str(auxiliary.PbThreshold2Ddist)) 
    triangularBu = distribution1D.BasicTriangularDistribution(1477.59-
math.exp(0.092354*auxiliary.BurnUp),1255.3722-math.exp(0.092354*auxiliary.BurnUp),1699.8167-
math.exp(0.092354*auxiliary.BurnUp)) 
    print("CREATED DISTRIBUTION ON THE FLY...LOW:") 
    print(str(1255.3722-math.exp(-0.092354*auxiliary.BurnUp))) 
    print("PEAK:") 
    print(str(1477.59-math.exp(-0.092354*auxiliary.BurnUp))) 
    print("UP:") 
    print(str(1699.8167-math.exp(-0.092354*auxiliary.BurnUp))) 
def control_function(monitored, controlled,auxiliary): 
    global coordinate 
    global triangularBu 
    if auxiliary.CladFailed and monitored.time_step > 3: 
      auxiliary.keepGoing = False 
      print('CLAD FAILED') 
      return 
    coordinate[0] = monitored.ch1cladtemperature 
    coordinate[1] = auxiliary.BurnUp 
    print("LoweBound  2D Dist: " + str(1255.3722-math.exp(0.092354*auxiliary.BurnUp))) 
    print("Peak       2D Dist: " + str(1477.59-math.exp(0.092354*auxiliary.BurnUp))) 
    print("UpperBound 2D Dist: " + str(1699.8167-math.exp(0.092354*auxiliary.BurnUp))) 
    print("CDF of 2D ",str( triangularBu.Cdf(monitored.ch1cladtemperature))) 
    print("PDF of 2D ",str( triangularBu.Pdf(monitored.ch1cladtemperature))) 
    #auxiliary.MonitorProbabilityLevel = distributions.CladFailure2DTriangularNormal.Cdf(coordinate) 
    auxiliary.MonitorProbabilityLevel = triangularBu.Cdf(monitored.ch1cladtemperature) 
    auxiliary.Pdf2Ddistribution       = triangularBu.Pdf(monitored.ch1cladtemperature)  
    auxiliary.PdfDGs                  = distributions.DGsRecoveryTime.Pdf(auxiliary.DGsRecoveryTime) 
    auxiliary.PdfOffSite              = 
distributions.OffSitePowerRecoveryTime.Pdf(auxiliary.OffSitePowerRecoveryTime) 
    auxiliary.PdfBU                   = distributions.BurnUpDistribution.Pdf(auxiliary.BurnUp) 
    auxiliary.PointProbability        = auxiliary.PdfDGs*auxiliary.Pdf2Ddistribution*auxiliary.PdfOffSite 
    # pump head control 
    if (monitored.time <  auxiliary.sboStartTime)                                       : controlled.HeadPump = 
auxiliary.initialHeadPump 
    if (monitored.time >= (auxiliary.sboStartTime)) and (not auxiliary.AuxSystemAvailable): 
      controlled.HeadPump = tools.PumpCoastDown.compute(monitored.time-auxiliary.sboStartTime) 
      controlled.turbine_max_mass_flow_rate = min(0.2 + (auxiliary.initialHeadPump - 0.2) * 
(monitored.time) / 10, auxiliary.initialHeadPump) 
      controlled.RCIC_pump_flow_rate = min((0.2 + (auxiliary.initialHeadPump - 0.2) * (monitored.time) / 
10),auxiliary.initialHeadPump) 
    if controlled.HeadPump < auxiliary.initialHeadPump*1.0e-5                           : controlled.HeadPump = 
auxiliary.initialHeadPump*1.0e-5 
    # 
    if (monitored.time >= auxiliary.sboStartTime): 
      print('SBO CONDITION') 
      # scram => decay heat curve 
      controlled.ReactorPowerFract = 
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auxiliary.initialPowerFractionLevel*tools.DecayHeat.compute(monitored.time-auxiliary.sboStartTime) 
      auxiliary.RealPower = controlled.ReactorPower*controlled.ReactorPowerFract 
      # check if aux cooling system is operative again 
      if monitored.time > (auxiliary.sboStartTime + auxiliary.CollapsedTimeParameter): 
auxiliary.AuxSystemAvailable = True 
      else                                                                           : auxiliary.AuxSystemAvailable = False 
      if auxiliary.AuxSystemAvailable: 
        print('COOLING SYSTEM UP') 
        # the cooling is guaranteed 
        if controlled.HeadPump <= auxiliary.initialHeadPump*0.5: 
        if (monitored.time - (auxiliary.sboStartTime + auxiliary.CollapsedTimeParameter)) < 5.0: 
            actualPumpHead = controlled.HeadPump 
            controlled.HeadPump = tools.PumpRampUp.compute(monitored.time - (auxiliary.sboStartTime + 
auxiliary.CollapsedTimeParameter))*auxiliary.initialHeadPump 
            if controlled.HeadPump < actualPumpHead:controlled.HeadPump = actualPumpHead 
          else: 
            controlled.HeadPump = auxiliary.initialHeadPump*0.5 #auxiliary.initialHeadPump*0.50 
            controlled.turbine_max_mass_flow_rate = auxiliary.initialHeadPump 
            controlled.RCIC_pump_flow_rate = auxiliary.initialHeadPump 
        controlled.ReactorPowerFract = auxiliary.initialPowerFractionLevel*0.01    
    if triangularBu.Cdf(monitored.ch1cladtemperature) >= auxiliary.PbThreshold2Ddist: 
      auxiliary.CladFailed = True 
    if auxiliary.CladFailed: auxiliary.CladTempFailure = monitored.ch1cladtemperature 
    return 
 
def keep_going_function(monitored, controlled, auxiliary): 
    return auxiliary.keepGoing 


