

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-14-32491
Revision: 0

Advanced Probabilistic
Risk Analysis Using

RAVEN and RELAP-7

Cristian Rabiti
Andrea Alfonsi
Diego Mandelli
Joshua Cogliati
Robert Kinoshita

June 2014

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

 ii

CONTENTS

1.	 INTRODUCTION ... 4	

2.	 PROBABILISTIC ANALYSIS TOOLS ... 4	
2.1	 Univariate Distributions .. 5	
2.2	 Multivariate Distributions ... 7	

2.2.1	 Normal Multivariate Distributions ... 8	
2.2.2	 N-dimensional spline interpolation .. 9	
2.2.3	 Inverse weight interpolation .. 10	
2.2.4	 Challenges .. 10	
2.2.5	 Parametric Distributions .. 11	

2.3	 Samplers .. 11	
2.3.1	 Sampling of Probability Distribution Function .. 11	
2.3.2	 Monte Carlo ... 12	
2.3.3	 Grid Sampling .. 14	
2.3.4	 Stratified Sampling .. 15	
2.3.5	 Adaptive Sampling ... 18	

3.	 BWR SBO DEMO ... 22	
3.1	 Demo Description .. 24	

3.1.1	 Analysis Performed .. 26	
3.2	 Results ... 27	

3.2.1	 Monte Carlo ... 27	
3.2.2	 Grid Sampling .. 31	
3.2.3	 Latin Hypercube Sampling .. 34	
3.2.4	 Adaptive Sampling ... 37	

4.	 CONCLUSIONS ... 39	

5.	 APPENDIX A: Input Files .. 41	
5.1.1	 RELAP-7 nodalization ... 41	
5.1.2	 RAVEN control Logic ... 59	

FIGURES
Figure 1: Scattered plot generated by sampling (Latin Hypercube sampling scheme) of a Normal (red),

Lognormal (blue) and Uniform distributions (green) ... 7	
Figure 2: Example of multivariate cdf F(x, y) (2D case): the average internal pressure at which two

different pipe will fail. The correlation could be given by being built by the same material. The iso-
probability planes represents the location of the points (x,y) such that the F(x, y) =0.5 8	

Figure 3: 2-dimensional points lying on a Cartesian (regular) grid .. 9	
Figure 4: Scattered plot of the location of the sampling point resulting from a Monte Carlo sampling over

three monovariate parameters ... 13	
Figure 5: Probability values sampled by the Monte Carlo ... 13	
Figure 6: Scattered plot of the location of the sampling point resulting from a grid sampling over three

monovariate parameters .. 15	
Figure 7: Probability values sampled by the Grid Sampling ... 15	
Figure 8: On the left column two possible stratifications while in the right column the corresponding

possible sampling locations. .. 16	

 iii

Figure 9: Scattered plot of the location of the sampling point resulting from a LHS over three monovariate
parameters ... 17	

Figure 10: Probability values sampled by the Grid Sampling ... 17	
Figure 11: Limit surface example (red dots) ... 19	
Figure 12: Limit Surface Searching Scheme ... 21	
Figure 13: BWR scheme ... 22	
Figure 14: BWR plant visualization in RAVEN ... 23	
Figure 15: PDF and CDF for Off-Site Power Recovery Time .. 25	
Figure 16: PDF and CDF for Diesel Generator Time ... 25	
Figure 17: PDF and CDF for clad failure as function of Burn-Up and Temperature 26	
Figure 18: Clad Temperature Evolution Monte Carlo .. 27	
Figure 19: Burn-Up and Probability threshold histograms ... 28	
Figure 20: Diesel Recovery Time (blue), off-site Power Recovery Time (yellow) 28	
Figure 21: Views of the limit surface obtained from the Monte-Carlo sampling strategy 29	
Figure 22: Max clad temperature histogram ... 30	
Figure 23: Max Temperature Histogram Grid .. 31	
Figure 24: View of the limit surface obtained from the grid sampling strategy ... 32	
Figure 25: Clad Temperature temporal profile for the Grid sampling .. 33	
Figure 26: Max Temperature Histogram LHS .. 34	
Figure 27: Views of the limit surface obtained from LHS strategy .. 35	
Figure 28: Clad Temperature Evolution LHS ... 36	
Figure 29: Max Temperature Histogram Adaptive ... 37	
Figure 30: Clad Temperature Evolution Adaptive .. 37	
Figure 31: Limit surface e obtained from the adaptive sampling strategy .. 38	

TABLES

Table 1: List available probability distribution functions ... 6	
Table 2: Core model parameter and fuel rod geometry data. .. 23	
Table 3: Major component parameters for the simplified BWR plant configuration 24	
Table 4 Failure Probability Monte Carlo .. 30	
Table 5 Correlation Matrix Monte Carlo .. 30	
Table 6 Grid Meshing ... 31	
Table 7 Failure probability Grid Sampling ... 33	
Table 8 Correlation Matrix Grid Sampling ... 33	
Table 9: Failure Probability LHS .. 36	
Table 10: Correlation Matrix LHS .. 36	
Table 11: Failure Probability Adaptive ... 39	
Table 12: Correlation Matrix Adaptive ... 39	

 4

1. INTRODUCTION
RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS)

program [1], is advancing its capability to perform statistical analyses of stochastic dynamic systems.
This is aligned with its mission to provide the tools needed by the Risk Informed Safety Margin
Characterization (RISMC) path-lead [2] under the Department of Energy (DOE) Light Water Reactor
Sustainability program [3]. In particular this task is focused on the synergetic development with the
RELAP-7 [4] code to advance the state of the art on the safety analysis of nuclear power plants (NPP).

The investigation of the probabilistic evolution of accident scenarios for a complex system such as a
NPP is not a trivial challenge. The complexity of the system to be modeled leads to demanding
computational requirements even to simulate one of the many possible evolutions of an accident scenario
(tens of CPU/hour). At the same time, the probabilistic analysis requires thousands of runs to investigate
outcomes characterized by low probability and severe consequence (tail problem).

The milestone reported in June of 2013 [5] described the capability of RAVEN to implement complex
control logic and provide an adequate support for the exploration of the probabilistic space using a Monte
Carlo sampling strategy. Unfortunately the Monte Carlo approach is ineffective with problems of such
complexity.

In the following year of development, the RAVEN code has been extended with more sophisticated
sampling strategies (grids, Latin Hypercube, and adaptive sampling). This milestone illustrates the
effectiveness of those methodologies in performing the assessment of the probability of core damage
following the onset of a Station Black Out (SBO) situation in a boiling water reactor (BWR).

Section 2 provides an overview of the available probabilistic analysis capabilities, ranging from the
different types of distributions available, possible sampling strategies, and post processing analysis
capabilities. Section 2 also provides an extensive description of two major developments introduced this
year: adaptive sampling for limit surface sampling and multi variate distributions. The document
concludes with a description of the demo case (BWR-SBO) and a discussion of the results obtained.

2. PROBABILISTIC ANALYSIS TOOLS
Given the probabilistic aspects characterizing the initiating events of an accident scenario in a NPP

and its evolution (e.g. failure on demand), it is natural to try to evaluate the risk (R) connected to the
operation of a NPP in a probabilistic sense (referred to as a Probabilistic Risk Analysis [PRA]). Before
entering into the detail of the work completed, the recall of a few mathematical concepts will help the
understanding of the material.

Specifically:

• 𝑥 = 𝑋 𝑡 : random variate representing the status of the system (e.g., NPP status) at a given
instant in time

• 𝑋 𝑡 : random variable. For each possible realization of the stochastic components of the system
determine the status of the system; it is thus a mapping between the event space and the system
phase space

• 𝑓! 𝑥, 𝑡 : probability distribution function (PDF) of 𝑥 with support S

• 𝐹! 𝑥, 𝑡 = 𝑓 𝑥!, 𝑡 𝑑𝑥′!!
!"! : cumulative distribution function (CDF),

• 𝐶 𝑥, 𝑡 : cost functions which represent the maximum risk given the status of the system 𝑥 at time
t,

 5

• 𝑅 = 𝑑𝑡 𝐶 𝑥, 𝑡 𝑓! 𝑥, 𝑡 𝑑𝑥!
!
! : risk. It is useful to remark that the risk integral is nothing more

than the integral over time of the expected value of the cost function 𝐸 𝐶 𝑥 .

To illustrate these quantities in a more practical sense, in a prototypical PRA the following
correspondence could be used:

• 𝐶 𝑥 = 𝛿 𝑡!"# 𝑖𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑖𝑠 𝑑𝑎𝑚𝑎𝑔𝑒𝑑
0 𝑖𝑓 𝑟𝑒𝑐𝑎𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 ,

• 𝑅 = 𝑓! 𝑥, 𝑡!"# 𝑑𝑥!∩!"#$%&! !"#"$%! ,

where 𝛿 . is the Dirac delta and 𝑡!"# is the maximum time extension of the simulation used for the PRA
analysis. In such a case the risk becomes just the probability that before the end time of the simulation the
reactor has been damaged. As it could be noticed, since the goal function is known, the PRA analysis task
is therefore the computation of some form of the 𝐹! 𝑥, 𝑡!"# or more in general of 𝐹! 𝑥, 𝑡 that is what is
needed for computing the risk integral.

Before describing the details of how this could be performed (this subject is treated in Section
2.3, dedicated to the sampling strategies) the above example could be further extended to make a more
detailed parallel between the mathematical representation of the problem insofar provided and the
RAVEN-RELAP-7 simulation environment.

When RAVEN and RELAP-7 are used to perform a PRA the following correspondence are assumed:

• The realization space (scenario space) is the set of all possible values that all parameters subject to
stochastic behavior, used in the construct of the numerical model solved by RELAP-7, could possible
assume. Examples are:

o Friction coefficient

o Time of the recovery the auxiliary system

o Number of successful time a valve is operated before failing.

• A realization (scenario) is characterized by a specific set of values of the above-described random
variables.

• RELAP-7 is the mapping (random variable) from the scenario space to the outcome space (random
variate).

In the software infrastructure constructed, RAVEN is the scenario generator that—according to the
probability distribution function characteristic of each random variable—creates scenarios, monitors the
resulting value of the random variate describing the plant status (computed by RELAP-7), infers their
probabilistic distribution functions, and compute the risk integrals.

The following subsections summarize the capability of RAVEN to represent stochastic behavior by
the implemented probability distribution functions, and describe the different strategies (samplers) to
compute the cumulative distribution function of the status of the system (𝐹!) or the risk integrals.

2.1 Univariate Distributions
Both the probabilistic distribution of events (e.g. pump failure) or the uncertainty characterizing one

of the model parameters used to describe the NPP (e.g., friction coefficient) are described by PDFs.

In RAVEN a large number of analytical PDFs have been made available during the current fiscal
year. Table 1 summarizes the distributions present and if their truncated form are available. Figure 1

 6

illustrates an example of the probability plots generated by some PDFs. The distributions have been
imported via the construction of a software interface with the BOOST library [6]. The truncation of a
distribution in an interval [a,b], if available, is performed to preserve the normalization using the
following transformation:

𝑓! 𝑥 𝑎 ≤ 𝑥 ≤ 𝑏 =
𝑓! 𝑥

𝑓! 𝑏 − 𝑓! 𝑎

Table	 1:	 List	 available	 probability	 distribution	 functions	

Probability
Distribution Function

Truncated Form
Available

Probability
Distribution Function

Truncated Form
Available

Bernoulli No Poisson No

Binomial No Triangular Yes

Exponential Yes Uniform Yes

Logistic Yes Weibull Yes

Lognormal Yes Gamma Yes

Normal Yes Beta Yes

In the following are reported some distribution analytical expressions used to generate the plots in

Figure 1 as also used to generate the example of the different sampling strategies in Figure 4 to Figure 10.

𝑁𝑜𝑟𝑚𝑎𝑙 𝑥;𝜎 = 0.5, 𝜇 = 0 = 𝑁 𝑥;𝜎 = 0.5, 𝜇 = 0 = !
! !!

𝑒!
!!! !

!!! ,

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝑥;𝜎 = 0.5, 𝜇 = 0 = 𝐿𝑁 𝑥;𝜎 = 0.6, 𝜇 = 0 = !
!" !!

𝑒!
!" ! !! !

!!! ,

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑥;𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 3 = 𝑈 𝑥;𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 3 = ! ! !! !!!
!

 .

 7

Figure	 1:	 Scattered	 plot	 generated	 by	 sampling	 (Latin	 Hypercube	 sampling	 scheme)	 of	 a	 Normal	 (red),	 Lognormal	

(blue)	 and	 Uniform	 distributions	 (green)	

2.2 Multivariate Distributions
A univariate distribution statistically represents the uncertainty associated to a 1-dimensional

parameter (e.g., AC power recovery time, pipe friction factor). As an example, a normally distributed
(mean 𝜇 and sigma 𝜎) variable 𝑥 can be written as:

𝑥~𝒩(𝜇,𝜎),

and the PDF associated to 𝑥 can be written as:

𝑓! 𝑥 =
1

𝜎 2𝜋
𝑒!

!!! !

!!! .

 Such concept can be extended to multi-dimensional, i.e. multivariate, distributions [7] in order to
model how the uncertainties associated to 𝑛 coupled parameters (𝑥!,… , 𝑥!) are distributed and correlate
among each other (e.g., concentration of H2 and CO in the LWR containment at which ignition will start).
In such case we are dealing with n-dimensional variable, i.e., a vector 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! , which has
an associated distribution ℳ:

𝑥~ℳ.

Note that concepts like PDFs 𝑓! 𝑥 :

𝑓! 𝑥 : ℝ! → ℝ , 𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! ,

and CDFs 𝐹! 𝑥 :

𝐹! 𝑥 : ℝ! → 0,1 ,𝐹! 𝑥 = 𝐹! 𝑥!,… , 𝑥! ,

can still be defined similarly to the univariate case, i.e.,

𝐹! 𝑥 = 𝐹! 𝑥!,… , 𝑥! = 𝑑𝑥!… 𝑑𝑥! 𝑓! 𝑥!,… , 𝑥!
!!

!!

!!

!!
,

𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! =
𝜕!

𝜕𝑥!… 𝜕𝑥!
 𝐹! 𝑥!,… , 𝑥! .

 8

However, operations like the inverse of the CDF (performed to generate random samples from a
given CDF) need to be treated differently. The inverse of a multi-dimensional function is in fact not a
uniquely determined point but an infinite set of points distributed on a line (for a 2-dimensional
multivariate distribution), or on a surface (for a 3-dimensional multivariate distribution) and so on. In
other words, given a value 𝑝 ∈ [0,1], 𝐹!! 𝑝 determine an infinite set of points lying in a (𝑛 − 1)-
dimensional hyper surface constrained by the same value of the CDF that iso-probability surface (see
Figure 2).

2.2.1 Normal Multivariate Distributions
Since multivariate distributions are widely used in the UQ and PRA arenas, a set of stochastic

libraries that can handle those distributions has been developed for the RAVEN code. In the literature,
multivariate normal distributions are mainly considered. Those distributions are defined as [7]:

𝑥~𝒩(𝜇, Σ)

where:

• 𝜇 = 𝜇!,… , 𝜇! ∈ ℝ! is the mean value,

• Σ is the covariance matrix.

Figure	 2:	 Example	 of	 multivariate	 cdf	 𝑭(𝒙,𝒚)	 (2D	 case):	 the	 	 average	 internal	 pressure	 at	 which	 two	 different	 pipe	

will	 fail.	 The	 correlation	 could	 be	 given	 by	 being	 built	 by	 the	 same	 material.	 The	 iso-‐probability	 planes	
represents	 the	 location	 of	 the	 points	 (x,y)	 such	 that	 the	 𝑭(𝒙,𝒚)	 =0.5	

While an analytical expression for a multivariate normal PDF exists:

𝑓! 𝑥 = 𝑓! 𝑥!,… , 𝑥! =
1

2𝜋 ! Σ
𝑒!

!
! !!! !!!! !!! ,

an expression for a multivariate normal CDF 𝐹 𝑥 does not exists but can be determined numerically.

As an example, for a 2-dimensional normal distribution, the covariance matrix can be written as:

𝜎!! 𝜌𝜎!𝜎!
𝜌𝜎!𝜎! 𝜎!!

,

where 𝜎! and 𝜎! are the standard deviations associated to the two variables 𝑥! and 𝑥! while 𝜌 represents
the correlation factor between 𝑥! and 𝑥!. If 𝑥! and 𝑥! are not correlated, i.e., 𝜌 = 0, then:

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pipe temperaturepipe pressure

fa
ilu

re
 p

ro
ba

bi
lit

y Iso$probability-plane:-
(x,y)-s.t.-cdf(x,y)-=-0.5-

Failure Pressure Pipe 2 Failure Pressure Pipe 1

 9

𝑓!!, !! 𝑥!, 𝑥! =
1

2𝜋𝜎!𝜎! !
𝑒
!!!

!!!!!
!!!

! !!!!!
!!! =

1
𝜎! 2𝜋

𝑒
! !!!!! !

!!!! ∙
1

𝜎! 2𝜋
𝑒
! !!!!! !

!!!!

= 𝑓!! 𝑥! ∙ 𝑓!! 𝑥! ,

i.e., the multivariate normal distribution can be written as a product of two independent univariate
distributions (for 𝑥! an 𝑥!).

2.2.2 N-dimensional spline interpolation
The development of multivariate distributions was not limited to model only normal distributions but

we also added the capability to handle custom multivariate distributions. In such cases, the user provide
through a .txt file a set of point (M) of coordinates 𝑥 ! = 𝑥!,… , 𝑥! ∈ ℝ! ! , 𝑖 = 1,… ,𝑀 in the n-
dimensional space and the value of the CDF 𝐹! 𝑥 associated to those points. In order to calculate the
value of 𝐹! 𝑥 at a generic point, a set n-dimensional interpolation functions have been employed. This
section is dedicated to the description of an interpolating process that uses n-dimensional spline while the
next one will focus on inverse weight based methodologies.

 Given that the data points provided by the user are located on a Cartesian (regular) grid (see
Figure 3), RAVEN allows using a cubic spline interpolation. Such interpolation method constructs a
representation of the original data set that is both continuous and differentiable.

Figure	 3:	 2-‐dimensional	 points	 lying	 on	 a	 Cartesian	 (regular)	 grid	

Given a set of 𝑀 points and CDF values 𝑥,𝐹!(𝑥) ! , 𝑖 = 1,… ,𝑀lying on a n-dimensional Cartesian grid
with n different discretization step ℎ! for 𝑗 = 1,… , 𝑛 (one for each dimension), the interpolated value
𝐹(𝑥) at a generic point 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! can be written as [8]:

𝐹! 𝑥 = … 𝑐!!,!!,…,!!

!!!!

!!!!

!!!!

!!!!

∙ 𝑢!!
! (𝑥!)

!

!!!

where:

𝑚! , 𝑗 = 1,… ,𝑛: number of discretization points for each dimension (j)

𝑚!

!

!!!

= 𝑀

𝑢!!
! 𝑥! = Φ

𝑥! − 𝑥!!

ℎ!
+ 2− 𝑗!

h2#

h1#

x1#

x2#

 10

Φ 𝑡 =
(2− 𝑡)! 1 ≤ 𝑡 ≤ 2

4− 6 𝑡 ! + 3 𝑡 ! 𝑡 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

The scope of the interpolator is to determine all the coefficients 𝑐!!,!!,…,!! through a recursive algorithm as
shown in [8]. Note that dimensionality of the problem is (𝑚! + 2)!

!!! . Hence, for high dimensionality
problem and with a large number of discretization points, the calculation of the coefficients 𝑐!!,!!,…,!! may
be computationally intensive.

2.2.3 Inverse weight interpolation
Also know as Shepard’s interpolator method [9], the inverse weight algorithm perform n-dimensional
interpolation using a basic metric distance scheme.

Given a set of 𝑀 points and CDF values 𝑥,𝐹!(𝑥) ! , 𝑖 = 1,… ,𝑀 the interpolated value 𝐹(𝑥) at a generic
point 𝑥 = 𝑥!,… , 𝑥! ∈ ℝ! can be written:

𝐹! 𝑥 = 𝑤! 𝑥 𝐹(𝑥!)
!

!!!

where:

𝑤! 𝑥 =
𝑥! − 𝑥!

!

𝑥! − 𝑥!
!!

!!!

with 𝑝 set to a value greater than 2 in order to assure differentiability.

2.2.4 Challenges
While dealing with univariate distributions is common practice, the multivariate distributions pose a

set of challenges that require special handling approaches

2.2.4.1 Computation of the inverse of a multivariate cumulative distribution function:
Given the value of the 𝐹! 𝑥′ = 𝑃 𝑥 ≤ 𝑥′ , to compute the corresponding value of the random

variate 𝑥′ (if exists) is a problem that occurs frequently when performing this type of statistical analysis.
This operation is for example required to generate a set of sampling of a random variable using the
inverse transformation method in Monte Carlo based analysis (see Section 2.3.1).

While for univariate distribution the solution of 𝑥! = 𝐹!
!! 𝑃 𝑥 ≤ 𝑥′ could be always computed

(either analytically or numerically), in the case of multivariate distribution the equation has an infinite
number of solutions. However, using an iterative scheme, it is possible to find a point 𝑥′ ∈ ℝ! such that
𝐹! 𝑥′ = 𝑃 𝑥 ≤ 𝑥′ using for example graph-based methods [10]. Unfortunately ensuring that the 𝑥′ not
only satisfy the above constrain but also is uniformly distributed over the hyper-surface (iso-probability
surface) is rather challenging. Preliminary results unfortunately show that the search algorithm used to
locate 𝑥 has effectively some bias. While the effect seems to be negligible, more investigation will be
required in the future.

2.2.4.2 Derivation of the probability distribution function from the cumulative
distribution function

As indicated earlier the user provides the point evaluation of the 𝐹! 𝑥 CDF, therefore the PDF
𝑓! 𝑥 should be derived by differentiation:

 11

𝑓! 𝑥 =
𝜕!

𝜕𝑥!… 𝜕𝑥!
 𝐹!(𝑥!,… , 𝑥!)	

Such 𝑓! 𝑥 is affected by errors generated by both the interpolation method employed and by the
quantity of points 𝑥! given as input by the user. In this respect, an estimate of such error is needed and
should be argument of investigation in the future.

2.2.5 Parametric Distributions
In PRA analysis there are also several examples of parametric distributions. While in many respects

similar to the multivariate case, the treatment of those distributions should be different from a
probabilistic point of view.

Referring to the notation introduced in Section 1:

• 𝑥: random variate

• 𝑋 𝑝 : random variable, function of the parameter 𝑝

• 𝑋 𝑝 ~𝑓! 𝑥, 𝑝 : PDF

• 𝐹! 𝑥, 𝑝 = 𝑓 𝑥!, 𝑝 𝑑𝑥!
!!"# ! : CDF

Differently form a multivariate distribution:

𝑓 𝑥!, 𝑝 𝑑𝑥
!!"# !

!!"# !
= 1

𝑑𝑝′
!

𝑓 𝑥!, 𝑝′ 𝑑𝑥
!!"# !

!!"# !
= 𝑉𝑜𝑙 𝑝

It could be noticed as for any value of the parameter 𝑝 the normalization condition is respected and
the integration for all possible parameter values leads to the iper-volume 𝑉𝑜𝑙 𝑝 representing the
estension of the 𝑝 domain. In reality this situation is not very much different from what has been
described in chapter 1 where the natural parameterization chosen for the status of the system is the time
coordinate. In fact the probability of the system being in any of the admissible points is always 1 and its
integral over time is just the total simulation time. In the analysis presented in the latter part of this report
a parametric distribution is used to represent the evolution of the failure clad temperature probability as a
function of the burn-up.

2.3 Samplers
As already mentioned a sampler is an algorithm which purpose is to determine the cumulative

distribution function of the status of the system or to compute risk integrals.

2.3.1 Sampling of Probability Distribution Function
Before moving forward into the description of the different sampling techniques it is useful to recall

some results that show how the sampling of different type of distribution could be performed.

2.3.1.1 Transformation Method
This methodology is used when the inverse of the CDF is know analytically

• if X, Y random variable with their respective random variate x, y, PDF 𝑓!, 𝑓!, and cdf 𝐹!, 𝐹!

• Then 𝑦 = 𝐹!!! 𝑓! 𝑥 or equivalently 𝑌 = 𝐹!!! 𝑓!

 12

A special case is when, conveniently 𝑓! = 𝒰 0,1 , and this lead to 𝑦 = 𝐹!!! 𝑥 . This result tells that the
realization of any random variable could be obtained by computing the inverse of its CDF on the
realization of a random variable uniformly distributed on 0,1 .

2.3.1.2 Rejection Method
This methodology is numerically based, and used when the inverse of the CDF is not known

analytically. Once a sampling u is generated from the 𝒰 0,1 the solution of 𝐹! 𝑦 = 𝑢 is sought
iteratively. The process, of course, takes advantage of the monotonicity of the CDF.

2.3.1.3 Multivariate and Parametric Distributions
In case of multivariate CDF clearly the inverse does not exist given that the inversion problem is ill

conditioned. As already mentioned in Section 2.2.4 the inversion is performed numerically but the
process currently implemented needs further refining to ensure the complete absence of bias in the
location of the point on the iso-probable surface.

To focalize the issue it could be helpful to examine the following example. Referring to the case in
Figure 2. 𝑃!! ,𝑃!! ~𝑓!!!,!!! 𝑝!! , 𝑝!! : random variate where, respectively, the two variates are the
failure temperature of pipe 1, and failure temperature of pipe 2. The inversion method would prescribe to
generate a random number 𝑥 realization of the uniform distribution 𝒰 0,1 and solve:

𝐹!!!,!!! 𝑝!! , 𝑝!! = 𝑑𝑝!!′
!!!

!!!,!"#

𝑑𝑝!!′
!!!

!!!,!"#

𝑓!!!,!!! 𝑝!! , 𝑝!! = 𝑥.

Clearly this would lead to the definition of an hyper-surface (line in this case) satisfying the constrain:
𝐹!!!,!!! 𝑝!! , 𝑝!! = 𝑥.

While it is possible to numerically determine a couple of value 𝑝!! , 𝑝!! that satisfies the above
constrain it is rather challenging to define an algorithm that used several times for the same 𝑥 will
produce a set of Independent Identically Distributed (IID) pairs of 𝑝!! , 𝑝!! ! as requested for example
by Monte Carlo sampling strategy. As mentioned in Section 2.2.4 this issue is still under investigation.
Currently RAVEN provides the capability to perform random sampling of multi-dimensional distribution
but the IID hypothesis is not fully ensured. Nonetheless the bias and its effect detected, in test cases, so
far have been minimal.

2.3.2 Monte Carlo
The Monte Carlo sampling strategy is the most used and more basic sampling strategy. First thing is

to remind that the risk integrals are just the expected values of the cost function 𝐸 𝐶 𝑥 therefore using
the Law of Large Numbers [11] it is possible to compute an approximation of the risk integrals.

The sequence of steps could be so summarized as follows:

1. M IID realizations 𝑢! 𝑖 = 1,… ,𝑀 are generated. The vectors 𝑢! are constitute by N realizations of
the uniform distribution 𝒰 0,1 . Examples are friction coefficient or recovery time of an auxiliary
system (monovariate) or the temperature and pressure of failure of a pipe (multivariate).

2. For each vector 𝑢! for each entry of the vector 𝑢!,! , 𝑗 = 1,… ,𝑁 (N is the number of random variables,
counting the multidimensional ones as one) the corresponding values of the variates 𝑣!are generated
(stochastic parameters used to define the mathematical representation of the system) using either the
transformation method, either the rejection method, or numerical inversion for the multivariate. To be
notice that 𝑑𝑖𝑚 𝑢! ≥ 𝑑𝑖𝑚 𝑣! and that only after the inversion of the multivariate distributions the
number of parameter generated equals the number of stochastic parameters needed by the RELAP-7
model.

 13

3. For each set 𝑣! a RELAP-7 run is executed producing the time evolution of the coordinate in the
phase space representing the system (aka NPP) 𝑥! 𝑡 = ℎ 𝑣! , 𝑡 . Where the transfer function ℎ 𝑣! , 𝑡
represent the mathematical model used by RELAP-7 to represent the system.

4. The value of the goal function 𝐶!(𝑥! 𝑡) is computed.

5. To each 𝐶! it is associated the probability !
!

 and therefore it is possible to compute its expected value

by: 𝐸 𝐶 = !
!

𝐶!!
!!!

Figure 4 shows the sampling points (300 points) resulting from a Monte Carlo approach over three
monovariate parameters sampled respectively from uniform (Variable_U), lognormal (Variable_LN), and
normal (Variable_N) distributions. Figure 5 shows instead the sampled value of a goal function set equal
to the product of the lognormal and normal probability distribution functions. The second image clearly
shows the clustering of the sampling location towards the highest probability region, reflecting the
characteristic of the Monte Carlo approach to better represent goal functions (risk integrals) close to
highest probable regions, while performing a poor job in the assessment of the system behavior in low
probability regions.

Figure	 4:	 Scattered	 plot	 of	 the	 location	 of	 the	 sampling	 point	 resulting	 from	 a	 Monte	 Carlo	 sampling	 over	 three	

monovariate	 parameters	

Figure	 5:	 	 Probability	 values	 sampled	 by	 the	 Monte	 Carlo	

 14

2.3.3 Grid Sampling
Grid-based sampling is more aimed towards a parametric analysis of the system response rather than

a probabilistic analysis. RAVEN for monovariate parameters allow either defining the grid in terms of
probability (CDF) or directly with respect the parameter values. There is the limitation that, when using
grid build on the CDF values, the distribution used should have a finite interval support so to avoid that
the grid point expressed in parameter values are ±∞ (this would happen if the support of the distribution
is ±∞ and the point chosen on the grid are 0 or 1). For the parametric distributions it is only possible to
define a grid with respect to the CDF since the support of the PDF evolves with the evolution of the
system. Also for multivariate distributions it is not possible to define the grid over the values of the
parameters but only over the CDF, in fact, similar to the parametric case, the different variable could not
discretized separately.

The procedure to evaluate the risk integrals is similar to the Monte Carlo, except that the probability
associated to each sampling should be computed differently:

• First if the grid points are provided in values, than they are re-mapped in term of grid point over
0,1 by means of the inverse of the CDF

• 𝑢! 𝑖 = 1,… ,𝑀: i-th point on the grid of coordinate 𝑢!,! , 𝑗 = 1,… ,𝑁, where N is the number of
dimension on the grid

• 𝑃𝑟 𝑢! = 𝐹!! 𝑢!,!!!/! − 𝐹!! 𝑢!,!!!/!
!
!!!

• Where the index 𝑗 ± 1/2 refers to the coordinate located at the middle point between the
coordinate 𝑢!,! and the next/previous point on the grid.

• For the extreme points it is used the relationship:

if 𝐹!! 𝑢!,!!!/! > 𝐹!! 𝑢!,!!!/! then 𝐹!! 𝑢!,!!!/! = 1, 𝑎𝑛𝑑 𝐹!! 𝑢!,!!!/! = 0

if 𝐹!! 𝑢!,!!!/! < 𝐹!! 𝑢!,!!!/! then 𝐹!! 𝑢!,!!!/! = 0, 𝑎𝑛𝑑 𝐹!! 𝑢!,!!!/! = 1

• The expected value of any stochastic function (cost function in this case) 𝐶 is therefore:

𝐸 𝐶 = 𝐶!𝑃𝑟 𝑢!

!

!!!

Figure 6 shows the sampling points (1764 points) resulting from a grid sampling approach over three
monovariate parameters sampled respectively from uniform (Variable_U), lognormal (Variable_LN), and
normal (Variable_N) distribution. Figure 7 shows instead the sampled value of a goal function set equal
to the product of the lognormal and normal distributions. The sampling strategy used was equal
probability for the monovariate described by the normal and lognormal distribution while equally spaced
for the one characterized by the uniform. The result of this approach could be noted in Figure 7 where
clearly the density of the points decrease approaching low probability regions.

The grid sampling represents a very practical tool for engineers to explore the parametric response of
the system, unfortunately becomes very expensive with the growing number of dimensions posing clear
computational challenges.

 15

Figure	 6:	 Scattered	 plot	 of	 the	 location	 of	 the	 sampling	 point	 resulting	 from	 a	 grid	 sampling	 over	 three	

monovariate	 parameters	

Figure	 7:	 	 Probability	 values	 sampled	 by	 the	 Grid	 Sampling	

2.3.4 Stratified Sampling
Stratified sampling is a class of methods that relies on the assumption that the input space can be

separated in regions (strata) based on similarity of the response of the system for input set within the same
strata. Following this assumption the most rewarding (in terms of computational cost vs. knowledge
gained) sampling strategy would be to place one sample for each region. In this way the same information
is not collected more than once and the all the prototypical behavior are sampled at least once.

In a manner very similar to the one described for the grid sampler, RAVEN allows the construction of
a grid on the input parametric space either with respect to the probability associated to the random variate
(CDF) or to the value itself of the variables (same limitations of the grid sampler apply). The stratification
is build by assuming that there should never be more than a strata characterized by the same range of any
of the random variate. This constrain allows many possible solution for the construction of the strata, one

 16

is randomly selected and then one point is sampled from within each strata. This process is exemplified in
Figure 8.

The probability associated to each point sampled is equivalent to the probability associate to the strata
of which the point is representative. The computation of the risk integrals is exactly the same as in the
case of the grid sampling except for the fact that the probability should account for the whole probability
associated to each strata and therefore renormalized as it follows:

𝑃𝑟 𝑢! =
𝐹!!,! 𝑢!,!!! − 𝐹!!,! 𝑢!,!

!
!!!

𝐹!!,! 𝑢!,!!! − 𝐹!!,! 𝑢!,!
!
!!!

!"#$%&
!!!

Where the numerator is introduced to renormalize the probability of a point so to carry along the
probability of the whole strata it is representing.

The most classical implementation of stratified sampling in PRA analysis is the Latin Hypercube
Sampling (LHS) where the strata are build based on equal probability regular Cartesian partition of the
parametric input space. In this case each parameter is partitioned in M equal-probability range and the
probability associated to each sample is !

!
. Figure 9 shows the sampling points (100 points) resulting from

a LHS over three monovariate parameters sampled respectively from uniform (Variable_U), lognormal
(Variable_LN), and normal (Variable_N) distribution. Figure 9 shows instead the sampled value of a goal
function set equal to the product of the lognormal and normal distributions. Compared to the other
samplers up to now examined the LHS present the most scattered pattern and it is regarded in the PRA
community as the most efficient with respect to the trade off between computational cost and information
generated.

	

Figure	 8:	 On	 the	 left	 column	 two	 possible	 stratifications	 while	 in	 the	 right	 column	 the	 corresponding	 possible	
sampling	 locations.	

 17

Figure	 9:	 Scattered	 plot	 of	 the	 location	 of	 the	 sampling	 point	 resulting	 from	 a	 LHS	 over	 three	 monovariate	

parameters	

Figure	 10:	 	 Probability	 values	 sampled	 by	 the	 Grid	 Sampling	

 18

2.3.5 Adaptive Sampling
2.3.5.1 The Limit Surface

One of the more advanced options that RAVEN offers is goal oriented sampling strategies for the
research of limit surfaces [12]. To properly explain which type the information available by these
techniques it is useful to start from the characterization of limit surfaces. Without entering in a
mathematical description of the concept of limit surface it is possible to describe the limit surface as a
hyper-surface, in the realization space of the stochastic parameters of the system, along which a specific
goal function assumes an imposed value.

If, as in the example in Section 2, the goal function is:

𝐶 𝑥 = = 𝛿 𝑡!"# 𝑖𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑖𝑠 𝑑𝑎𝑚𝑎𝑔𝑒𝑑
= 0 𝑖𝑓 𝑟𝑒𝑐𝑎𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 ,

the image of the limit surface could be conveniently defined as the surface, in the realization space, where
𝛁𝑪 𝒙 = ∞, which simply is hyper surface that separates failure regions to success regions. The

information content of the limit surface image is rather minimal because it just illustrates a property of the
goal function with respect the status of the system but it could be conveniently noticed that the integration
domain of the risk integral is the volume within the limit surface image 𝜕𝑉!:

𝑅 = 𝑓! 𝑥, 𝑡!"# 𝑑𝑥
!∩!"#$%&! !"#"$%!

= 𝑓! 𝑥, 𝑡!"# 𝑑𝑥
!!

,

where the image of the limit surface 𝜕𝑉! satisfies ∇𝐶 𝜕𝑉! = ∞.
Now the discussion will be narrowed to system where the probabilistic behavior could be studied only

as a function of uncertainty in the model parameters and initial condition. The limitation of this
assumption are described in [13] but generally are fairly acceptable for monovariate variable while might
get more complex for multivariate or parametric distributions and the analysis of such cases it is still
under investigation.

Under the above-described assumption, the phase space coordinate of the system at any moment in
time is a function of 𝒙𝟎 , which represents the realization of the initial conditions and stochastic
parameters characterizing the system. Therefore the system behavior could be now described
deterministically by:

𝑥 𝑡 = ℎ 𝑥!, 𝑡 ,
where ℎ 𝑥! is the mathematical model representing the system, once the initial condition and the
uncertain parameters are chosen. The probability propagate according:

𝑓! 𝑥 𝑑𝑥 = 𝑓!! 𝑥! 𝑑𝑥!,
which reads that the probability of the system being in a particular state 𝒙 is equal to the probability of the
initial condition and parameters to be such that leads to the prescribed state (this is a simplification that
assumes ℎ being injective, a more generic description could be found in [14]).

As a consequence the risk integral could be evaluated as:

𝑅 = 𝑓!! 𝑥! 𝑑𝑥!
!!! !!

,

where ℎ!! 𝑉! is the pre-image of 𝑉! and therefore ℎ!! 𝜕𝑉! is the limit surface.

 19

Figure	 11:	 Limit	 surface	 example	 (red	 dots)	

Figure 11 shows an example of limit surface. The example refers to the solution of the time
dependent heat conduction equation in one dimensional slab:

𝜕𝑇
𝜕𝑡

= 𝐷
𝜕𝑇
𝜕𝑥

𝑇 𝑥 = 𝑥! , 𝑡 = 0 = 𝑇!,!
𝑇 𝑥 = 𝑥! , 𝑡 = 0 = 𝑇!,!

,

where 𝑇!,! and 𝑇!,! are respectively the left and right boundary conditions (on temperature), 𝐷 the
diffusion coefficient and T the temperature. The goal function is equal 1 if the average temperature in the
slab after 20 sec exceeds the threshold value, 0 othervise. The limit surface separates the input space
(diffusion coefficient and left boundary condition) depending on the value of the goal function.

In conclusion a limit surface is a hyper-surface discriminating the input space coordinates (initial
condition and model parameters) depending on the evolution that the system will have with respect the
value of a given cost function.

The knowledge of the limit surface allows a fast evaluation of risk functions, provides information
concerning which uncertainty is mostly relevant to risk increase/decrease, defines safe areas to be
explored for parametric operational optimization and risk reduction. Unfortunately the search of a limit
surface in terms of computational effort is very expensive.

A brute force approach would be to build an N-dimensional grid on the input space and sample each
point. The number of point in the grid would be proportional to the degree of accuracy sought and would
hit rather fast a prohibitive number. To avoid such a situation RAVEN uses acceleration schemes based
on surrogate models that are used to predict the location of the limit surface so to guide the exploration of
the input space avoiding regions far from the frontier sought.

Region where the average
temperature exceeds the
threshold (failure)

 20

2.3.5.2 Surrogate Models
 In the literature, there are several definitions for surrogate models and/or reduced order models
and/or supervised learning process and they often overlaps. For the purpose of this technical report, a
surrogate model is a mathematical model that is trained to predict the response of a physical system. The
training is a process that uses sampling of the physical model to improve the prediction capability
(capability to predict the status of the system given a realization of the input space) of the surrogate
model. More specifically, in our case, the surrogate model is trained to emulate a numerical representation
of the physical system that we assume possess a high degree of fidelity but it is also very computational
expensive to realize. Two general characteristics of surrogate models will be assumed true in the
remaining of this discussion even exceptions are possible:
1. The higher is the number of realizations in the training sets the higher is the accuracy of the

prediction of the surrogate model. This is assumed true although some of the surrogate models used
might be subject to the over-fitting issues. Because this a phenomena that is highly dependent on the
surrogate model type, and RAVEN posses a large number of options available, the reader should
consult specific literature on this subject depending on the problem to be solved.

2. The smaller is the size of the input domain with respect the variability of the system response
projected on the cost function, or vice versa, the smoother is the response of the system projected on
the cost function within the input domain, the more likely the surrogate model will be able to
represent the risk function.

Given the fact that most of the time the cost function assume the form of a characteristic function of a
certain domain (e.g. failure/success) in the phase space, in the development of the RAVEN code it has
been given priority to the introduction of a class of supervised learning algorithms that are usually
referred to as classifier. In essence classifiers are surrogate models specialized to represent a binary
response of the system (failure/success).

The first class of classifier introduced has been the Support Vector Machines [15] with several
different kernels (polynomial of arbitrary integer order, radial basis function kernel, and sigmoid)
followed by a nearest-neighbor based classification using a K-D three search algorithm [16]. All those
supervised learning algorithms have been imported via an Application Programming Interfaces (APIs)
with the scikit-learn [17] library. It is foreseen to import soon the whole library of supervised learning
methods from scikit-learn, as also the N-Dimensional spline and the inverse weight methods, which are
currently available for the interpolation of N-Dimensional PDF/CDF.

2.3.5.3 The Searching Algorithm
The limit surface searching algorithm is rather straightforward and could be described by the

following steps:

1. A limited number of point in the input space 𝑥! ! are selected via one of the previously
described sampling strategies (stratified, grid and Monte Carlo sampling)

2. The RELAP-7 code is used to compute the status of the system for the set of point in the input
set: 𝑥 𝑡 ! = ℎ 𝑥! ! , 𝑡

3. The Goal function (Boolean function) is evaluated at the phase space coordinate of the system:
𝑔 ! = 𝐺 𝑥 𝑡 !

4. The set of pairs 𝑥! ! , 𝑔 ! are used to train a surrogate model

5. The surrogate model (SM) is used to predict the value of the goal function on a regular Cartesian
grid in the domain space (the mesh size depend on the convergence requested by the user):

𝑆𝑀 𝑥! ! ≈ 𝑐 ! , 𝑗 = 1,… ,𝑀 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑡ℎ𝑒 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑔𝑟𝑖𝑑

 21

6. The values of the goal function are used to determine the limit surface location based on the
change of values of 𝑐 !:

𝑐 ! → 𝜕𝑉!

7. The position of the limit surface is compared with the one at the previous iteration (This step is
skipped at the first iteration), if no changes are detected the iterations stop otherwise a new point
need to be identified in the input space

8. The point located on the limit surface that is the farther from all the other already selected point in
the input space is added to the 𝑥! ! set and the process restart from point 2

The iteration scheme is graphically presented in Figure 12.

Figure	 12:	 Limit	 Surface	 Searching	 Scheme	

END

No

Determine what is the most relevant point in the input space where to perform the next physical
model evaluation and add it to {�̅�!}!

Yes

Perform the evaluation

Evaluation of the system response on a low number of points of the input space
 {�̅�(𝑡)}! = ℎ({�̅�!}! , 𝑡)

Evaluation of the binary cost functions{𝑐}! = 𝐶({�̅�(𝑡)}!)

 Training of the SM using the pairs ({�̅�!}! , {𝑐}!)

Convergence test on the
consistency of the location

of the limit surface

The approximation of the cost function {𝑐}! ≈ 𝑆𝑀!{�̅�!}!! → 𝜕𝑉𝐿 is used to locate the limit
surface 𝜕𝑉! in a very fine Cartesian grid

 22

2.3.5.4 Computation of the Probability Associated
Once that the limit surface have been found the information concerning its location have been fully

captured by the SM that is fully trained to locate the surface. The computation of the risk integrals is
therefore performed used the M points on the Cartesian grid as it would be for a grid based sampler (see
2.3.3) where the evaluation of the cost function is replaced by its approximation by the SM:
𝐶 𝑥 𝑡 ! ≈ 𝑆𝑀 𝑥! ! leading to the following expression:

𝐸 𝐶 = 𝑆𝑀 𝑥! ! 𝑃𝑟 𝑢!

!

!!!

3. BWR SBO DEMO
A simplified BWR plant system model has been built based on the parameters specified in the

Organization for Economic Cooperation and Development (OECD) turbine trip benchmark problem [18].
The reference design for the OECD BWR Turbine Trip benchmark problem is derived from Peach
Botom-2, which is a General Electric-designed BWR-4 NPP, with a nominal thermal power of 3,293
MW.

Figure 13 and Figure 14 show the schematics of the simplified BWR plant system that has been
modeled through RELAP-7/RAVEN. The reactor vessel model consists of the down comer model, the
lower plenum model, the reactor core model, the upper plenum model, the separator dryer model, the
steam dome model, the main steam line model, the feed-water line model, the primary pump model, the
RCIC turbine model, the RCIC pump model, and the wet well model.

Figure	 13:	 BWR	 scheme	

A core channel model (i.e., flow channel with heat structure attached to it) was used to describe the
reactor core. Each core channel represents thousands of real cooling channels and fuel rods. To speed up
the transient simulation, only one core channel was used to represent the entire core; bypass flow was
ignored. The lower plenum, upper plenum and steam dome are modeled with branch models. External to
the reactor vessel, the main steam line is connected to the steam dome. A time dependent volume is
attached to the main steam line to provide the necessary boundary conditions for the steam flow. A feed-
water line is connected to the down comer model. A time dependent volume is attached to the feed-water
line to provide the necessary boundary conditions for the feed-water. The safety injection system includes
the RCIC turbine and pump, as well as the containment wet well and dry well. Valves are placed at
various locations to provide the flow control functions of the plant system.

 23

Figure	 14:	 BWR	 plant	 visualization	 in	 RAVEN	

Notably missing from this simplified BWR model are the jet pumps and the recirculation loops that
allow the operator to vary coolant flow through the core and change reactor power. Instead, for this case
study, a pump model is used to represent the functions of the jet pumps and the recirculation loops.

The following paragraph provides more detailed information on the plant geometry and parameters
used to derive this demo.

The Peach Bottom-2 reactor core consists of 764 fuel assemblies. The initial cycle was selected as the
reference design cycle for the simulations done in this report. In the initial cycle, 7×7 fuel rod lattice type
assemblies with no water rods were loaded. The active core height specified was 3.6576 m. For ease of
preparing the input file, we used 3.66 m as the active core height in our calculations. The fuel assembly
and fuel rod geometry data were taken from reference [18] and shown in Table 2.

Table	 2:	 Core	 model	 parameter	 and	 fuel	 rod	 geometry	 data.	

Core thermal power (MW) 3,293
Core height (m) 3.66
Core flow area (m2) 7.8
Fuel pellet diameter (cm) 1.21158
Gap thickness (cm) 0.01524
Clad outer diameter (cm) 1.43002
Fuel rod pitch (cm) 1.8745
Number of fuel rods per assembly 49
Assembly pitch (cm) 15.24
Heat transfer surface area per unit fluid volume 235.4927
Hydraulic diameter (cm) 1.3597

 24

The major parameters required to build the simplified BWR plant system configurations also were
obtained from reference [18] and some key data are shown in Table 3.

Table	 3:	 Major	 component	 parameters	 for	 the	 simplified	 BWR	 plant	 configuration	

Component
Name

Volume
(m3)

Area
(m2)

Axial Elevation (Top) Relative to
the Bottom of the Vessel (m)

Lower Plenum 61.48 11.64 5.28
Reactor Core 28.55 7.8 8.94
Upper Plenum 26.99 14.36 10.82
Separator Standpipe 10.69 3.93 13.54
Separator Dryer (S/D) 19.30 10.27 15.42
S/D Steam Outlet Pipe 0.393 3.93 15.42
S/D Liquid Discharge Pipe 3.93 3.93 14.48
Steam Dome 178.19 26.19 22.32
Main Steam Line 2.64 1.32 18.92
Down Comer 201.30 15.00 15.52
Feedwater Line 3.96 1.32 12.52
Wet Well Water Space 3570.00 892.50 -12.00 (bottom)
Wet Well Gas Space 3570.00 892.50 -4.00 (top)
RCIC Turbine - - -3.00
RCIC Pump - - -3.00

3.1 Demo Description
The scenario considered is a grid related loss of off-site power (LOOP) event immediately followed

by the loss of the emergency diesel generators (DGs). Such event is known as station black-out (SBO)
initiating event. Due to the complete loss of AC power, after the reactor operators successfully scram the
reactor, the cooling of the core and the removal of the decay heat is performed by using high-pressure
cooling system, the RCIC system, which removes the steam from reactor pressure vessel (RPV) and
dump it into the suppression pool (i.e., wet well). At the same time, RCIC injects cool water from the
suppression pool back to the RPV. This procedure is followed until AC power is restored either by
recover off-site power or by fixing issues related to the DGs. From a stochastic point of view, several
random variables have been introduced to represent the probabilistic evolution of the system and are here
reported:

• Off-site power recovery time (see Figure 15): lognormal (mean=2.66 and sigma=2.0) truncated
within the interval [20.0, 600.0] s

• DGs recovery time (see Figure 16): Weibull (k=0.745 and lambda=120) truncated within interval
[1.0, 600.0] s

• Burn-up of the fuel: exponentially distributed with lambda 0.05 within the interval [0.0, 60.0]
GWd/MtHM

• Failure temperature of the cladding: 1-dimensional triangular parametric distribution that
describes the PDF of the temperature at which the clad fails as a function of Burn-up (see Figure
17). Such distribution models the fact that clad failure likelihood increases for higher Burn-Up
values. A more detailed description of the mathematical model is provided in the following
paragraph.

 25

Figure	 15:	 PDF	 and	 CDF	 for	 Off-‐Site	 Power	 Recovery	 Time	

	 	 	 	 	 	 	 	 	 	

Figure	 16:	 PDF	 and	 CDF	 for	 Diesel	 Generator	 Time	

As previously mentioned, handling multivariate and/or parametric distributions can be challenging
from a sampling point of view. The usage of those distributions, in whatever sampling strategy the user
decides to employ, needs to be carefully handled. The main problem is related to the fact that the inverse
of a multivariate and/or parametric CDF is not a bijection (it is represented by an hyper-surface); this does
not allow the usage of a strategy based on the concept of point sampler (the system code is run for
specific values of the random variables that are set externally) and requires a different approach. RAVEN,
in such cases, samples the CDF between [0,1] and checks, during the simulation, if the CDF threshold
gets crossed in consequence of the evolution of the system.

Here, it is shortly described how the 1-dimensional parametric PDF, considered in this demo, has
been handled:

• Random variable: clad failure temperature with triangular distribution (𝑇!,!).
• Parameter: burn-up level (𝐵𝑢).
• Probability distribution function:

𝑇!,!~𝑝𝑑𝑓 𝑇!,! =

=

0, 𝑇 < 𝑇!,!,!"#
2 𝑇!,! − 𝑇!,!,!"#

𝑇!,!,!"# − 𝑇!,!,!"# 𝑇!,!,!"#$ − 𝑇!,!,!"#
, 𝑇!,!,!"# < 𝑇 < 𝑇!,!,!"#$

2 𝑇!,!,!"#$ − 𝑇!,!
𝑇!,!,!"# − 𝑇!,!,!"# 𝑇!,!,!"# − 𝑇!,!,!"#$

, 𝑇!,!,!"#$ < 𝑇 < 𝑇!,!,!"#

0, 𝑇!,!,!"#$ > 𝑇

,

 26

with the parametric dependence from the Burn-up accounted by:
𝑇!,!,!"# = 1699.81𝑒−0.092354Bu,
𝑇!,!,!"# = 1255.37𝑒−0.092354Bu,
𝑇!,!,!"#$ = 1477.59𝑒−0.092354Bu.

Where 𝑇!,!,!"#, 𝑇!,!,!"#$, 𝑇!,!,!"# are respectively the minimum, the most probable and the
maximum values of the clad failure temperature.

• Before each simulation starts, a random number between [0, 1] is generated as threshold of the clad
failure temperature CDF (𝑐𝑑𝑓!!).

• Each time RELAP-7 advances the solution in time, the Burn-up level and the clad temperature,
coming from the simulation, are used to perform a test on the CDF value:

𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 ≶ 𝑐𝑑𝑓!!
• Depending on exceeding/not exceeding the CDF threshold the simulation evolution is modified

according:
𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 < 𝑐𝑑𝑓!!: the simulation goes on without alteration,
𝑐𝑑𝑓 𝑇!,! ,𝐵𝑢 ≥ 𝑐𝑑𝑓!!: the simulation stops as consequence of the clad failure detection.

Figure	 17:	 PDF	 and	 CDF	 for	 clad	 failure	 as	 function	 of	 Burn-‐Up	 and	 Temperaturea	

3.1.1 Analysis Performed
The main goal of this demo is to show some of the capabilities developed in the last year by the

RAVEN team. As already mentioned, the intense development of RAVEN resulted in the addition of all
the state-of-art sampling strategies along with all the capabilities to perform probability and uncertainty
quantifications.

The SBO scenario has been analyzed through the 4 principal sampling strategies (Dynamic Event
Tree is subject of a future milestone report): Monte Carlo, Grid sampling, Latin Hypercube and Adaptive
sampling. Since the final scope was to perform a comparison among these methodologies, it has been
decided to set the maximum number of samples, for each sampler, to a common upper bound of 1224.

It is important to note that, since the RELAP-7 computational performances are still in a developing
stage, the RAVEN team artificially shorted the simulated time (maximum Simulation Time = 450

a Plots generated by RAVEN code

 27

seconds) by acting on unconventional parameters, such as friction factors and decay heat curve. These
actions do not affect the validity of the goal of this report that, as already mentioned, is focused on
RAVEN algorithm capabilities.

3.2 Results
3.2.1 Monte Carlo

The Monte Carlo sampling has been performed setting a limit of 1224 calculations. As it will be
pointed out later, the Monte Carlo is the only strategy that involved a sampling of the distributions
(CDFs) associated to the uncertain parameters mainly using the transformation method described in
2.3.1.1. In fact, the other sampling strategies use a structured discretization of the input space either in
value or cumulative probability and probability distribution functions are used to compute the failure
probability as described in 2.3.3, 2.3.4 and 2.3.5.

Figure	 18:	 Clad	 Temperature	 Evolution	 Monte	 Carlo	

Figure 18 shows the clad temperature evolution for all the histories simulated. Right after the reactor
scram, the temperature of the clad starts decreasing until the primary pumps, in coast-down condition, are
completely stopped. When they stop, the temperature starts rising until the auxiliary cooling system is
possibly restored, leading to a further cooling of the core and placing the NPP in safety conditions.

Figure 19 shows the histograms of the sampled Burn-up level and the threshold CDF (𝑐𝑑𝑓!!) for the
clad failure temperature following the Monte Carlo sampling of the respectively exponential and uniform
distributions. Figure 21 shows, instead, the histogram resulting from the sampling of the truncated
Weibull and Log Normal distributions being respectively the PDF of the DGs and off-site power recovery
time.

Figure 22 shows the distribution of the maximum temperature reached by the clad for the Monte
Carlo analysis. Most of the sampled scenarios reached maximum temperatures below 1000 K, i.e., the
minimum temperature that could cause the failure of the system, at high Burn-ups (see Figure 18)
indicating therefore that most of the scenarios ended without failure of the clad.

Figure 21 shows the limit surface that has been generated based on the Monte Carlo sampling. Since
the uncertain parameters represent a 4-D input space, three of them are explicitly treated in as 3-D
coordinate and the remaining one, the Probability Threshold, is used as weight for the colors of circles
plotting the limit surface. As expected, the limit surface presents itself as the intersection of two planes
almost parallel, one to the DG recovery – Burn-up plane and the other to the off site recovery time –

 28

Burn-up plane. The reason for this shape is that the recoveries of the diesel generators or the off-site
power are equivalent with respect the determination of the clad temperature. As a consequence the limit
surface should, in some extend, being similar to the surface representing the following mathematical
expression:

𝑚𝑖𝑛 𝐷𝐺 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒,𝑂𝑓𝑓 𝑠𝑖𝑡𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 > 𝑇 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒,
𝑚𝑖𝑛 𝐷𝐺 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒,𝑂𝑓𝑓 𝑠𝑖𝑡𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 < 𝑇 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠,

where T is a generic recovery time such as the clad temperature does not exceed the failure value. T is,
obviously, a function of the 𝑐𝑑𝑓!! and 𝐵𝑢. These dependencies generate the bending of the planes
so that the success area (region characterized by the low values of DGs and off-site power
recovery time) decreases with the increase of the Burn-up and increase with the increase of the
CDF threshold chosen for the clad failure temperature (𝑐𝑑𝑓!!).

Figure	 19:	 Burn-‐Up	 and	 Probability	 threshold	 histograms	

Figure	 20:	 Diesel	 Recovery	 Time	 (blue),	 off-‐site	 Power	 Recovery	 Time	 (yellow)	

 29

Figure	 21:	 Views	 of	 the	 limit	 surface	 obtained	 from	 the	 Monte-‐Carlo	 sampling	 strategy	

 30

Figure	 22:	 Max	 clad	 temperature	 histogram	

In the following tables the probability of failure (Table 4) and the correlation matrix (Table 5) are
reported. The correlation matrix shown in Table 5 highlights, as expected, the importance of the AC
power recovery time (either by DG repair or off-site power recovery) followed by Pb_threshold
associated to the clad failure temperature and its burn-up value. This could be inferred by observing the
correlation between the ‘clad failed’ and the other entries of the matrix. The correlation between the
sampled variables (DG recovery time, off site power recovery time, Burn-up and CDF threshold) is
negligible given the fact that they represent independent parameters.

Table	 4	 Failure	 Probability	 Monte	 Carlo	

Failure Probability 1.31E-02
Sigma 3.23E-03

	

Table	 5	 Correlation	 Matrix	 Monte	 Carlo	

Correlation Matrix
DGs
Recovery
Time

Off-Site Power
Recovery Time Burn-Up Pb

Threshold Clad Failed

DGs Recovery Time 1.00E+00 -3.74E-02 -4.56E-03 -2.41E-02 2.35E-01
Off-Site Power
Recovery Time -3.74E-02 1.00E+00 9.59E-03 -3.65E-02 2.70E-01

Burn-Up -4.56E-03 9.59E-03 1.00E+00 3.05E-02 2.35E-02
Pb Thresholds -2.41E-02 -3.65E-02 3.05E-02 1.00E+00 -9.03E-02
Clad Failed 2.35E-01 2.70E-01 2.35E-02 -9.03E-02 1.00E+00

 31

3.2.2 Grid Sampling
In the first part of this report it has been highlighted that sampling performed on a Cartesian grid is

the simplest algorithm can be used for exploring the input space characterized by a set of uncertain
parameters. In this section the SBO scenario is analyzed by mean of an equally spaced value grid and the
results are compared to the ones obtained by the Monte Carlo sampling strategy. The following table
summarizes the discretization used.

Table	 6	 Grid	 Meshing	

Figure	 23:	 Max	 Temperature	 Histogram	 Grid	

Since the grid used is equally spaced in value, the histograms of the sampled variables are not going
to be reported here, not being correlated to the associated distributions. The distributions, as already
mentioned, have been used for the computation of the failure probability only.

Uncertain Parameter # of equally spaced mesh intervals Mesh size
Diesel Generators’ Recovery Time 5 100 s
Off-site Power Recovery Time 5 100 s
Burn-Up 5 12 GWd/MtHM
2D Probability Thresholds 5 0.2

 32

Figure	 24:	 View	 of	 the	 limit	 surface	 obtained	 from	 the	 grid	 sampling	 strategy	

Figure 23 shows the distribution of the maximum temperature reached by the clad for the Grid based
analysis. As it can been seen, most of the sampled scenarios reached maximum temperatures below of
1000 K, i.e., the minimum temperature that could cause the failure of the system, at high Burn-ups (see
Figure 18) meaning that also in this case, as for the Monte Carlo, the sampling was focused on areas of
the input space mostly leading to successful scenarios. From this figure it can be also noted that the grid,
as expected, given the low number of sampling points, is not very accurate in the exploration of the input
space. In fact it leads to a low coverage of some of the bins. On the positive side this approach enlarges
the range of covered temperatures with respect the Monte Carlo approach (Figure 22) providing a better
explorative approach.

 33

Figure	 25:	 Clad	 Temperature	 temporal	 profile	 for	 the	 Grid	 sampling	

Figure 24 shows the limit surface generated using the Grid sampling strategy. As already mentioned,
since the uncertain parameters represent a 4-D input space, three of them are explicitly plotted in the 3-D
space while the forth one, the Probability Threshold, affects the colors of the points lying on the limit
surface. Behavior of the limit surface appears very similar to the one detected by the Monte Carlo
approach, confirming the overall congruence of the two approaches. The grid approach offers a better
resolution of the general trends characterizing the limit surface being more regular in its explorative
strategy.

Figure 26 shows the clad temperature evolution obtained by the grid sampling. The analysis of the
figure confirms the coarse exploration of the input and, consequentially, output space (as already
observed in the histogram analysis reported in Figure 23).

In the following tables the probability of failure and the correlation matrix, among uncertain
parameters and the target parameter (Clad Failed) are reported.

Table	 7	 Failure	 probability	 Grid	 Sampling	

Failure Probability 1.33E-02
Sigma 1.15E-01

Table	 8	 Correlation	 Matrix	 Grid	 Sampling	

Correlation Matrix
DGs

Recovery
Time

Off-Site Power
Recovery Time Burn-Up Pb

Threshold
Clad

Failed

DGs Recovery Time 1.00E+00 8.70E-‐17 -‐3.11E-‐18 -‐1.18E-‐17 5.09E-‐01
Off-Site Power Recovery
Time 8.70E-‐17 1.00E+00 -‐1.31E-‐17 -‐8.93E-‐18 4.90E-‐01

Burn-Up 3.11E-‐18 -‐1.31E-‐17 1.00E+00 -‐6.27E-‐18 3.87E-‐02
Pb Thresholds -‐1.20E-‐17 -‐2.16E-‐18 -‐6.27E-‐18 1.00E+00 -‐5.44E-‐02
Clad Failed 5.09E-‐01 4.90E-‐01 3.87E-‐02 -‐5.44E-‐02 1.00E+00

 34

Table 7 reports the probability of failure computed through the Grid sampler. Its value has been
computed following the approach reported in chapter 3 and closely matches the one computed by the
Monte Carlo method.

Values indicated in Table 8 agree to the ones presented in Table 5 and, hence, similar conclusions can
be inferred regarding the greater importance of the AC recovery timing.

3.2.3 Latin Hypercube Sampling
As already mentioned, in order to perform a comparison among the different sampling strategies a

limit of 1224 simulations has been set. From a Latin Hypercube point of view, this has been translated
using a grid of 1224 equally spaced probability discretization intervals.

Since the grid used for the latin hypercube sampling is equally spaced, in probability, the histograms
of the sampled variables are not going to be reported here, not being correleted to the associated
distributions. The distributions, as for the grid analysis, have been used for the computation of the failure
probability only.

Figure	 26:	 Max	 Temperature	 Histogram	 LHS	

Figure 26 shows the distribution of the maximum temperature reached by the clad for the LHS
analysis. Similarly to the Monte Carlo case, the outcomes are evenly distributed in whole output space.
As for all the cases shown so far, most of the sampled scenarios reached maximum temperatures below of
1000 K. From this figure it can be noticed that the LHS is a good sampling strategy for the exploration of
the uncertainty space.

This result is confirmed by Figure 28. That shows how the clad temperature evolution of the LHS
effectively covers the possible output space.

 35

Figure	 27:	 Views	 of	 the	 limit	 surface	 obtained	 from	 LHS	 strategy	

 36

Figure	 28:	 Clad	 Temperature	 Evolution	 LHS	

Figure 27 shows the limit surface that has been generated based on the Latin Hyper Cube sampling.
The limit surface is fairly similar to the previous reported ones confirming the results so far obtained.

In the following tables the probability of failure and the correlation matrix, among uncertain
parameters and the target parameter (Clad Failed) are reported.

Table	 9:	 Failure	 Probability	 LHS	

Failure Probability 1.53E-02
Sigma 1.23E-01

Table	 10:	 Correlation	 Matrix	 LHS	

Correlation Matrix
DGs

Recovery
Time

Off-Site Power
Recovery Time Burn-Up Pb

Threshold
Clad

Failed

DGs Recovery Time 1.00E+00 -‐2.78E-‐04 -‐1.71E-‐02 -‐4.40E-‐03 5.19E-‐01
Off-Site Power Recovery

Time -‐2.78E-‐04 1.00E+00 -‐2.23E-‐02 -‐9.93E-‐03 5.19E-‐01

Burn-Up -‐1.71E-‐02 -‐2.23E-‐02 1.00E+00 -‐9.49E-‐03 8.69E-‐03
Pb Thresholds -‐4.40E-‐03 -‐9.93E-‐03 -‐9.49E-‐03 1.00E+00 -‐7.10E-‐02

Clad Failed 5.19E-‐01 5.19E-‐01 8.69E-‐03 -‐7.10E-‐02 1.00E+00

Table 9 reports the probability of failure computed through the LHS sampler. Its value is in

agreement with the previous reported values.

Again, as stated for the correlations matrices already shown, great importance is given to AC power
recovery (either DG or off-site power) followed by the Pb_threshold associated to the clad failure
temperature and burn-up values.

 37

3.2.4 Adaptive Sampling
The adaptive sampling strategy is the most promising sampling strategy currently present in RAVEN.

For this analysis, a convergence criterion based on probability has been set to a minimum tolerance of
1.0E-4. The Adaptive sampler converged in this confidence interval in ~1000 iterations (simulations).

Figure	 29:	 Max	 Temperature	 Histogram	 Adaptive	

Figure 29 shows the distribution of the maximum temperature reached by the clad for the Adaptive
sampling analysis. This figure already shows the goal-oriented behavior of the methodology; as it can be
seen the right side of the histogram is more populated then the ones obtained by the other sampling
approaches. This is due by the fact the adaptive strategy tends to explore the input space that most likely
is close to the failure boundary, reasonably focusing around scenarios characterized by higher
temperatures.	

Figure	 30:	 Clad	 Temperature	 Evolution	 Adaptive	

 38

	

Figure	 31:	 Limit	 surface	 e	 obtained	 from	 the	 adaptive	 sampling	 strategy

Figure 30 shows the clad temperature evolution generated by the adaptive sampling analysis. As it
can be seen, there are several changes in color (indicating multiple lines overlapping) in correspondence
of scenarios with high clad temperatures (right side of the plot). Once more, this is due by the intrinsic

 39

nature of the adaptive strategy that explores the input and output space that most likely can lead to the
failure of the clad.

Figure 31 shows the limit surface that has been generated using the Adaptive sampling strategy. The
limit surface shows the same shape characteristics of the others already seen for the other sampling
strategies. The limit surface looks clearer because the samples are highly concentrated along the limit
surface itself.

The following tables show the probability of failure and the correlation matrix, among uncertain
parameters and the target parameter (Clad Failed).

Table	 11:	 Failure	 Probability	 Adaptive	

Failure Probability 1.13E-02
Sigma 1.11E-01

Table	 12:	 Correlation	 Matrix	 Adaptive	

Correlation Matrix
DGs

Recovery
Time

Off-Site Power
Recovery Time Burn-Up Pb

Threshold
Clad

Failed

DGs Recovery Time 1.00E+00 3.61E-‐01 2.84E-‐02 -‐4.67E-‐02 5.06E-‐01
Off-Site Power Recovery

Time 3.61E-‐01 1.00E+00 4.85E-‐02 -‐4.49E-‐02 5.41E-‐01

Burn-Up 2.84E-‐02 4.85E-‐02 1.00E+00 -‐6.34E-‐02 2.91E-‐02
Pb Thresholds -‐4.67E-‐02 -‐4.49E-‐02 -‐6.34E-‐02 1.00E+00 -‐4.47E-‐02

Clad Failed 5.06E-‐01 5.41E-‐01 2.91E-‐02 -‐4.47E-‐02 1.00E+00

Table 11 shows the probability of failure computed through the adaptive sampling. As it can be seen,
its value is in agreement with the Monte Carlo one. The sigma associate is larger then the Monte Carlo
one; this is explainable since the number of observations of failure events in the adaptive sampling is
much higher.

Table 12 confirms the conclusions already stated for the other sampling strategies.

4. CONCLUSIONS
As highlighted in the first part of this report RAVEN’s statistical analysis have made large progress

forward. All classical and most widely used statistical methods (Monte Carlo, stratified sampling and
grid-based sampling) have been implemented and successfully tested. New methodologies have been
explored as the limit surface searching approach. Those new methodologies have shown great potentiality
in both increase accuracy of risk estimation and reduction of computational time. More work will be
needed in the future to optimize these new algorithms and provide robust error estimators. The coupling
of RAVEN and RELAP-7 has been tested in conjunction with those new features of the RAVEN code for
a demo of a BWR SBO core damage probabilistic analysis. During this test a sizable number of
probabilistic distributions have been employed in conjunction with also a parametric distribution function
that is a capability that is unique to the synergy rising from the usage of MOOSE as a common platform
for the RAVEN control logic and the RELAP-7 code. All statistical analysis approach tested provides
coherent results within the prescribed tolerances. The conclusion is that the theoretical bases are sounds,,

 40

the software implementation has been proven to be solid and supporting the conclusions of the theoretical
derivation. The next step will be to extend the complexity of the analysis performed and to push further
the computational effort so to provide a more stringent confutation of the theoretical basis.

Overall RAVEN is proposing itself as a valid tool for a more comprehensive and also computational
efficient tool to perform PRA analysis.

REFERENCES
[1] NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program, Technical Report

ANL/NE-13/5
[2] R. W. Youngblood, V. A. Mousseau, D. L. Kelly, and T.N. Dinh, “Risk-Informed Safety Margin

Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety
Analysis,” The 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and
Safety (NUTHOS-8) Shanghai, China, October 10-14, 2010

[3] “Light Water Reactor Sustainability Program Integrated Program Plan, Revision 1,” INL-EXT-11-
23452, April 2013

[4] “RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR
Simulation with RELAP-7,” INL/EXT-12-25924

[5] C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, R. Martinueau, C. Smith, “Deployment and
Overview of RAVEN Capabilities for a Probabilistic Risk Assessment Demo for a PWR Station
Blackout,” Idaho National Laboratory report: INL/EXT-13-29510 (2013).

[6] Boost Team, http://www.boost.org
[7] A. C. Rencher, Methods of Multivariate Analysis. New York: Wiley (1995).
[8] C. Habermann, F. Kindermann, “Multidimensional Spline Interpolation: Theory and Applications”,

Computational Economics, Volume 30, Issue 2, pp 153-169 (2007)
[9] W. J. Gordon and J. A. Wixom, “Shepard's Method of "Metric Interpolation" to Bivariate and

Multivariate Interpolation”, Mathematics and Computation, vol. 32, n 141, pp 253-264, 1978.
[10] T. Itoh, K. Koyamada. Isosurface generation by using extrema graphs, In proceeding of:

Visualization, 1994., Visualization '94, Proceedings., IEEE Conference on
[11] R Durrett (1995). Probability: Theory and Examples, 2nd Edition. Duxbury Press.
[12] D. Mandelli and C. Smith, “Adaptive sampling using support vector machines,” in Proceeding of

American Nuclear Society (ANS), San Diego (CA), vol. 107, pp. 736-738, 2012
[13] C. Rabiti, D. Mandelli, A. Alfonsi, J. Cogliati, and B. Kinoshita, “Mathematical framework for the

analysis of dynamic stochastic systems with the raven code,” in Proceedings of International
Conference of mathematics and Computational Methods Applied to Nuclear Science and
Engineering (M&C 2013), Sun Valley (Idaho), pp. 320–332, 2013.

[14] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, “RAVEN, a New Software for
Dynamic Risk Analysis”, in Proceedings for PSAM 12 Conference, Honolulu (USA), 2014

[15] C. J. C. BURGES, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Min.
Knowl. Discov., 2, 2, 121–167 (Jun. 1998).

[16] Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching".
Communications of the ACM 18 (9): 509.

[17] Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning
Research, pp. 2825-2830, 2011.

[18] J. Solis, et al., “Boiling Water Reactor Turbine Trip (TT) Benchmark Volume I: Final
Specifications”. NEA/NSC/DOC(2001) 1, June (2001).

 41

5. APPENDIX A: Input Files

5.1.1 RELAP-7 nodalization
[GlobalParams]
 # these initial values will be used for all the fluid models and will be overrode by local initial values if
provided
 # if not provided, these default values will be used
 # scaling factors for flow equations; if not provided, default values will be used
 scaling_factor_var = '1e-3 1e-4 1e-8'
 temperature_sf = '1e-4'
 gravity = '0 0 -9.8'
 global_init_P = 7.e6
 global_init_V = 3.
 global_init_T = 517. #517.252
 model_type = 32
 global_init_alpha = 0.0
 stabilization_type = 'LAPIDUS'
[]
[EoS]
 [./two_phase_eos]
 type = TwoPhaseStiffenedGasEOS
 [../]
 [./vapor_phase_eos]
 type = StiffenedGasEquationOfStateVapor
 [../]
 [./liquid_phase_eos]
 type = StiffenedGasEquationOfStateLiquid
 [../]
 [./eos_nc]
 type = N2Properties
 [../]
[]
 [Materials]
 [./fuel-mat]
 k = 3.7
 Cp = 3.e2
 type = SolidMaterialProperties
 rho = 10.42e3
 [../]
 [./gap-mat]
 k = 0.7
 Cp = 5e3
 type = SolidMaterialProperties
 rho = 1.0
 [../]
 [./clad-mat]
 k = 16
 Cp = 356.
 type = SolidMaterialProperties
 rho = 6.551400e3
 [../]

 42

[]
[Components]
 #----Main steam line
 # steam venting line
 # ---
 # water loop to simulate water drawing back to core
 # ---
 # ---
 # gas vent loop to simulate venting to dry well
 # ---
 # ---
 # wet well
 # ---
 # separated water return line
 # feed water line
 [./reactor]
 #decay_heat = decayheatcurve
 #decay_heat = decayheatcurveSuperTricked
 initial_power = 3293.0e6
 type = Reactor
 [../]
 [./lowerplenum]
 volume = 61.48
 inputs = 'pipe11(out)'
 center = '0.0 0.0 2.64'
 scale_factors = '1.0E-3 1.0E-9 1.0E-0' # rho, rhoE, vel
 Area = 11.64
 outputs = 'ch1(in)'
 K = '1.0 20'
 initial_T = 517.0
 eos = two_phase_eos
 type = VolumeBranch
 [../]
 [./ch1]
 #length = 3.6576
 #Hw = 5.0e4
 #aw = 2.354927e2
 elem_number_of_hs = '5 1 2' #'5 1 2'
 Ts_init = 517.
 orientation = '0 0 1'
 n_elems = 20 #in relap7 model: 50 200
 power_fraction = '1.0 0.0 0.0'
 Dh = 1.3597E-02
 fuel_type = cylinder
 name_of_hs = 'FUEL GAP CLAD'
 Phf = 18.368e2
 n_heatstruct = 3
 stabilization_type = 'NONE'
 A = 7.8
 material_hs = 'fuel-mat gap-mat clad-mat'
 position = '0 0.0 5.28' #'0 -4.0 5.28'
 PoD = 1.547170E+00
 f = 0.2 #0.05
 type = CoreChannel
 eos = two_phase_eos
 length = 3.66

 43

 model_type = 32
 HT_geometry_code = 110 # fuel bundle
 width_of_hs = '6.057900e-3 1.524000e-4 9.398000e-4'
 dim_hs = 1
 [../]
 [./upperplenum]
 volume = 26.99
 inputs = 'ch1(out)'
 center = '0.0 0.0 9.88'
 scale_factors = '1.0E-3 1.0E-8 1.0E-0'
 Area = 14.36
 outputs = 'pipe6(in)'
 K = '3.0 1.0' #'1.0 1.0'
 initial_T = 517.0
 eos = two_phase_eos
 type = VolumeBranch
 [../]
 [./pipe6]
 # rising pipe
 A = 3.93 # PI/4 * (0.01)**2
 orientation = '0 0 1'
 Dh = 1.0
 f = 0.1
 Tw = 600 # wall temperature
 Hw = 0. #1e5
 eos = two_phase_eos
 model_type = 32
 length = 2.72
 aw = 400 #
 n_elems = 15 #in relap 7 model :40
 position = '0.0 0.0 10.82'
 type = Pipe
 stabilization_type = 'NONE'
 [../]
 [./SeparatorDryer]
 volume = 19.30
 inputs = 'pipe6(out)'
 center = '0.0 0.0 14.48'
 scale_factors = '1.0E-3 1.0E-9 1.0E-0' # rho, rhoE, vel
 Area = 10.27
 outputs = 'pipe7(in) pipe8(in)'
 K = '1.0 1.0 5.0'
 initial_T = 517.0
 initial_void_fraction = 0.9
 eos = two_phase_eos
 type = SeparatorDryer
 [../]
 [./pipe7]
 # to steam dome
 A = 3.93
 orientation = '0 0 1'
 Dh = 1.0
 f = 0.1
 Tw = 600
 Hw = 0.0
 eos = vapor_phase_eos

 44

 model_type = 3
 length = 0.1
 aw = 400.0
 n_elems = 7 # in relap 7 model: 20
 position = '0.0 0.0 15.42'
 type = Pipe
 [../]
 [./Dome]
 volume = 178.19
 inputs = 'pipe7(out)'
 center = '0.0 0.0 18.92'
 scale_factors = '1.0E-3 1.0E-8 1.0E-0'
 Area = 26.19
 outputs = 'pipe9(in)'
 K = '1.0 1.0'
 eos = vapor_phase_eos
 type = VolumeBranch
 [../]
 [./pipe9]
 # main steam line coming out of dome
 A = 1.32
 orientation = '0 1 0'
 Dh = 1.0
 f = 0.1
 Tw = 600
 Hw = 0.0
 eos = vapor_phase_eos
 model_type = 3
 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 3 18.92'
 type = Pipe
 [../]
 [./SteamLineBranch]
 volume = 2.64 #1.32
 inputs = 'pipe9(out)'
 center = '0.0 4 18.92'
 scale_factors = '1.0E-4 1.0E-8 1.0'
 Area = 1.32
 outputs = 'pipe14(in) pipe_venting1(in)'
 K = '0.0 0.0 0'
 initial_T = 517.0
 eos = vapor_phase_eos
 type = VolumeBranch
 [../]
 [./pipe14]
 # main steam line to MIV
 A = 1.32
 orientation = '0 1 0'
 Dh = 1.0
 f = 0.0
 Tw = 600
 Hw = 0.0
 eos = vapor_phase_eos
 model_type = 3

 45

 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 4 18.92'
 type = Pipe
 [../]
 [./MainIsolationValve]
 volume = 1.32
 inputs = 'pipe14(out)'
 center = '0.0 5.0 18.92'
 scale_factors = '1.0E-4 1.0E-11' # rho, rhoE
 Area = 1.32
 outputs = 'pipe_steam_turbine(in)'
 K = '0.0 0.0'
 initial_T = 517.0
 initial_status = open
 eos = vapor_phase_eos
 trigger_time = 1 #1.0E5
 type = Valve
 response_time = 10 #1.1E5
 [../]
 [./pipe_steam_turbine]
 # main steam line to TDV
 A = 1.32
 orientation = '0 1 0'
 Dh = 1.0
 f = 0.0
 Tw = 600
 Hw = 0.0
 eos = vapor_phase_eos
 model_type = 3
 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 5 18.92'
 type = Pipe
 [../]
 [./outlet1]
 weak_bc = false
 T_bc = 517
 p_bc = 7.0e6
 eos = vapor_phase_eos
 input = 'pipe_steam_turbine(out)'
 type = TimeDependentVolume
 [../]
 [./pipe_venting1]
 #stabilization_type = 'NONE'
 # geometry
 A = 1.2566e-1
 orientation = '0 0 -1'
 Dh = 0.4
 f = 0.1
 initial_P = 7e6
 initial_T = 517.
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0.

 46

 eos = vapor_phase_eos
 n_elems = 4 # in relap 7 model: 10
 length = 5 #0.1
 model_type = 3
 position = '0 4 18.92'
 type = Pipe
 [../]
 [./branch_venting1]
 volume = 2.5132e-1
 inputs = 'pipe_venting1(out)'
 center = '0.0 4 13.92'
 scale_factors = '1.0E-4 1.0E-8 1.0'
 Area = 1.2566e-1
 outputs = 'pipe_venting2(in)'
 K = '100 100'
 initial_T = 517.0
 eos = vapor_phase_eos
 type = VolumeBranch
 [../]
 [./pipe_venting2]
 #stabilization_type = 'NONE'
 # geometry
 A = 1.2566e-1
 orientation = '0 1 0'
 Dh = 0.4
 f = 0.1
 initial_P = 7e6
 initial_T = 517.
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0.
 eos = vapor_phase_eos
 n_elems = 4 # in relap 7 model: 10
 length = 4 #0.1
 model_type = 3
 position = '0 4 13.92'
 type = Pipe
 [../]
 [./branch_venting2]
 volume = 2.5132e-1
 inputs = 'pipe_venting2(out)'
 center = '0.0 8 13.92'
 scale_factors = '1.0E-4 1.0E-8 1.0'
 Area = 1.2566e-1
 outputs = 'pipe_turbine_inlet(in)'
 K = '100 100'
 initial_T = 517.0
 eos = vapor_phase_eos
 type = VolumeBranch
 [../]
 [./pipe_turbine_inlet]
 #stabilization_type = 'NONE'
 # geometry
 A = 1.2566e-1
 orientation = '0 0 -1'
 Dh = 0.4
 f = 0.1

 47

 initial_P = 7e6
 initial_T = 517.
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0.
 eos = vapor_phase_eos
 n_elems = 4 # in relap 7 model: 10
 length = 16.92
 model_type = 3
 position = '0 8 13.92'
 type = Pipe
 [../]
 [./turbine]
 inputs = 'pipe_turbine_inlet(out)'
 p0_design = 7e6 #6e6
 scale_factors = '1e-1 1e-1 1e-5 1e-7' # for inlet pressure, outlet pressure, outlet density, and shaft work
 Initial_p = 7e6
 outputs = 'pipe_turbine_outlet(in)'
 Initial_T = 517.
 T0_design = 517
 eos = vapor_phase_eos
 Turbine_efficiency = 0.6 #0.9
 is_shutdown = 'false' #'true'
 relative_mass_flow_rate_design = 0.8
 pressure_ratio_design = 3. #3.0
 type = Turbine
 max_mass_flow_rate = 2e-1 # steady state design point
 [../]
 [./pipe_turbine_outlet]
 #stabilization_type = 'SUPG'
 #eos = two_phase_eos
 # geometry
 #initial_void_fraction = 1.0
 A = 1.2566e-1 #7.854e-1
 orientation = '0 0 -1'
 Dh = 0.4 #1
 f = 0.1 #10
 initial_P = 1.5e5 #1e5
 initial_T = 400 #300.
 Hw = 0.0
 initial_V = 1e-2 #0.
 eos = vapor_phase_eos
 n_elems = 4 # in relap 7 model: 10
 length = 6.5 #0.1
 model_type = 3
 position = '0 9 -3' #'0 4.1 18.82'
 type = Pipe
 [../]
 [./pipe_RCIC_pump_inlet]
 # geometry
 A = 3.141593e-2
 orientation = '0 0 1'
 Dh = 0.2
 f = 0.001 #0.2
 initial_P = 1e5
 initial_T = 300
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer

 48

 initial_V = 0 #1e-3
 eos = liquid_phase_eos
 n_elems = 7 # in relap 7 model: 20
 length = 8
 model_type = 3
 position = '0 6 -11'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./RCIC_pump]
 # now no-used but still required parameters, give them some whatever values
 #Area = 0.007853982
 inputs = 'pipe_RCIC_pump_inlet(out)'
 outputs = 'pipe_RCIC_pump_outlet(in)'
 Initial_pressure = 1.0e5
 eos = liquid_phase_eos
 mass_flow_rate = 2e-1 # this number should be equal or smaller than the max_mass_flow_rate for
turbine
 type = IdealPump # IdealPump is good to simulate closed valve for incompressible fluid
 [../]
 [./pipe_RCIC_pump_outlet]
 # geometry
 A = 3.141593e-2
 orientation = '0 -1 0'
 Dh = 0.2
 f = 1e-3
 initial_P = 7e6
 initial_T = 517
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0 #1e-3
 eos = liquid_phase_eos
 n_elems = 3 # in relap 7 model: 5
 length = 1
 model_type = 3
 position = '0 5 -3'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./branch_RCIC_water_line]
 volume = 0.007853982
 inputs = 'pipe_RCIC_pump_outlet(out)'
 center = '0 4 -2'
 scale_factors = '1.0E-4 1.0E-8 1.0'
 Area = 3.141593e-2
 outputs = 'pipe_RCIC_to_feedwater_line(in)'
 K = '0 0'
 initial_T = 517.0
 eos = liquid_phase_eos
 type = VolumeBranch
 [../]
 [./pipe_RCIC_to_feedwater_line]
 # geometry
 A = 3.141593e-2
 orientation = '0 0 1'
 Dh = 0.2
 f = 1e-4 #0.01

 49

 initial_P = 7e6
 initial_T = 517
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0 #1e-3
 eos = liquid_phase_eos
 n_elems = 9 # in relap 7 model: 30
 length = 15.52
 model_type = 3
 position = '0 4 -3'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./pipe_to_dry_well]
 # geometry
 A = 0.031415927
 orientation = '0 1 0'
 Dh = 0.2
 f = 0.01 #0.2
 initial_P = 1e5
 initial_T = 300
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0
 eos = eos_nc
 n_elems = 15 # in relap 7 model: 50
 length = 0.2
 model_type = 3
 position = '0 11 -4'
 type = Pipe
 stabilization_type = 'NONE'
 [../]
 [./VacuumBreaker]
 volume = 3.142e-3
 inputs = 'pipe_to_dry_well(out)'
 center = '0 11.2 -4'
 scale_factors = '1.0E-4 1.0E-11' # rho, rhoE
 Area = 0.031415927
 outputs = 'pipe_to_dry_well2(in)'
 K = '0.0 0.0'
 initial_T = 300
 initial_status = close
 eos = eos_nc
 Initial_pressure = 1.e5
 trigger_time = 1.0E100
 type = Valve
 response_time = 1.1E100
 [../]
 [./pipe_to_dry_well2]
 # geometry
 A = 0.031415927
 orientation = '0 1 0'
 Dh = 0.2
 f = 0.01 #0.2
 initial_P = 1e5
 initial_T = 300
 Hw = 0.0 # not setting Hw means that Hw is calculated by models, need set 0 for no heat transfer
 initial_V = 0

 50

 eos = eos_nc
 n_elems = 15 # in relap 7 model: 50
 length = 0.2
 model_type = 3
 position = '0 11.3 -4'
 type = Pipe
 stabilization_type = 'NONE'
 [../]
 [./Dry_well]
 eos = eos_nc
 input = 'pipe_to_dry_well2(out)'
 p_bc = 1.e5
 type = TimeDependentVolume
 T_bc = 300
 [../]
 [./wet_well]
 eos_water = liquid_phase_eos
 K_or = 1.0
 K_ir = 1e6 #0.5
 K_i = 100 #1.0
 Lt = 8
 K_o = 0.1 #0.5
 cooling_rate = 0.0
 scale_factors = '1e-5 1e-10 1e-7 1e-13 1e-6' # for mg, me_g, mw, me_w, Lw
 Lw_initial = 4 #5
 type = WetWell
 inputs = 'pipe_turbine_outlet(out)'
 z_in = 2.5
 eos_vapor = vapor_phase_eos
 outputs = 'pipe_RCIC_pump_inlet(in) pipe_to_dry_well(in)'
 K_vr = 1.0
 alpha_s = 1e3
 K_v = 0.5
 Ac = 892.5 FIXME
 p_gas_initial = 1.e5
 z_out = 1
 T_initial = 300.0
 eos_nc_gas = eos_nc
 [../]
 [./pipe8]
 # discharge water line from SeparatorDryer
 A = 3.93
 orientation = '0 1 0'
 Dh = 1.0
 f = 0.1
 Tw = 600
 Hw = 0.0
 eos = liquid_phase_eos
 model_type = 3
 length = 0.5 #2.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 2.0 14.48'
 type = Pipe
 [../]
 [./DownComer]

 51

 volume = 201.3 #171.3
 inputs = 'pipe8(out) pipe_feedwater3(out)'
 center = '0.0 2.75 9.81' #'0.0 4.0 9.81'
 scale_factors = '1.0E-4 1.0E-10 1.0E-2' # mass, energy, and level
 dome_eos = vapor_phase_eos
 outputs = 'pipe10(in)'
 K = '1.0 10.0 1.0'
 Area = 15
 initial_T = 517.0
 initial_level = 13.42 #11.42
 eos = liquid_phase_eos
 display_pps = 'true'
 dome_component = 'Dome'
 type = DownComer
 [../]
 [./pipe10]
 # downcomer pipe
 #position = '0.0 5.0 10.51'
 #length = 6.42
 A = 8.55
 orientation = '0 0 -1'
 Dh = 1.0
 f = 0.1
 Tw = 600
 Hw = 0.0
 eos = liquid_phase_eos
 model_type = 3
 length = 0.5
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 2.75 2.10' #'0.0 5.0 4.10'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./Pump]
 #type = IdealPump
 #mass_flow_rate = 12915.0
 inputs = 'pipe10(out)'
 Head = 40 #33.0
 Area = 3.0
 outputs = 'pipe11(in)'
 eos = liquid_phase_eos
 Initial_pressure = 7.3e6
 K_reverse = '10. 10.'
 type = Pump
 [../]
 [./pipe11]
 # pipe to lower plenum
 A = 8.55
 orientation = '0 0 -1'
 Dh = 1.0
 f = 0.1
 Tw = 600.0
 Hw = 0.0
 eos = liquid_phase_eos
 model_type = 3

 52

 length = 0.5
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 2.75 1.60' #'0.0 5.0 3.60'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./inlet]
 # type = TDM
 # massflowrate_bc = 1909.2
 T_bc = 508.
 p_bc = 7.1e6
 eos = liquid_phase_eos
 void_fraction_bc = -0.01
 input = 'pipe_feedwater1(in)'
 type = TimeDependentVolume
 [../]
 [./pipe_feedwater1]
 #feedwater line from TDV
 # f = 0.01
 #stabilization_type = 'LAPIDUS'
 A = 1.32
 orientation = '0 -1 0'
 Dh = 1.0
 f = 0.01 #1
 Tw = 600.0
 Hw = 0.
 eos = liquid_phase_eos
 model_type = 3
 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 6.0 12.52' #'0.0 7.0 12.52'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./FeedWaterValve]
 volume = 1.32
 inputs = 'pipe_feedwater1(out)'
 center = '0.0 5.0 12.52'
 scale_factors = '1.0E-4 1.0E-11' # rho, rhoE
 Area = 1.32
 outputs = 'pipe_feedwater2(in)'
 K = '0.0 0.0'
 initial_T = 517.0
 initial_status = open
 eos = liquid_phase_eos
 trigger_time = 1 #1.0E5
 type = Valve
 response_time = 1 #1.1E5
 [../]
 [./pipe_feedwater2]
 #feedwater line from feed water valve
 # f = 0.01
 #stabilization_type = 'LAPIDUS'
 A = 1.32

 53

 orientation = '0 -1 0'
 Dh = 1.0
 f = 0.01 #1
 Tw = 600.0
 Hw = 0.
 eos = liquid_phase_eos
 model_type = 3
 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 5.0 12.52' #'0.0 7.0 12.52'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
 [./branch_feedwater_line]
 volume = 1.32
 inputs = 'pipe_feedwater2(out)'
 center = '0.0 4.0 12.52'
 scale_factors = '1.0E-4 1.0E-8 1.0'
 Area = 1.32
 outputs = 'pipe_feedwater3(in) pipe_RCIC_to_feedwater_line(out)'
 K = '0 0 0'
 initial_T = 517.0
 eos = liquid_phase_eos
 type = VolumeBranch
 [../]
 [./pipe_feedwater3]
 #feedwater line to downcomer
 #f = 0
 #stabilization_type = 'LAPIDUS'
 A = 1.32
 orientation = '0 -1 0'
 Dh = 1.0
 f = 0.01
 Tw = 600.0
 Hw = 0.
 eos = liquid_phase_eos
 model_type = 3
 length = 1.0
 aw = 400.0
 n_elems = 3 # in relap 7 model: 5
 position = '0.0 4.0 12.52' #'0.0 6.0 12.52'
 type = Pipe
 stabilization_type = 'SUPG'
 [../]
[]
[Postprocessors]
 [./core_void]
 variable = void_fraction_HEM
 type = ElementAverageValue
 block = 'ch1:pipe'
 [../]
[]
[Preconditioning]
 # active = 'FDP_PJFNK'
 #active = 'FDP_Newton'

 54

 active = 'SMP_PJFNK'
 [./SMP_PJFNK]
 petsc_options_iname = '-mat_fd_type -mat_mffd_type'
 petsc_options_value = 'ds ds'
 full = true
 type = SMP
 solve_type = 'PJFNK'
 [../]
 [./FDP_PJFNK]
 petsc_options_iname = '-mat_fd_type -mat_mffd_type'
 petsc_options_value = 'ds ds'
 full = true
 type = FDP
 solve_type = 'PJFNK'
 [../]
 [./FDP_Newton]
 petsc_options_iname = '-mat_fd_coloring_err'
 petsc_options_value = '1.e-10'
 full = true
 type = FDP
 solve_type = 'NEWTON'
 [../]
[]
[Executioner]
 #type = Transient
 #predictor_scale = 0.5
 #
 # [./TimeStepper]
 # type = SolutionTimeAdaptiveDT
 # dt = 0.5
 # percent_change = 0.15
 # [../]
 # num_steps = 5000000000 The number of timesteps in a transient run
 #restart_file_base = SBO_raven_8_11_out_restart_12680
 #restart_file_base = SBO_8_11_small_steady_out_cp/0572
 nl_abs_tol = 1e-4 #5e-5
 petsc_options_value = '30 lu'
 nl_max_its = 20 #11 #15
 restart_file_base = 0750
 type = RavenExecutioner
 start_time = 0 #1834.0600
 nl_rel_tol = 1e-8 #1e-9
 dump_raven_init = false
 l_tol = 1e-4 #1e-6 Relative linear tolerance for each Krylov solve
 dtmin = 1.e-9
 dt = 1e-2
 scheme = 'implicit-euler' # this is not default option anymore
 petsc_options_iname = '-ksp_gmres_restart -pc_type'
 l_max_its = 30 #60 Number of linear iterations for each Krylov solve
 end_time = 450
 [./TimeStepper]
 # steady state time step control
 #time_t = '0 0.01 0.1 0.5 20 50 100 1e5'
 #time_dt = '1e-3 2.e-3 2.e-3 1.e-2 1.1e-2 1.5e-2 2e-2 2e-1'
 #time_dt = '5e-3 5.e-3 5.e-3 2.e-2 4.e-2 1e-1 2e-1 5e-1'
 # transient time step control

 55

 time_t = '0 0.01 0.1 0.5 20 50 100 200 298 1820 1e5'
 time_dt = '1e-2 2.e-2 2.e-2 1.e-1 1e-1 2e-1 1e-1 2e-1 6e-2 3e-1 1e-1'
 type = FunctionDT
 [../]
 [./Quadrature]
 # Specify the order as FIRST, otherwise you will get warnings in DEBUG mode...
 type = TRAP
 order = FIRST
 [../]
[]
[Outputs]
 # Turn on performance logging
 #interval = 20
 # num_checkpoint_files = 1
 exodus = false
 output_intermediate = false
 output_displaced = false
 output_initial = false
 perf_log = true
 csv = true
 [./console]
 perf_log = false
 type = Console
 [../]
[]
[Debug]
 # show_var_residual_norms = true
[]
[Controlled]
 control_logic_input = SBO_control_logic_final
 [./turbine_max_mass_flow_rate]
 print_csv = true
 data_type = double
 property_name = max_mass_flow_rate
 component_name = turbine
 [../]
 [./RCIC_pump_flow_rate]
 print_csv = true
 data_type = double
 property_name = mass_flow_rate
 component_name = RCIC_pump
 [../]
 [./HeadPump]
 print_csv = true
 property_name = Head
 data_type = double
 component_name = Pump
 [../]
 [./ReactorPowerFract]
 print_csv = true
 property_name = FUEL:power_fraction
 data_type = double
 component_name = ch1
 [../]
 [./ReactorPower]
 print_csv = false

 56

 property_name = initial_power
 data_type = double
 component_name = reactor
 [../]
[]
[RavenAuxiliary]
 [./initialPowerFractionLevel]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./RealPower]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./initialHeadPump]
 print_csv = true
 data_type = double
 initial_value = 40.0
 [../]
 [./DGsFailTime]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./DGsRecoveryTime]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./CollapsedTimeParameter]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./CanDGsFailAgain]
 print_csv = false
 data_type = bool
 initial_value = false
 [../]
 [./AuxSystemAvailable]
 print_csv = true
 data_type = bool
 initial_value = false
 [../]
 [./OffSitePowerRecoveryTime]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./BurnUp]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]

 57

 [./PbThreshold2Ddist]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./CladTempFailure]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./CladFailed]
 print_csv = true
 data_type = bool
 initial_value = false
 [../]
 [./MonitorProbabilityLevel]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./sboStartTime]
 print_csv = true
 data_type = double
 initial_value = 1.0
 [../]
 [./keepGoing]
 print_csv = true
 data_type = bool
 initial_value = true
 [../]
 [./Pdf2Ddistribution]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./PdfDGs]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./PdfOffSite]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./PdfBU]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
 [./PointProbability]
 print_csv = true
 data_type = double
 initial_value = 0.0
 [../]
[]

 58

[RavenTools]
 [./PumpCoastDown]
 coefficient = 3 #2
 initial_flow_rate = 40
 type = pumpCoastdownExponential
 [../]
 [./DecayHeat]
 fitting_type = linear
 type = TableFunction
 y_coordinates = '1 0.8 0.636236373 0.636204562 0.636172753 0.636140945 0.636109139
0.636077334 0.636045531 0.636013729 0.63598193 0.635950131 0.635918335 0.635886539
0.635854746 0.635822954 0.635791164 0.635759375 0.635727588 0.635695802 0.635664018
0.635505122 0.635346265 0.635187449 0.635028672 0.634711237 0.63439396 0.634076843
0.633759884 0.633126441 0.632493631 0.631861453 0.631229907 0.630598993 0.629968709
0.626826727 0.623700416 0.620589697 0.617494493 0.28590802'
 x_coordinates = '0 1 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 125 150 175 200 250
300 350 400 500 600 700 800 900 1000 1500 2000 2500 3000 80000'

 [../]
 [./PumpRampUp]
 fitting_type = linear
 y_coordinates = '0 1.0'
 type = TableFunction
 x_coordinates = '0 5.0'
 [../]
[]
[Distributions]
 # CladFailure2DTriangularNormal is the distribution that drives the plant failure
 [./CladFailure2DTriangularNormal]
 alpha = '0 0'
 beta = '0 0'
 function_type = CDF
 type = MultiDimensionalCartesianSpline
 data_filename = TriangularExponential2D.txt
 [../]
 # BurnUpDistribution is the distribution that define the sampling on the II dimension of
CladFailure2DTriangularNormal
 # This distribution is needed to create the 2D grid sampling (it define the Probability Thresholds)
[./DGsRecoveryTime]
 k = 0.745
 V_window_Up = 237.17909
 V_window_Low = 236.7169
 xMax = 600.0
 xMin = 1.0
 type = WeibullDistribution
 lambda = 120.0
 [../]
 [./OffSitePowerRecoveryTime]
 type = LogNormalDistribution
 V_window_Up = 99.66034
 mu = 2.66
 V_window_Low = 99.21281
 xMax = 600.0
 xMin = 20.0
 sigma = 2.0
 [../]

 59

 [./DummyPbForThresholdSet]
 xMin = 0.0
 type = UniformDistribution
 V_window_Low = 0.3194424
 V_window_Up = 0.320214
 xMax = 1.0
 [../]
 [./BurnUpDistribution]
 V_window_Up = 21.94146
 V_window_Low = 21.89517
 xMax = 60.0
 xMin = 0.0
 type = ExponentialDistribution
 lambda = 0.01
 [../]
[]
[Monitored]
 [./ch1cladtemperature]
 operator = NodalMaxValue #ElementAverageValue
 path = CLAD:TEMPERATURE
 data_type = double
 component_name = ch1
 [../]

[]

5.1.2 RAVEN control Logic
import sys
import math
coordinate = None
triangularBu = None

def restart_function(monitored, controlled, auxiliary):

 indebugmode = False
 global coordinate
 global triangularBu
 if coordinate is None:
 coordinate = distribution1D.vectord_cxx(2)
 coordinate[0]=0.0
 coordinate[1]=0.0
 # initial pump head
 auxiliary.initialHeadPump = 40.0
 # get sampled vars (these calls are the same for all the sampling strategy types (except DET))
 if not indebugmode:
 auxiliary.DGsRecoveryTime = distributions.DGsRecoveryTime.getDistributionRandom()
 auxiliary.OffSitePowerRecoveryTime =
distributions.OffSitePowerRecoveryTime.getDistributionRandom()
 auxiliary.BurnUp = distributions.BurnUpDistribution.getDistributionRandom()
 auxiliary.PbThreshold2Ddist = distributions.DummyPbForThresholdSet.getDistributionRandom()
 else:
 auxiliary.DGsRecoveryTime = distributions.DGsRecoveryTime.getDistributionRandom()
 auxiliary.OffSitePowerRecoveryTime =
distributions.OffSitePowerRecoveryTime.getDistributionRandom()
 auxiliary.BurnUp = distributions.BurnUpDistribution.getDistributionRandom()
 auxiliary.PbThreshold2Ddist = distributions.DummyPbForThresholdSet.getDistributionRandom()

 60

 # compute the key times
 auxiliary.CollapsedTimeParameter =
min(auxiliary.DGsRecoveryTime,auxiliary.OffSitePowerRecoveryTime)
 auxiliary.initialPowerFractionLevel= controlled.ReactorPowerFract
 auxiliary.RealPower = controlled.ReactorPower
 print('DGsRecoveryTime: ', str(auxiliary.DGsRecoveryTime))
 print('OffSitePowerRecoveryTime: ',str(auxiliary.OffSitePowerRecoveryTime))
 print('BurnUp: ', str(auxiliary.BurnUp))
 print('PbThreshold2Ddist: ', str(auxiliary.PbThreshold2Ddist))
 triangularBu = distribution1D.BasicTriangularDistribution(1477.59-
math.exp(0.092354*auxiliary.BurnUp),1255.3722-math.exp(0.092354*auxiliary.BurnUp),1699.8167-
math.exp(0.092354*auxiliary.BurnUp))
 print("CREATED DISTRIBUTION ON THE FLY...LOW:")
 print(str(1255.3722-math.exp(-0.092354*auxiliary.BurnUp)))
 print("PEAK:")
 print(str(1477.59-math.exp(-0.092354*auxiliary.BurnUp)))
 print("UP:")
 print(str(1699.8167-math.exp(-0.092354*auxiliary.BurnUp)))
def control_function(monitored, controlled,auxiliary):
 global coordinate
 global triangularBu
 if auxiliary.CladFailed and monitored.time_step > 3:
 auxiliary.keepGoing = False
 print('CLAD FAILED')
 return
 coordinate[0] = monitored.ch1cladtemperature
 coordinate[1] = auxiliary.BurnUp
 print("LoweBound 2D Dist: " + str(1255.3722-math.exp(0.092354*auxiliary.BurnUp)))
 print("Peak 2D Dist: " + str(1477.59-math.exp(0.092354*auxiliary.BurnUp)))
 print("UpperBound 2D Dist: " + str(1699.8167-math.exp(0.092354*auxiliary.BurnUp)))
 print("CDF of 2D ",str(triangularBu.Cdf(monitored.ch1cladtemperature)))
 print("PDF of 2D ",str(triangularBu.Pdf(monitored.ch1cladtemperature)))
 #auxiliary.MonitorProbabilityLevel = distributions.CladFailure2DTriangularNormal.Cdf(coordinate)
 auxiliary.MonitorProbabilityLevel = triangularBu.Cdf(monitored.ch1cladtemperature)
 auxiliary.Pdf2Ddistribution = triangularBu.Pdf(monitored.ch1cladtemperature)
 auxiliary.PdfDGs = distributions.DGsRecoveryTime.Pdf(auxiliary.DGsRecoveryTime)
 auxiliary.PdfOffSite =
distributions.OffSitePowerRecoveryTime.Pdf(auxiliary.OffSitePowerRecoveryTime)
 auxiliary.PdfBU = distributions.BurnUpDistribution.Pdf(auxiliary.BurnUp)
 auxiliary.PointProbability = auxiliary.PdfDGs*auxiliary.Pdf2Ddistribution*auxiliary.PdfOffSite
 # pump head control
 if (monitored.time < auxiliary.sboStartTime) : controlled.HeadPump =
auxiliary.initialHeadPump
 if (monitored.time >= (auxiliary.sboStartTime)) and (not auxiliary.AuxSystemAvailable):
 controlled.HeadPump = tools.PumpCoastDown.compute(monitored.time-auxiliary.sboStartTime)
 controlled.turbine_max_mass_flow_rate = min(0.2 + (auxiliary.initialHeadPump - 0.2) *
(monitored.time) / 10, auxiliary.initialHeadPump)
 controlled.RCIC_pump_flow_rate = min((0.2 + (auxiliary.initialHeadPump - 0.2) * (monitored.time) /
10),auxiliary.initialHeadPump)
 if controlled.HeadPump < auxiliary.initialHeadPump*1.0e-5 : controlled.HeadPump =
auxiliary.initialHeadPump*1.0e-5
 #
 if (monitored.time >= auxiliary.sboStartTime):
 print('SBO CONDITION')
 # scram => decay heat curve
 controlled.ReactorPowerFract =

 61

auxiliary.initialPowerFractionLevel*tools.DecayHeat.compute(monitored.time-auxiliary.sboStartTime)
 auxiliary.RealPower = controlled.ReactorPower*controlled.ReactorPowerFract
 # check if aux cooling system is operative again
 if monitored.time > (auxiliary.sboStartTime + auxiliary.CollapsedTimeParameter):
auxiliary.AuxSystemAvailable = True
 else : auxiliary.AuxSystemAvailable = False
 if auxiliary.AuxSystemAvailable:
 print('COOLING SYSTEM UP')
 # the cooling is guaranteed
 if controlled.HeadPump <= auxiliary.initialHeadPump*0.5:
 if (monitored.time - (auxiliary.sboStartTime + auxiliary.CollapsedTimeParameter)) < 5.0:
 actualPumpHead = controlled.HeadPump
 controlled.HeadPump = tools.PumpRampUp.compute(monitored.time - (auxiliary.sboStartTime +
auxiliary.CollapsedTimeParameter))*auxiliary.initialHeadPump
 if controlled.HeadPump < actualPumpHead:controlled.HeadPump = actualPumpHead
 else:
 controlled.HeadPump = auxiliary.initialHeadPump*0.5 #auxiliary.initialHeadPump*0.50
 controlled.turbine_max_mass_flow_rate = auxiliary.initialHeadPump
 controlled.RCIC_pump_flow_rate = auxiliary.initialHeadPump
 controlled.ReactorPowerFract = auxiliary.initialPowerFractionLevel*0.01
 if triangularBu.Cdf(monitored.ch1cladtemperature) >= auxiliary.PbThreshold2Ddist:
 auxiliary.CladFailed = True
 if auxiliary.CladFailed: auxiliary.CladTempFailure = monitored.ch1cladtemperature
 return

def keep_going_function(monitored, controlled, auxiliary):
 return auxiliary.keepGoing

